Skip to main content

Cellulose Gels and Microgels: Synthesis, Service, and Supramolecular Interactions

  • Chapter
Supramolecular Polymer Networks and Gels

Part of the book series: Advances in Polymer Science ((POLYMER,volume 268))

Abstract

This chapter provides an overview of recent research on cellulose-based gels and microgels cross-linked by and/or subject to supramolecular interactions, in which native cellulose, regenerated cellulose, cellulose derivatives, and cellulose graft copolymers are used as the building blocks. Supramolecular interactions such as hydrophobic interactions, hydrogen bonding, and ionic interactions act as a physical means of cross-linking within these cellulose-based gels and microgels. The resulting “smart” supramolecular gels and microgels have many advantages, with a particular view to their intelligent behavior in reaction to environmental stimuli such as pH, temperature, light, electricity, magnetic fields, and mechanical forces, all mediated by specific supramolecular polymer–polymer and polymer–solvent interactions. Cellulose-based supramolecular gels and microgels have been applied or have promising potential for applications in tissue engineering, drug delivery, blood purification, sensors, agriculture, water purification, chromatographic supports, and catalyst supports. This review provides information on using celluloses as building blocks for the fabrication of functional supramolecular materials that are not limited to just gels and microgels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMIMCl:

1-Allyl-3-methylimidazolium chloride

ATRP:

Atom transfer radical polymerization

AuNP:

Gold nanoparticle

BC:

Bacterial cellulose

BMIMCl:

1-Butyl-3-methylimidazolium chloride

CA:

Cellulose acetate

CDA:

Cellulose diacetate

CMC:

Carboxymethyl cellulose (sodium)

CNC:

Cellulose nanocrystal

CNF:

Cellulose nanofibril

CRP:

Controlled/living radical polymerization

DMAc:

N,N-Dimethyacetamide

DMSO:

Dimethylsulfoxide

EC:

Ethyl cellulose

HA:

Hyaluronic acid

HEC:

Hydroxyethyl cellulose

HPC:

Hydroxypropyl cellulose

HPMC:

Hydroxypropylmethyl cellulose

IL:

Ionic liquid

IPN:

Interpenetrating polymer network

LCST:

Lower critical solution temperature

MBA:

N,N′-methylene bisacrylamide

MC:

Methyl cellulose

MNP:

Magnetic nanoparticle

NMMO:

N-Methylmorpholine-N-oxide

NMP:

Nitroxide-mediated polymerization

P4VP:

Poly(4-vinyl pyridine)

PAA:

Poly(acrylic acid)

PAAm:

Polyacrylamide

PANI:

Polyanaline

PCL:

Poly(ε-caprolactone)

PNIPAm:

Poly(N-isopropylacrylamide)

PVA:

Poly(vinyl alcohol)

QD:

Quantum dot

RAFT:

Reversible addition-fragmentation chain transfer

ROP:

Ring-opening polymerization

TEM:

Transmission electron microscopy

TEMPO:

2,2,6,6-Tetramethypiperidine-1-oxyl

References

  1. Zhao GH, Kapur N, Carlin B, Selinger E, Guthrie JT (2011) Characterisation of the interactive properties of microcrystalline cellulose-carboxymethyl cellulose hydrogels. Int J Pharm 415:95–101

    CAS  Google Scholar 

  2. Kuriaki M, Nakamura K, Mizutani J (1989) Application of transparent poly(vinyl alcohol) (PVA) gel to contact lens. Kobunshi Ronbunshu 46:739–743

    CAS  Google Scholar 

  3. Zhou D, Zhang LN, Zhou JP, Guo SL (2004) Cellulose/chitin beads for adsorption of heavy metals in aqueous solution. Water Res 38:2643–2650

    CAS  Google Scholar 

  4. Chauhan GS, Lal H (2003) Novel grafted cellulose-based hydrogels for water technologies. Desalination 159:131–138

    CAS  Google Scholar 

  5. Shi ZJ, Zhang Y, Phillips GO, Yang G (2014) Utilization of bacterial cellulose in food. Food Hydrocoll 35:539–545

    CAS  Google Scholar 

  6. Aleman J, Chadwick AV, He J, Hess M, Horie K, Jones RG, Kratochvil P, Meisel I, Mita I, Moad G, Penczek S, Stepto RFT (2007) Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials (IUPAC Recommendations 2007). Pure Appl Chem 79:1801–1827

    CAS  Google Scholar 

  7. Yang X, Bakaic E, Hoare T, Cranston ED (2013) Injectable polysaccharide hydrogels reinforced with cellulose nanocrystals: morphology, rheology, degradation, and cytotoxicity. Biomacromolecules 14:4447–4455

    CAS  Google Scholar 

  8. Sangeetha NM, Maitra U (2005) Supramolecular gels: functions and uses. Chem Soc Rev 34:821–836

    CAS  Google Scholar 

  9. Flory PJ (1953) Principles of polymers chemistry. Cornell University Press, Ithaca, NY

    Google Scholar 

  10. Li M, Feng S, Fang S, Xiao X, Li X, Zhou X, Lin Y (2007) Quasi-solid state dye-sensitized solar cells based on pyridine or imidazole containing copolymer chemically crosslinked gel electrolytes. Chin Sci Bull 52:2320–2325

    CAS  Google Scholar 

  11. Otsuka E, Kudo S, Sugiyama M, Suzuki A (2011) Effects of microcrystallites on swelling behavior in chemically crosslinked poly(vinyl alcohol) gels. J Polym Sci Polym Phys 49:96–102

    CAS  Google Scholar 

  12. Jannasch P (2002) Physically crosslinked gel electrolytes based on a self-assembling ABA triblock copolymer. Polymer 43:6449–6453

    CAS  Google Scholar 

  13. Sakasegawa D, Goto M, Suzuki A (2009) Adhesion properties of physically crosslinked elastic gels of poly(sodium acrylate)-poly(acrylic acid) mixtures evaluated by a point contact method. Colloid Polym Sci 287:1281–1293

    CAS  Google Scholar 

  14. Liu G, Xiong YL, Butterfield DA (2000) Chemical, physical, and gel-forming properties of oxidized myofibrils and whey- and soy-protein isolates. J Food Sci 65:811–818

    CAS  Google Scholar 

  15. Yang Z, Ding J (2008) A thermosensitive and biodegradable physical gel with chemically crosslinked nanogels as the building block. Macromol Rapid Commun 29:751–756

    CAS  Google Scholar 

  16. Zhu J (2010) Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials 31:4639–4656

    CAS  Google Scholar 

  17. Chang CY, Zhang LN (2011) Cellulose-based hydrogels: present status and application prospects. Carbohydr Polym 84:40–53

    CAS  Google Scholar 

  18. Liu C, Thormann E, Claesson PM, Tyrode E (2014) Surface grafted chitosan gels. Part II. Gel formation and characterization. Langmuir 30:8878–8888

    CAS  Google Scholar 

  19. Naumov S, Knolle W, Becher J, Schnabelrauch M, Reichelt S (2014) Electron-beam generated porous dextran gels: experimental and quantum chemical studies. Int J Radiat Biol 90:503–511

    CAS  Google Scholar 

  20. Liu H, Li HF, Wang JY (2014) Prevention effect of medical self-crosslinking sodium hyaluronate gel on epidural scar adhesion after laminectomy. Asian Pac J Trop Med 7:501–504

    CAS  Google Scholar 

  21. Agulhon P, Robitzer M, Habas JP, Quignard F (2014) Influence of both cation and alginate nature on the rheological behavior of transition metal alginate gels. Carbohydr Polym 112:525–531

    CAS  Google Scholar 

  22. Qiu XY, Hu SW (2013) “Smart” materials based on cellulose: a review of the preparations, properties, and applications. Materials 6:738–781

    CAS  Google Scholar 

  23. Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive cellulose chemistry, vol 1, Fundamentals and analytical methods. Wiley-VCH, Weinheim

    Google Scholar 

  24. Krässig HA (1993) Cellulose: structure, accessibility, and reactivity. Gordon and Breach Science, South Africa

    Google Scholar 

  25. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    CAS  Google Scholar 

  26. Bajpai AK, Mishra A (2008) Carboxymethyl cellulose (CMC) based semi-IPNs as carriers for controlled release of ciprofloxacine: an in-vitro dynamic study. J Mater Sci Mater Med 19:2121–2130

    CAS  Google Scholar 

  27. Ye SH, Watanabe J, Iwasaki Y, Ishihara K (2003) Antifouling blood purification membrane composed of cellulose acetate and phospholipid polymer. Biomaterials 24:4143–4152

    CAS  Google Scholar 

  28. Li N, Bai R (2005) Copper adsorption on chitosan-cellulose hydrogel beads: behaviors and mechanisms. Sep Purif Technol 42:237–247

    CAS  Google Scholar 

  29. Way AE, Hsu L, Shanmuganathan K, Weder C, Rowan SJ (2012) pH-responsive cellulose nanocrystal gels and nanocomposites. ACS Macro Lett 1:1001–1006

    CAS  Google Scholar 

  30. Medronho B, Romano A, Miguel MG, Stigsson L, Lindman B (2012) Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose 19:581–587

    CAS  Google Scholar 

  31. Glasser WG, Atalla RH, Blackwell J, Brown RM, Burchard W, French AD, Klemm DO, Nishiyama Y (2012) About the structure of cellulose: debating the Lindman hypothesis. Cellulose 19:589–598

    CAS  Google Scholar 

  32. Kim UJ, Kuga S (2000) Reactive interaction of aromatic amines with dialdehyde cellulose gel. Cellulose 7:287–297

    CAS  Google Scholar 

  33. Campagnol PC, dos Santos BA, Wagner R, Terra NN, Rodrigues Pollonio MA (2012) Amorphous cellulose gel as a fat substitute in fermented sausages. Meat Sci 90:36–42

    CAS  Google Scholar 

  34. Sannino A, Esposito A, De Rosa A, Cozzolino A, Ambrosio L, Nicolais L (2003) Biomedical application of a superabsorbent hydrogel for body water elimination in the treatment of edemas. J Biomed Mater Res A 67A:1016–1024

    CAS  Google Scholar 

  35. Liu RG, Shen YY, Shao HL, Wu CX, Hu XC (2001) An analysis of Lyocell fiber formation as a melt-spinning process. Cellulose 8:13–21

    CAS  Google Scholar 

  36. Fink HP, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26:1473–1524

    CAS  Google Scholar 

  37. Zhang C, Liu RG, Xiang JF, Kang HL, Liu ZJ, Huang Y (2014) Dissolution mechanism of cellulose in N,N-dimethylacetamide/lithium chloride: revisiting through molecular interactions. J Phys Chem B 118:9507–9514

    CAS  Google Scholar 

  38. Striegel AM (2003) Advances in the understanding of the dissolution mechanism of cellulose in DMAc/LiCl. J Chil Chem Soc 48:73–77

    CAS  Google Scholar 

  39. Henniges U, Schiehser S, Rosenau T, Potthast A (2009) Cellulose solubility: dissolution and analysis of “problematic” cellulose pulps in the solvent system DMAc/LiCl. In: Liebert TF, Heinze TJ, Edgar KJ (eds) Cellulose solvents: for analysis, shaping and chemical modification. ACS symposium series, vol 1033. American Chemical Society, Washington, pp 165–177

    Google Scholar 

  40. Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124:4974–4975

    CAS  Google Scholar 

  41. Zhang H, Wu J, Zhang J, He JS (2005) 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose. Macromolecules 38:8272–8277

    CAS  Google Scholar 

  42. Cai J, Zhang LN (2005) Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromol Biosci 5:539–548

    CAS  Google Scholar 

  43. Zhang LN, Ruan D, Gao SJ (2002) Dissolution and regeneration of cellulose in NaOH/thiourea aqueous solution. J Polym Sci Polym Phys 40:1521–1529

    CAS  Google Scholar 

  44. Luo XG, Zhang LN (2013) New solvents and functional materials prepared from cellulose solutions in alkali/urea aqueous system. Food Res Int 52:387–400

    CAS  Google Scholar 

  45. Jiang ZW, Fang Y, Xiang JF, Ma YP, Lu A, Kang HL, Huang Y, Guo HX, Liu RG, Zhang LN (2014) Intermolecular interactions and 3D structure in cellulose-NaOH-urea aqueous system. J Phys Chem B 118:10250–10257

    CAS  Google Scholar 

  46. Klemm DP B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive cellulose chemistry, vol 2, Functionalization of cellulose. Wiley-VCH, Weinheim

    Google Scholar 

  47. Turbak AF, Synder FW, Sandberg KR (1982) Microfibrillated cellulose. US Patent US4483743, 20 Nov 1984

    Google Scholar 

  48. Saito H, Sakurai A, Sakakibara M, Saga H (2003) Preparation and properties of transparent cellulose hydrogels. J Appl Polym Sci 90:3020–3025

    CAS  Google Scholar 

  49. Xia Z, Patchan M, Maranchi J, Elisseeff J, Trexler M (2013) Determination of crosslinking density of hydrogels prepared from microcrystalline cellulose. J Appl Polym Sci 127:4537–4541

    CAS  Google Scholar 

  50. Patchan M, Graham JL, Xia Z, Maranchi JP, McCally R, Schein O, Elisseeff JH, Trexler MM (2013) Synthesis and properties of regenerated cellulose-based hydrogels with high strength and transparency for potential use as an ocular bandage. Mater Sci Eng C Mater Biol Appl 33:3069–3076

    CAS  Google Scholar 

  51. Ostlund A, Lundberg D, Nordstierna L, Holmberg K, Nyden M (2009) Dissolution and gelation of cellulose in TBAF/DMSO solutions: the roles of fluoride ions and water. Biomacromolecules 10:2401–2407

    Google Scholar 

  52. Zhu SD, Wu YX, Chen QM, Yu ZN, Wang CW, Jin SW, Ding YG, Wu G (2006) Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem 8:325–327

    CAS  Google Scholar 

  53. Suzuki T, Kono K, Shimomura K, Minami H (2014) Preparation of cellulose particles using an ionic liquid. J Colloid Interface Sci 418:126–131

    CAS  Google Scholar 

  54. Kunchornsup W, Sirivat A (2014) Thermo-electromechanical responses of 1-butyl-3-methylimidazolium chloride ionic liquid-cellulose gel. J Polym Res 21:369

    Google Scholar 

  55. Li L, Lin Z, Yang X, Wan Z, Cui S (2009) A novel cellulose hydrogel prepared from its ionic liquid solution. Chin Sci Bull 54:1622–1625

    CAS  Google Scholar 

  56. Kadokawa J, Murakami MA, Kaneko Y (2008) A facile preparation of gel materials from a solution of cellulose in ionic liquid. Carbohydr Res 343:769–772

    CAS  Google Scholar 

  57. Mazza M, Catana DA, Vaca-Garcia C, Cecutti C (2009) Influence of water on the dissolution of cellulose in selected ionic liquids. Cellulose 16:207–215

    CAS  Google Scholar 

  58. Thiemann S, Sachnov SJ, Pettersson F, Bollstrom R, Osterbacka R, Wasserscheid P, Zaumseil J (2014) Cellulose-based ionogels for paper electronics. Adv Funct Mater 24:625–634

    CAS  Google Scholar 

  59. Innerlohinger J, Weber HK, Kraft G (2006) Aerocellulose: aerogels and aerogel-like materials made from cellulose. Macromol Symp 244:126–135

    CAS  Google Scholar 

  60. Gavillon R, Budtova T (2008) Aerocellulose: new highly porous cellulose prepared from cellulose-NaOH aqueous solutions. Biomacromolecules 9:269–277

    CAS  Google Scholar 

  61. Cai J, Kimura S, Wada M, Kuga S, Zhang LN (2008) Cellulose aerogels from aqueous alkali hydroxide-urea solution. ChemSusChem 1:149–154

    CAS  Google Scholar 

  62. Cai J, Zhang LN, Zhou JP, Qi HS, Chen H, Kondo T, Chen XM, Chu B (2007) Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution: structure and properties. Adv Mater 19:821–825

    CAS  Google Scholar 

  63. Cai J, Zhang LN (2006) Unique gelation behavior of cellulose in NaOH/Urea aqueous solution. Biomacromolecules 7:183–189

    CAS  Google Scholar 

  64. Weng LH, Zhang LN, Ruan D, Shi LH, Xu J (2004) Thermal gelation of cellulose in a NaOH/thiourea aqueous solution. Langmuir 20:2086–2093

    CAS  Google Scholar 

  65. Cai J, Liu YT, Zhang LN (2006) Dilute solution properties of cellulose in LiOH/urea aqueous system. J Polym Sci Polym Phys 44:3093–3101

    CAS  Google Scholar 

  66. Ruan D, Lue A, Zhang LN (2008) Gelation behaviors of cellulose solution dissolved in aqueous NaOH/thiourea at low temperature. Polymer 49:1027–1036

    CAS  Google Scholar 

  67. Gong X, Wang Y, Tian Z, Zheng X, Chen L (2014) Controlled production of spruce cellulose gels using an environmentally “green” system. Cellulose 21:1667–1678

    CAS  Google Scholar 

  68. Isobe N, Kim UJ, Kimura S, Wada M, Kuga S (2011) Internal surface polarity of regenerated cellulose gel depends on the species used as coagulant. J Colloid Interface Sci 359:194–201

    CAS  Google Scholar 

  69. Yang YJ, Shin JM, Kang TH, Kimura S, Wada M, Kim UJ (2014) Cellulose dissolution in aqueous lithium bromide solutions. Cellulose 21:1175–1181

    CAS  Google Scholar 

  70. Saito T, Uematsu T, Kimura S, Enomae T, Isogai A (2011) Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials. Soft Matter 7:8804–8809

    CAS  Google Scholar 

  71. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    CAS  Google Scholar 

  72. Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466

    CAS  Google Scholar 

  73. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    CAS  Google Scholar 

  74. Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491

    CAS  Google Scholar 

  75. Hasani M, Cranston ED, Westman G, Gray DG (2008) Cationic surface functionalization of cellulose nanocrystals. Soft Matter 4:2238–2244

    CAS  Google Scholar 

  76. Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2009) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33

    Google Scholar 

  77. Kettunen M, Silvennoinen RJ, Houbenov N, Nykanen A, Ruokolainen J, Sainio J, Pore V, Kemell M, Ankerfors M, Lindstrom T, Ritala M, Ras RHA, Ikkala O (2011) Photoswitchable superabsorbency based on nanocellulose aerogels. Adv Funct Mater 21:510–517

    CAS  Google Scholar 

  78. Spagnol C, Rodrigues FHA, Pereira AGB, Fajardo AR, Rubira AF, Muniz EC (2012) Superabsorbent hydrogel composite made of cellulose nanofibrils and chitosan-graft-poly(acrylic acid). Carbohydr Polym 87:2038–2045

    CAS  Google Scholar 

  79. Aulin C, Gallstedt M, Lindstrom T (2010) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17:559–574

    CAS  Google Scholar 

  80. Fukuzumi H, Saito T, Wata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10:162–165

    CAS  Google Scholar 

  81. Henriksson M, Berglund LA, Isaksson P, Lindstrom T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9:1579–1585

    CAS  Google Scholar 

  82. Paakko M, Ankerfors M, Kosonen H, Nykanen A, Ahola S, Osterberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindstrom T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941

    CAS  Google Scholar 

  83. Abe K, Yano H (2011) Formation of hydrogels from cellulose nanofibers. Carbohydr Polym 85:733–737

    CAS  Google Scholar 

  84. Aulin C, Netrval J, Wagberg L, Lindstrom T (2010) Aerogels from nanofibrillated cellulose with tunable oleophobicity. Soft Matter 6:3298–3305

    CAS  Google Scholar 

  85. Paakko M, Vapaavuori J, Silvennoinen R, Kosonen H, Ankerfors M, Lindstrom T, Berglund LA, Ikkala O (2008) Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter 4:2492–2499

    CAS  Google Scholar 

  86. Sehaqui H, Zhou Q, Berglund LA (2011) High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC). Compos Sci Technol 71:1593–1599

    CAS  Google Scholar 

  87. Capadona JR, Shanmuganathan K, Trittschuh S, Seidel S, Rowan SJ, Weder C (2009) Polymer nanocomposites with nanowhiskers isolated from microcrystalline cellulose. Biomacromolecules 10:712–716

    CAS  Google Scholar 

  88. Capadona JR, Van Den Berg O, Capadona LA, Schroeter M, Rowan SJ, Tyler DJ, Weder C (2007) A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates. Nat Nanotechnol 2:765–769

    CAS  Google Scholar 

  89. Capadona JR, Shanmuganathan K, Tyler DJ, Rowan SJ, Weder C (2008) Stimuli-responsive polymer nanocomposites inspired by the sea cucumber dermis. Science 319:1370–1374

    CAS  Google Scholar 

  90. Fall AB, Lindström SB, Sprakel J, Wågberg L (2013) A physical cross-linking process of cellulose nanofibril gels with shear-controlled fibril orientation. Soft Matter 9:1852–1863

    CAS  Google Scholar 

  91. Abe K, Yano H (2012) Cellulose nanofiber-based hydrogels with high mechanical strength. Cellulose 19:1907–1912

    CAS  Google Scholar 

  92. Hu Z, Cranston ED, Ng R, Pelton R (2014) Tuning cellulose nanocrystal gelation with polysaccharides and surfactants. Langmuir 30:2684–2692

    CAS  Google Scholar 

  93. Mckee JR, Hietala S, Seitsonen J, Laine J, Kontturi E, Ikkala O (2014) Thermoresponsive nanocellulose hydrogels with tunable mechanical properties. ACS Macro Lett 3:266–270

    CAS  Google Scholar 

  94. Nakagaito AN, Iwamoto S, Yano H (2005) Bacterial cellulose: the ultimate nano-scalar cellulose morphology for the production of high-strength composites. Appl Phys A Mater Sci Process 80:93–97

    CAS  Google Scholar 

  95. Putra A, Kakugo A, Furukawa H, Gong JP, Osada Y (2008) Tubular bacterial cellulose gel with oriented fibrils on the curved surface. Polymer 49:1885–1891

    CAS  Google Scholar 

  96. Gelin K, Bodin A, Gatenholm P, Mihranyan A, Edwards K, Strømme M (2007) Characterization of water in bacterial cellulose using dielectric spectroscopy and electron microscopy. Polymer 48:7623–7631

    CAS  Google Scholar 

  97. Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose – a masterpiece of nature’s arts. J Mater Sci 35:261–270

    CAS  Google Scholar 

  98. Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17:153–155

    CAS  Google Scholar 

  99. Backdahl H, Helenius G, Bodin A, Nannmark U, Johansson BR, Risberg B, Gatenholm P (2006) Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27:2141–2149

    Google Scholar 

  100. Chen SW, Ma X, Wang RM (2008) Application of bacterial cellulose as the wound dressing in rats. J Biotechnol 136:S419

    Google Scholar 

  101. Bodin A, Concaro S, Brittberg M, Gatenholm P (2007) Bacterial cellulose as a potential meniscus implant. J Tissue Eng Regen Med 1:406–408

    CAS  Google Scholar 

  102. Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan DL, Brittberg M, Gatenholm P (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26:419–431

    CAS  Google Scholar 

  103. Shah N, Ul-Islam M, Khattak WA, Park JK (2013) Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydr Polym 98:1585–1598

    CAS  Google Scholar 

  104. Grande CJ, Torres FG, Gomez CM, Troncoso OP, Canet-Ferrer J, Martinez-Pastor J (2009) Development of self-assembled bacterial cellulose-starch nanocomposites. Mater Sci Eng C Biomim Supramol Syst 29:1098–1104

    CAS  Google Scholar 

  105. Buyanov AL, Gofman IV, Revel’skaya LG, Khripunov AK, Tkachenko AA (2010) Anisotropic swelling and mechanical behavior of composite bacterial cellulose-poly(acrylamide or acrylamide-sodium acrylate) hydrogels. J Mech Behav Biomed Mater 3:102–111

    CAS  Google Scholar 

  106. Gea S, Bilotti E, Reynolds CT, Soykeabkeaw N, Peijs T (2010) Bacterial cellulose-poly(vinyl alcohol) nanocomposites prepared by an in-situ process. Mater Lett 64:901–904

    CAS  Google Scholar 

  107. Silva SM, Pinto FV, Antunes FE, Miguel MG, Sousa JJ, Pais AA (2008) Aggregation and gelation in hydroxypropylmethyl cellulose aqueous solutions. J Colloid Interface Sci 327:333–340

    CAS  Google Scholar 

  108. Talasaz AHH, Ghahremankhani AA, Moghadam SH, Malekshahi MR, Atyabi F, Dinarvand R (2008) In situ gel forming systems of poloxamer 407 and hydroxypropyl cellulose or hydroxypropyl methyl cellulose mixtures for controlled delivery of vancomycin. J Appl Polym Sci 109:2369–2374

    CAS  Google Scholar 

  109. Desbrieres J, Hirrien M, Rinaudo M (1998) A calorimetric study of methylcellulose gelation. Carbohydr Polym 37:145–152

    CAS  Google Scholar 

  110. Gao J, Haidar G, Lu XH, Hu ZB (2001) Self-association of hydroxypropylcellulose in water. Macromolecules 34:2242–2247

    CAS  Google Scholar 

  111. Dolz M, Bugaj J, Pellicer J, Hernandez MJ, Gorecki M (1997) Thixotropy of highly viscous sodium (carboxymethyl)cellulose hydrogels. J Pharm Sci 86:1283–1287

    CAS  Google Scholar 

  112. Tsunashima Y, Ikuno M, Onodera G, Horii F (2006) Low-temperature dynamic light scattering. I. Structural reorganization and physical gel formation in cellulose triacetate/methyl acetate dilute solution at −99–45 °C. Biopolymers 82:222–233

    CAS  Google Scholar 

  113. Sannino A, Demitri C, Madaghiele M (2009) Biodegradable cellulose-based hydrogels: design and applications. Materials 2:353–373

    CAS  Google Scholar 

  114. Joshi SC, Liang CM, Lam YC (2008) Effect of solvent state and isothermal conditions on gelation of methylcellulose hydrogels. J Biomater Sci Polym Ed 19:1611–1623

    CAS  Google Scholar 

  115. Li L (2002) Thermal gelation of methylcellulose in water: scaling and thermoreversibility. Macromolecules 35:5990–5998

    CAS  Google Scholar 

  116. Schupper N, Rabin Y, Rosenbluh M (2008) Multiple stages in the aging of a physical polymer gel. Macromolecules 41:3983–3994

    CAS  Google Scholar 

  117. Kundu PP, Kundu M (2001) Effect of salts and surfactant and their doses on the gelation of extremely dilute solutions of methyl cellulose. Polymer 42:2015–2020

    CAS  Google Scholar 

  118. Li L, Shan H, Yue CY, Lam YC, Tam KC, Hu X (2002) Thermally induced association and dissociation of methylcellulose in aqueous solutions. Langmuir 18:7291–7298

    CAS  Google Scholar 

  119. Li L, Thangamathesvaran PM, Yue CY, Tam KC, Hu X, Lam YC (2001) Gel network structure of methylcellulose in water. Langmuir 17:8062–8068

    CAS  Google Scholar 

  120. Arvidson SA, Lott JR, McAllister JW, Zhang J, Bates FS, Lodge TP, Sammler RL, Li Y, Brackhagen M (2013) Interplay of phase separation and thermoreversible gelation in aqueous methylcellulose solutions. Macromolecules 46:300–309

    CAS  Google Scholar 

  121. Joshi SC, Lam YC (2006) Modeling cellulose heat and degree of gelation for methyl hydrogels with NaCl additives. J Appl Polym Sci 101:1620–1629

    CAS  Google Scholar 

  122. Nishinari K, Takahashi R (2003) Interaction in polysaccharide solutions and gels. Curr Opin Colloid Interface Sci 8:396–400

    CAS  Google Scholar 

  123. Sekiguchi Y, Sawatari C, Kondo T (2003) A gelation mechanism depending on hydrogen bond formation in regioselectively substituted O-methylcelluloses. Carbohydr Polym 53:145–153

    CAS  Google Scholar 

  124. Sammon C, Bajwa G, Timmins P, Melia CD (2006) The application of attenuated total reflectance Fourier transform infrared spectroscopy to monitor the concentration and state of water in solutions of a thermally responsive cellulose ether during gelation. Polymer 47:577–584

    CAS  Google Scholar 

  125. Tan JJ, Kang HL, Liu RG, Wang DQ, Jin X, Li QM, Huang Y (2011) Dual-stimuli sensitive nanogels fabricated by self-association of thiolated hydroxypropyl cellulose. Polym Chem 2:672–678

    CAS  Google Scholar 

  126. Huang YZ, Kang HL, Li GH, Wang CY, Huang Y, Liu RG (2013) Synthesis and photosensitivity of azobenzene functionalized hydroxypropylcellulose. RSC Adv 3:15909–15916

    CAS  Google Scholar 

  127. Wang XH, Guo YZ, Li D, Chen H, Sun RC (2012) Fluorescent amphiphilic cellulose nanoaggregates for sensing trace explosives in aqueous solution. Chem Commun 48:5569–5571

    CAS  Google Scholar 

  128. Himmelein S, Lewe V, Stuart MCA, Ravoo BJ (2014) A carbohydrate-based hydrogel containing vesicles as responsive non-covalent cross-linkers. Chem Sci 5:1054–1058

    CAS  Google Scholar 

  129. Duan JF, Zhang XJ, Jiang JX, Han CR, Yang J, Liu LJ, Lan HY, Huang DZ (2014) The synthesis of a novel cellulose physical gel. J Nanomater 2014:1–7

    Google Scholar 

  130. Appel EA, del Barrio J, Loh XJ, Scherman OA (2012) Supramolecular polymeric hydrogels. Chem Soc Rev 41:6195–6214

    CAS  Google Scholar 

  131. Dong SY, Zheng B, Wang F, Huang FH (2014) Supramolecular polymers constructed from macrocycle-based host-guest molecular recognition motifs. Acc Chem Res 47:1982–1994

    CAS  Google Scholar 

  132. Harada A, Takashima Y, Nakahata M (2014) Supramolecular polymeric materials via cyclodextrin-guest interactions. Acc Chem Res 47:2128–2140

    CAS  Google Scholar 

  133. Hu JM, Liu SY (2014) Engineering responsive polymer building blocks with host-guest molecular recognition for functional applications. Acc Chem Res 47:2084–2095

    CAS  Google Scholar 

  134. Seiffert S, Sprakel J (2012) Physical chemistry of supramolecular polymer networks. Chem Soc Rev 41:909–930

    CAS  Google Scholar 

  135. Tan S, Ladewig K, Fu Q, Blencowe A, Qiao GG (2014) Cyclodextrin-based supramolecular assemblies and hydrogels: recent advances and future perspectives. Macromol Rapid Commun 35:1166–1184

    CAS  Google Scholar 

  136. Te Nijenhuis K (2007) On the nature of crosslinks in thermoreversible gels. Polym Bull 58:27–42

    Google Scholar 

  137. Chen CH, Tsai CC, Chen WS, Mo FL, Liang HF, Chen SC, Sung HW (2006) Novel living cell sheet harvest system composed of thermoreversible methylcellulose hydrogels. Biomacromolecules 7:736–743

    CAS  Google Scholar 

  138. Tizzotti M, Charlot A, Fleury E, Stenzel M, Bernard J (2010) Modification of polysaccharides through controlled/living radical polymerization grafting – towards the generation of high performance hybrids. Macromol Rapid Commun 31:1751–1772

    CAS  Google Scholar 

  139. Odian G (2004) Principles of polymerization, 4th edn. Wiley, Hoboken

    Google Scholar 

  140. Li YX, Liu RG, Liu WY, Kang HL, Wu M, Huang Y (2008) Synthesis, self-assembly, and thermosensitive properties of ethyl cellulose-g-P(PEGMA) amphiphilic copolymers. J Polym Sci Polym Chem 46:6907–6915

    CAS  Google Scholar 

  141. Li YX, Liu RG, Huang Y (2008) Synthesis and phase transition of cellulose-graft-poly(ethylene glycol) copolymers. J Appl Polym Sci 110:1797–1803

    CAS  Google Scholar 

  142. Li QM, Kang HL, Liu RG, Huang Y (2012) Block and hetero ethyl cellulose graft copolymers synthesized via sequent and one-pot ATRP and “click” reactions. Chin J Chem 30:2169–2175

    CAS  Google Scholar 

  143. Kang HL, Liu RG, Huang Y (2013) Cellulose derivatives and graft copolymers as blocks for functional materials. Polym Int 62:338–344

    CAS  Google Scholar 

  144. Roy D, Semsarilar M, Guthrie JT, Perrier S (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38:2046–2064

    CAS  Google Scholar 

  145. Daly WH, Evenson TS, Iacono ST, Jones RW (2001) Recent developments in cellulose grafting chemistry utilizing barton ester intermediates and nitroxide mediation. Macromol Symp 174:155–163

    CAS  Google Scholar 

  146. Ma L, Kang HL, Liu RG, Huang Y (2010) Smart assembly behaviors of hydroxypropylcellulose-graft-poly(4-vinyl pyridine) copolymers in aqueous solution by thermo and pH stimuli. Langmuir 26:18519–18525

    CAS  Google Scholar 

  147. Lin CX, Zhan HY, Liu MH, Habibi Y, Fu SY, Lucia LA (2013) RAFT synthesis of cellulose-g-polymethylmethacrylate copolymer in an ionic liquid. J Appl Polym Sci 127:4840–4849

    CAS  Google Scholar 

  148. Meng T, Gao X, Zhang J, Yuan JY, Zhang YZ, He JS (2009) Graft copolymers prepared by atom transfer radical polymerization (ATRP) from cellulose. Polymer 50:447–454

    CAS  Google Scholar 

  149. Carlmark A, Malmstrom E (2002) Atom transfer radical polymerization from cellulose fibers at ambient temperature. J Am Chem Soc 124:900–901

    CAS  Google Scholar 

  150. Hansson S, Ostmark E, Carlmark A, Malmstrom E (2009) ARGET ATRP for versatile grafting of cellulose using various monomers. ACS Appl Mater Interfaces 1:2651–2659

    CAS  Google Scholar 

  151. Hernandez-Guerrero M, Davis TP, Barner-Kowollik C, Stenzel MH (2005) Polystyrene comb polymers built on cellulose or poly(styrene-co-2-hydroxyethylmethacrylate) backbones as substrates for the preparation of structured honeycomb films. Eur Polym J 41:2264–2277

    CAS  Google Scholar 

  152. Lin CX, Zhan HY, Liu MH, Fu SY, Zhang JJ (2009) Preparation of cellulose graft poly(methyl methacrylate) copolymers by atom transfer radical polymerization in an ionic liquid. Carbohydr Polym 78:432–438

    CAS  Google Scholar 

  153. Karlsson JO, Andersson N, Berntsson P, Chihani T, Gatenholm P (1998) Swelling behavior of stimuli-responsive cellulose fibers. Polymer 39:3589–3595

    CAS  Google Scholar 

  154. Karlsson JO, Gatenholm P (1996) Solid-supported wettable hydrogels prepared by ozone induced grafting. Polymer 37:4251–4256

    CAS  Google Scholar 

  155. Karlsson JO, Gatenholm P (1997) Preparation and characterization of cellulose-supported HEMA hydrogels. Polymer 38:4727–4731

    CAS  Google Scholar 

  156. Karlsson JO, Gatenholm P (1999) Surface mobility of grafted hydrogels. Macromolecules 32:7594–7598

    CAS  Google Scholar 

  157. Karlsson JO, Gatenholm P (1999) Cellulose fibre-supported pH-sensitive hydrogels. Polymer 40:379–387

    CAS  Google Scholar 

  158. Hufendiek A, Trouillet V, Meier MA, Barner-Kowollik C (2014) Temperature responsive cellulose-graft-copolymers via cellulose functionalization in an ionic liquid and RAFT polymerization. Biomacromolecules 15:2563–2572

    CAS  Google Scholar 

  159. Xie JB, Hsieh YL (2003) Thermosensitive poly(N-isopropylacrylamide) hydrogels bonded on cellulose supports. J Appl Polym Sci 89:999–1006

    CAS  Google Scholar 

  160. Lindqvist J, Nystrom D, Ostmark E, Antoni P, Carlmark A, Johansson M, Hult A, Malmstrom E (2008) Intelligent dual-responsive cellulose surfaces via surface-initiated ATRP. Biomacromolecules 9:2139–2145

    CAS  Google Scholar 

  161. Sui XF, Yuan JY, Zhou M, Zhang J, Yang HJ, Yuan WZ, Wei Y, Pan CY (2008) Synthesis of cellulose-graft-poly(N, N-dimethylamino-2-ethyl methacrylate) copolymers via homogeneous ATRP and their aggregates in aqueous media. Biomacromolecules 9:2615–2620

    CAS  Google Scholar 

  162. Roy D, Guthrie JT, Perrier S (2008) Synthesis of natural-synthetic hybrid materials from cellulose via the RAFT process. Soft Matter 4:145–155

    CAS  Google Scholar 

  163. Roy D, Knapp JS, Guthrie JT, Perrier S (2008) Antibacterial cellulose fiber via RAFT surface graft polymerization. Biomacromolecules 9:91–99

    CAS  Google Scholar 

  164. Guo Y, Wang X, Shu X, Shen Z, Sun RC (2012) Self-assembly and paclitaxel loading capacity of cellulose-graft-poly(lactide) nanomicelles. J Agric Food Chem 60:3900–3908

    CAS  Google Scholar 

  165. Zhao YH, Wee KH, Bai R (2010) A novel electrolyte-responsive membrane with tunable permeation selectivity for protein purification. ACS Appl Mater Interfaces 2:203–211

    CAS  Google Scholar 

  166. Kan KH, Li J, Wijesekera K, Cranston ED (2013) Polymer-grafted cellulose nanocrystals as pH-responsive reversible flocculants. Biomacromolecules 14:3130–3139

    CAS  Google Scholar 

  167. Tang J, Lee MF, Zhang W, Zhao B, Berry RM, Tam KC (2014) Dual responsive pickering emulsion stabilized by poly[2-(dimethylamino)ethyl methacrylate] grafted cellulose nanocrystals. Biomacromolecules 15:3052–3060

    CAS  Google Scholar 

  168. McKee JR, Appel EA, Seitsonen J, Kontturi E, Scherman OA, Ikkala O (2014) Healable, stable and stiff hydrogels: combining conflicting properties using dynamic and selective three-component recognition with reinforcing cellulose nanorods. Adv Funct Mater 24:2706–2713

    CAS  Google Scholar 

  169. Abeer MM, Amin MC, Lazim AM, Pandey M, Martin C (2014) Synthesis of a novel acrylated abietic acid-g-bacterial cellulose hydrogel by gamma irradiation. Carbohydr Polym 110:505–512

    CAS  Google Scholar 

  170. Liu WG, Zhang BQ, Lu WW, Li XW, Zhu DW, De Yao K, Wang Q, Zhao CR, Wang CD (2004) A rapid temperature-responsive sol-gel reversible poly(N-isopropylacrylamide)-g-methylcellulose copolymer hydrogel. Biomaterials 25:3005–3012

    CAS  Google Scholar 

  171. Kang HL, Liu WY, Liu RG, Huang Y (2008) A novel, amphiphilic ethyl cellulose grafting copolymer with poly(2-hydroxyethyl methacrylate) side chains and its micellization. Macromol Chem Phys 209:424–430

    CAS  Google Scholar 

  172. Yan Q, Yuan JY, Zhang FB, Sui XF, Xie XM, Yin YW, Wang SF, Wei Y (2009) Cellulose-based dual graft molecular brushes as potential drug nanocarriers: stimulus-responsive micelles, self-assembled phase transition behavior, and tunable crystalline morphologies. Biomacromolecules 10:2033–2042

    CAS  Google Scholar 

  173. Jian CM, Gong C, Wang SQ, Wang SF, Xie XM, Wei Y, Yuan JY (2014) Multifunctional comb copolymer ethyl cellulose-g-poly(ε-caprolactone)-rhodamine B/folate: synthesis, characterization and targeted bonding application. Eur Polym J 55:235–244

    CAS  Google Scholar 

  174. Leone G, Fini M, Torricelli P, Giardino R, Barbucci R (2008) An amidated carboxymethylcellulose hydrogel for cartilage regeneration. J Mater Sci Mater Med 19:2873–2880

    CAS  Google Scholar 

  175. Tang XD, Gao LC, Fan XH, Zhou QF (2007) Controlled grafting of ethyl cellulose with azobenzene-containing polymethacrylates via atom transfer radical polymerization. J Polym Sci Polym Chem 45:1653–1660

    CAS  Google Scholar 

  176. Shen D, Yu H, Huang Y (2005) Densely grafting copolymers of ethyl cellulose through atom transfer radical polymerization. J Polym Sci Polym Chem 43:4099–4108

    CAS  Google Scholar 

  177. Kang HL, Liu WY, He BQ, Shen D, Ma L, Huang Y (2006) Synthesis of amphiphilic ethyl cellulose grafting poly(acrylic acid) copolymers and their self-assembly morphologies in water. Polymer 47:7927–7934

    CAS  Google Scholar 

  178. Liu WY, Liu YJ, Hao XH, Zeng GS, Wang W, Liu RG, Huang Y (2012) Backbone-collapsed intra- and inter-molecular self-assembly of cellulose-based dense graft copolymer. Carbohydr Polym 88:290–298

    CAS  Google Scholar 

  179. Liu WY, Liu RG, Li YX, Kang HL, Shen D, Wu M, Huang Y (2009) Self-assembly of ethyl cellulose-graft-polystyrene copolymers in acetone. Polymer 50:211–217

    CAS  Google Scholar 

  180. Shen D, Yu H, Huang Y (2006) Synthesis of graft copolymer of ethyl cellulose through living polymerization and its self-assembly. Cellulose 13:235–244

    CAS  Google Scholar 

  181. Wang DQ, Tan JJ, Kang HL, Ma L, Jin X, Liu RG, Huang Y (2011) Synthesis, self-assembly and drug release behaviors of pH-responsive copolymers ethyl cellulose-graft-PDEAEMA through ATRP. Carbohydr Polym 84:195–202

    CAS  Google Scholar 

  182. Kang HL, Liu RG, Huang Y (2013) Synthesis of ethyl cellulose grafted poly(N-isopropylacrylamide) copolymer and its micellization. Acta Chim Sin 71:114–120

    CAS  Google Scholar 

  183. Chauhan GS, Sharma R, Lal H (2004) Synthesis and characterization of graft copolymers of hydroxypropyl cellulose with acrylamide and some comonomers. J Appl Polym Sci 91:545–555

    CAS  Google Scholar 

  184. Ostmark E, Harrisson S, Wooley KL, Malmstrom EE (2007) Comb polymers prepared by ATRP from hydroxypropyl cellulose. Biomacromolecules 8:1138–1148

    Google Scholar 

  185. Xu FJ, Ping Y, Ma J, Tang GP, Yang WT, Li J, Kang ET, Neoh KG (2009) Comb-shaped copolymers composed of hydroxypropyl cellulose backbones and cationic poly((2-dimethyl amino)ethyl methacrylate) side chains for gene delivery. Bioconjug Chem 20:1449–1458

    CAS  Google Scholar 

  186. Ma L, Liu RG, Tan JJ, Wang DQ, Jin X, Kang HL, Wu M, Huang Y (2010) Self-assembly and dual-stimuli sensitivities of hydroxypropylcellulose-graft-poly(N, N-dimethyl aminoethyl methacrylate) copolymers in aqueous solution. Langmuir 26:8697–8703

    CAS  Google Scholar 

  187. Xu FJ, Zhu Y, Liu FS, Nie J, Ma J, Yang WT (2010) Comb-shaped conjugates comprising hydroxypropyl cellulose backbones and low-molecular-weight poly(N-isopropylacryamide) side chains for smart hydrogels: synthesis, characterization, and biomedical applications. Bioconjug Chem 21:456–464

    CAS  Google Scholar 

  188. Jin X, Kang HL, Liu RG, Huang Y (2013) Regulation of the thermal sensitivity of hydroxypropyl cellulose by poly(N-isopropylacryamide) side chains. Carbohydr Polym 95:155–160

    CAS  Google Scholar 

  189. Zhang Z, Chen L, Zhao CW, Bai YY, Deng MX, Shan HL, Zhuang XL, Chen XS, Jing XB (2011) Thermo- and pH-responsive HPC-g-AA/AA hydrogels for controlled drug delivery applications. Polymer 52:676–682

    CAS  Google Scholar 

  190. Dou HJ, Jiang M, Peng HS, Chen DY, Hong Y (2003) pH-dependent self-assembly: micellization and micelle-hollow-sphere transition of cellulose-based copolymers. Angew Chem Int Ed 42:1516–1519

    CAS  Google Scholar 

  191. Dong XT, Shi WT, Dang HC, Bao WY, Wang XL, Wang YZ (2012) Thermal, crystallization properties, and micellization behavior of HEC-g-PPDO copolymer: microstructure parameters effect. Ind Eng Chem Res 51:14037–14046

    CAS  Google Scholar 

  192. Shen D, Huang Y (2004) The synthesis of CDA-g-PMMA copolymers through atom transfer radical polymerization. Polymer 45:7091–7097

    CAS  Google Scholar 

  193. Vlcek P, Janata M, Latalova P, Kriz J, Cadova E, Toman L (2006) Controlled grafting of cellulose diacetate. Polymer 47:2587–2595

    CAS  Google Scholar 

  194. Vlcek P, Janata M, Latalova P, Dybal J, Spirkova M, Toman L (2008) Bottlebrush-shaped copolymers with cellulose diacetate backbone by a combination of ring opening polymerization and ATRP. J Polym Sci Polym Chem 46:564–573

    CAS  Google Scholar 

  195. Karakasyan C, Lack S, Brunel F, Maingault P, Hourdet D (2008) Synthesis and rheological properties of responsive thickeners based on polysaccharide architectures. Biomacromolecules 9:2419–2429

    CAS  Google Scholar 

  196. Eldin MSM, El-Sherif HM, Soliman EA, Elzatahry AA, Omer AM (2011) Polyacrylamide-grafted carboxymethyl cellulose: smart pH-sensitive hydrogel for protein concentration. J Appl Polym Sci 122:469–479

    CAS  Google Scholar 

  197. Motornov M, Roiter Y, Tokarev I, Minko S (2010) Stimuli-responsive nanoparticles, nanogels and capsules for integrated multifunctional intelligent systems. Prog Polym Sci 35:174–211

    CAS  Google Scholar 

  198. Kang HL, Gao X, Liu RG, Huang Y (2012) Synthesis and properties of cellulose graft copolymers with well-defined architecture. In: Liebner F, Rosenau T (eds) Functional materials from renewable sources. ACS symposium series, vol 1107. American Chemical Society, Washington, pp 109–131

    Google Scholar 

  199. Tan JJ, Li YX, Liu RG, Kang HL, Wang DQ, Ma L, Liu WY, Wu M, Huang Y (2010) Micellization and sustained drug release behavior of EC-g-PPEGMA amphiphilic copolymers. Carbohydr Polym 81:213–218

    CAS  Google Scholar 

  200. Prabaharan M, Mano JF (2006) Stimuli-responsive hydrogels based on polysaccharides incorporated with thermo-responsive polymers as novel biomaterials. Macromol Biosci 6:991–1008

    CAS  Google Scholar 

  201. Hennink WE, van Nostrum CF (2012) Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev 64:223–236

    Google Scholar 

  202. Mahltig B, Jerome R, Stamm M (2003) The influence of an acid–base-equilibrium on the adsorption behaviour of a weak polyampholyte. J Polym Res 10:219–223

    CAS  Google Scholar 

  203. Plamper FA, Ruppel M, Schmalz A, Borisov O, Ballauff M, Mueller AHE (2007) Tuning the thermoresponsive properties of weak polyelectrolytes: aqueous solutions of star-shaped and linear poly(N, N-dimethylaminoethyl methacrylate). Macromolecules 40:8361–8366

    CAS  Google Scholar 

  204. Kang HL, Liu RG, Sun HF, Zhen JM, Li QM, Huang Y (2012) Osmium bipyridine-containing redox polymers based on cellulose and their reversible redox activity. J Phys Chem B 116:55–62

    CAS  Google Scholar 

  205. Jian CM, Liu BW, Chen X, Zhou ST, Fang T, Yuan JY (2014) Construction of photoresponsive supramolecular micelles based on ethyl cellulose graft copolymer. Chin J Polym Sci 32:690–702

    CAS  Google Scholar 

  206. Zhou D, Zhang L, Guo SL (2005) Mechanisms of lead biosorption on cellulose/chitin beads. Water Res 39:3755–3762

    CAS  Google Scholar 

  207. Takegawa A, Murakami M, Kaneko Y, Kadokawa J (2010) Preparation of chitin/cellulose composite gels and films with ionic liquids. Carbohydr Polym 79:85–90

    CAS  Google Scholar 

  208. Yamazaki S, Takegawa A, Kaneko Y, Kadokawa J, Yamagata M, Ishikawa M (2009) An acidic cellulose-chitin hybrid gel as novel electrolyte for an electric double layer capacitor. Electrochem Commun 11:68–70

    CAS  Google Scholar 

  209. Shih CM, Shieh YT, Twu YK (2009) Preparation and characterization of cellulose/chitosan blend films. Carbohydr Polym 78:169–174

    CAS  Google Scholar 

  210. Hoemann CD, Chenite A, Sun J, Hurtig M, Serreqi A, Lu Z, Rossomacha E, Buschmann MD (2007) Cytocompatible gel formation of chitosan-glycerol phosphate solutions supplemented with hydroxyl ethyl cellulose is due to the presence of glyoxal. J Biomed Mater Res A 83:521–529

    CAS  Google Scholar 

  211. Kadokawa J, Murakami M, Takegawa A, Kaneko Y (2009) Preparation of cellulose-starch composite gel and fibrous material from a mixture of the polysaccharides in ionic liquid. Carbohydr Polym 75:180–183

    CAS  Google Scholar 

  212. Liang HF, Hong MH, Ho RM, Chung CK, Lin YH, Chen CH, Sung HW (2004) Novel method using a temperature-sensitive polymer (methylcellulose) to thermally gel aqueous alginate as a pH-sensitive hydrogel. Biomacromolecules 5:1917–1925

    CAS  Google Scholar 

  213. Krishna Rao KSV, Subha MCS, Vijaya Kumar Naidu B, Sairam M, Mallikarjuna NN, Aminabhavi TM (2006) Controlled release of diclofenac sodium and ibuprofen through beads of sodium alginate and hydroxy ethyl cellulose blends. J Appl Polym Sci 102:5708–5718

    Google Scholar 

  214. Karewicz A, Zasada K, Szczubialka K, Zapotoczny S, Lach R, Nowakowska M (2010) “Smart” alginate-hydroxypropylcellulose microbeads for controlled release of heparin. Int J Pharm 385:163–169

    CAS  Google Scholar 

  215. Chang CY, Duan B, Zhang LN (2009) Fabrication and characterization of novel macroporous cellulose-alginate hydrogels. Polymer 50:5467–5473

    CAS  Google Scholar 

  216. Prasad K, Kaneko Y, Kadokawa J (2009) Novel gelling systems of κ-, ι- and λ-carrageenans and their composite gels with cellulose using ionic liquid. Macromol Biosci 9:376–382

    CAS  Google Scholar 

  217. Sannino A, Madaghiele M, Conversano F, Mele G, Maffezzoli A, Netti PA, Ambrosio L, Nicolais L (2004) Cellulose derivative-hyaluronic acid-based microporous hydrogels cross-linked through divinyl sulfone (DVS) to modulate equilibrium sorption capacity and network stability. Biomacromolecules 5:92–96

    CAS  Google Scholar 

  218. Baumann MD, Kang CE, Stanwick JC, Wang YF, Kim H, Lapitsky Y, Shoichet MS (2009) An injectable drug delivery platform for sustained combination therapy. J Control Release 138:205–213

    CAS  Google Scholar 

  219. Sannino A, Pappada S, Madaghiele M, Maffezzoli A, Ambrosio L, Nicolais L (2005) Crosslinking of cellulose derivatives and hyaluronic acid with water-soluble carbodiimide. Polymer 46:11206–11212

    CAS  Google Scholar 

  220. Wang JH, Gao C, Zhang YS, Wan YZ (2010) Preparation and in vitro characterization of BC/PVA hydrogel composite for its potential use as artificial cornea biomaterial. Mater Sci Eng C Mater Biol Appl 30:214–218

    Google Scholar 

  221. Abou Taleb MF, Abd El-Mohdy HL, Abd El-Rehim HA (2009) Radiation preparation of PVA/CMC copolymers and their application in removal of dyes. J Hazard Mater 168:68–75

    CAS  Google Scholar 

  222. Millon LE, Wan WK (2006) The polyvinyl alcohol-bacterial cellulose system as a new nanocomposite for biomedical applications. J Biomed Mater Res B Appl Biomater 79B:245–253

    CAS  Google Scholar 

  223. Shi XW, Zhang LN, Cai J, Cheng GZ, Zhang HM, Li J, Wang X (2011) A facile construction of supramolecular complex from polyaniline and cellulose in aqueous system. Macromolecules 44:4565–4568

    CAS  Google Scholar 

  224. Shi XW, Lu A, Cai J, Zhang LN, Zhang HM, Li J, Wang XH (2012) Rheological behaviors and miscibility of mixture solution of polyaniline and cellulose dissolved in an aqueous system. Biomacromolecules 13:2370–2378

    CAS  Google Scholar 

  225. Zhou C, Wu Q, Yue Y, Zhang Q (2011) Application of rod-shaped cellulose nanocrystals in polyacrylamide hydrogels. J Colloid Interface Sci 353:116–123

    CAS  Google Scholar 

  226. Zhou C, Lee S, Dooley K, Wu Q (2013) A facile approach to fabricate porous nanocomposite gels based on partially hydrolyzed polyacrylamide and cellulose nanocrystals for adsorbing methylene blue at low concentrations. J Hazard Mater 263:334–341

    CAS  Google Scholar 

  227. Dou HJ, Yang WH, Tao K, Li WW, Sun K (2010) Thermal sensitive microgels with stable and reversible photoluminescence based on covalently bonded quantum dots. Langmuir 26:5022–5027

    CAS  Google Scholar 

  228. Tan JJ, Liu RG, Wang W, Liu WY, Tian Y, Wu M, Huang Y (2010) Controllable aggregation and reversible pH sensitivity of AuNPs regulated by carboxymethyl cellulose. Langmuir 26:2093–2098

    CAS  Google Scholar 

  229. Luo XG, Zhang LN (2009) High effective adsorption of organic dyes on magnetic cellulose beads entrapping activated carbon. J Hazard Mater 171:340–347

    CAS  Google Scholar 

  230. Gupta D, Tator CH, Shoichet MS (2006) Fast-gelling injectable blend of hyaluronan and methylcellulose for intrathecal, localized delivery to the injured spinal cord. Biomaterials 27:2370–2379

    CAS  Google Scholar 

  231. Yan SF, Yin JB, Tang L, Chen XS (2011) Novel physically crosslinked hydrogels of carboxymethyl chitosan and cellulose ethers: structure and controlled drug release behavior. J Appl Polym Sci 119:2350–2358

    CAS  Google Scholar 

  232. Wu L, Zhou H, Sun HJ, Zhao Y, Yang X, Cheng SZ, Yang G (2013) Thermoresponsive bacterial cellulose whisker/poly(NIPAM-co-BMA) nanogel complexes: synthesis, characterization, and biological evaluation. Biomacromolecules 14:1078–1084

    CAS  Google Scholar 

  233. Spoljaric S, Salminen A, Luong ND, Seppälä J (2014) Stable, self-healing hydrogels from nanofibrillated cellulose, poly(vinyl alcohol) and borax via reversible crosslinking. Eur Polym J 56:105–117

    CAS  Google Scholar 

  234. Williamson SL, Armentrout RS, Porter RS, McCormick CL (1998) Microstructural examination of semi-interpenetrating networks of poly(N, N-dimethylacrylamide) with cellulose or chitin synthesized in lithium chloride N, N-dimethylacetamide. Macromolecules 31:8134–8141

    CAS  Google Scholar 

  235. Yang J, Han CR, Zhang XM, Xu F, Sun RG (2014) Cellulose nanocrystals mechanical reinforcement in composite hydrogels with multiple cross-links: correlations between dissipation properties and deformation mechanisms. Macromolecules 47:4077–4086

    CAS  Google Scholar 

  236. Ekici S (2011) Intelligent poly(N-isopropylacrylamide)-carboxymethyl cellulose full interpenetrating polymeric networks for protein adsorption studies. J Mater Sci 46:2843–2850

    CAS  Google Scholar 

  237. Ma JH, Xu YJ, Fan B, Liang BR (2007) Preparation and characterization of sodium carboxymethylcellulose/poly(N-isopropylacrylamide)/clay semi-IPN nanocomposite hydrogels. Eur Polym J 43:2221–2228

    CAS  Google Scholar 

  238. Ma JH, Zhang L, Fan B, Xu YJ, Liang BR (2008) A novel sodium carboxymethylcellulose/poly(N-isopropylacrylamide)/clay semi-IPN nanocomposite hydrogel with improved response rate and mechanical properties. J Polym Sci Polym Phys 46:1546–1555

    CAS  Google Scholar 

  239. Cha RT, He ZB, Ni YH (2012) Preparation and characterization of thermal/pH-sensitive hydrogel from carboxylated nanocrystalline cellulose. Carbohydr Polym 88:713–718

    CAS  Google Scholar 

  240. Neyret S, Vincent B (1997) The properties of polyampholyte microgel particles prepared by microemulsion polymerization. Polymer 38:6129–6134

    CAS  Google Scholar 

  241. You J, Hu HZ, Zhou JP, Zhang LN, Zhang YP, Kondo T (2013) Novel cellulose polyampholyte-gold nanoparticle-based colorimetric competition assay for the detection of cysteine and mercury(II). Langmuir 29:5085–5092

    CAS  Google Scholar 

  242. Etienne O, Gasnier C, Taddei C, Voegel JC, Aunis D, Schaaf P, Metz-Boutigue MH, Bolcato-Bellemin AL, Egles C (2005) Antifungal coating by biofunctionalized polyelectrolyte multilayered films. Biomaterials 26:6704–6712

    CAS  Google Scholar 

  243. Zhao Q, Qian J, An Q, Gao C, Gui Z, Jin H (2009) Synthesis and characterization of soluble chitosan/sodium carboxymethyl cellulose polyelectrolyte complexes and the pervaporation dehydration of their homogeneous membranes. J Membr Sci 333:68–78

    CAS  Google Scholar 

  244. Casalbore-Miceli G, Zanelli A, Girotto EM, Rinaldi AW, Rubira AF, Berlin A (2006) Interactions between humidity and ferrocene-functionalised polythiophene. Electrochim Acta 51:5268–5273

    CAS  Google Scholar 

  245. Yao KD, Tu HL, Cheng F, Zhang JW, Liu J (1997) pH-sensitivity of the swelling of a chitosan-pectin polyelectrolyte complex. Angew Makromol Chem 245:63–72

    CAS  Google Scholar 

  246. Lee KY, Park WH, Ha WS (1997) Polyelectrolyte complexes of sodium alginate with chitosan or its derivatives for microcapsules. J Appl Polym Sci 63:425–432

    CAS  Google Scholar 

  247. Vasiliu S, Popa M, Rinaudo M (2005) Polyelectrolyte capsules made of two biocompatible natural polymers. Eur Polym J 41:923–932

    CAS  Google Scholar 

  248. Feng XH, Pelton R, Leduc M (2006) Mechanical properties of polyelectrolyte complex films based on polyvinylamine and carboxymethyl cellulose. Ind Eng Chem Res 45:6665–6671

    CAS  Google Scholar 

  249. Feng XH, Pelton R (2007) Carboxymethyl cellulose: polyvinylamine complex hydrogel swelling. Macromolecules 40:1624–1630

    CAS  Google Scholar 

  250. Shang J, Shao Z, Chen X (2008) Electrical behavior of a natural polyelectrolyte hydrogel: chitosan/carboxymethylcellulose hydrogel. Biomacromolecules 9:1208–1213

    CAS  Google Scholar 

  251. Nie K, Pang W, Wang Y, Lu F, Zhu Q (2005) Effects of specific bonding interactions in poly(ε-caprolactone)/silica hybrid materials on optical transparency and melting behavior. Mater Lett 59:1325–1328

    CAS  Google Scholar 

  252. Arias JL, Lopez-Viota M, Delgado AV, Ruiz MA (2010) Iron/ethylcellulose (core/shell) nanoplatform loaded with 5-fluorouracil for cancer targeting. Colloid Surf B Biointerfaces 77:111–116

    CAS  Google Scholar 

  253. Chang CY, Peng J, Zhang LN, Pang DW (2009) Strongly fluorescent hydrogels with quantum dots embedded in cellulose matrices. J Mater Chem 19:7771–7776

    CAS  Google Scholar 

  254. Li L, Meng LJ, Zhang XK, Fu CL, Lu QH (2009) The ionic liquid-associated synthesis of a cellulose/SWCNT complex and its remarkable biocompatibility. J Mater Chem 19:3612–3617

    CAS  Google Scholar 

  255. Wesarg F, Schlott F, Grabow J, Kurland HD, Hessler N, Kralisch D, Muller FA (2012) In situ synthesis of photocatalytically active hybrids consisting of bacterial nanocellulose and anatase nanoparticles. Langmuir 28:13518–13525

    CAS  Google Scholar 

  256. Phottraithip W, Lin DQ, Shi F, Yao SJ (2011) A novel method for the preparation of spherical cellulose-tungsten carbide composite matrix with NMMO as nonderivatizing solvent. J Appl Polym Sci 121:2985–2992

    CAS  Google Scholar 

  257. Chen FR, Huang MM, Li YQ (2014) Synthesis of a novel cellulose microencapsulated palladium nanoparticle and its catalytic activities in Suzuki-Miyaura and Mizoroki-Heck reactions. Ind Eng Chem Res 53:8339–8345

    CAS  Google Scholar 

  258. Wei XY, Qi L, Tan JJ, Liu RG, Wang FY (2010) A colorimetric sensor for determination of cysteine by carboxymethyl cellulose-functionalized gold nanoparticles. Anal Chim Acta 671:80–84

    CAS  Google Scholar 

  259. Li WW, Liu RG, Kang HL, Sun YM, Dong FY, Huang Y (2013) Synthesis of amidoxime functionalized cellulose derivatives as a reducing agent and stabilizer for preparing gold nanoparticles. Polym Chem 4:2556–2563

    CAS  Google Scholar 

  260. Luo XG, Liu SL, Zhou JP, Zhang LN (2009) In situ synthesis of Fe3O4/cellulose microspheres with magnetic-induced protein delivery. J Mater Chem 19:3538–3545

    CAS  Google Scholar 

  261. Peng BL, Han X, Liu HL, Berry RC, Tam KC (2013) Interactions between surfactants and polymer-grafted nanocrystalline cellulose. Colloid Surf A Physicochem Eng Asp 421:142–149

    CAS  Google Scholar 

  262. Kistler SS (1932) Coherent expanded aerogels. J Phys Chem 36:52–64

    CAS  Google Scholar 

  263. Husing N, Schubert U (1998) Aerogels airy materials: chemistry, structure, and properties. Angew Chem Int Ed 37:23–45

    Google Scholar 

  264. Cai HL, Sharma S, Liu WY, Mu W, Liu W, Zhang XD, Deng YL (2014) Aerogel microspheres from natural cellulose nanofibrils and their application as cell culture scaffold. Biomacromolecules 15:2540–2547

    CAS  Google Scholar 

  265. Cai J, Liu SL, Feng J, Kimura S, Wada M, Kuga S, Zhang LN (2012) Cellulose-silica nanocomposite aerogels by in situ formation of silica in cellulose gel. Angew Chem Int Ed 51:2076–2079

    CAS  Google Scholar 

  266. Olsson RT, Samir MASA, Salazar-Alvarez G, Belova L, Strom V, Berglund LA, Ikkala O, Nogues J, Gedde UW (2010) Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat Nanotechnol 5:584–588

    CAS  Google Scholar 

  267. Fischer F, Rigacci A, Pirard R, Berthon-Fabry S, Achard P (2006) Cellulose-based aerogels. Polymer 47:7636–7645

    CAS  Google Scholar 

  268. Hoepfner S, Ratke L, Milow B (2008) Synthesis and characterisation of nanofibrillar cellulose aerogels. Cellulose 15:121–129

    CAS  Google Scholar 

  269. Liebner F, Potthast A, Rosenau T, Haimer E, Wendland M (2008) Cellulose aerogels: highly porous, ultra-lightweight materials. Holzforschung 62:129–135

    CAS  Google Scholar 

  270. Sescousse R, Smacchia A, Budtova T (2010) Influence of lignin on cellulose-NaOH-water mixtures properties and on aerocellulose morphology. Cellulose 17:1137–1146

    CAS  Google Scholar 

  271. Aaltonen O, Jauhiainen O (2009) The preparation of lignocellulosic aerogels from ionic liquid solutions. Carbohydr Polym 75:125–129

    CAS  Google Scholar 

  272. Sescousse R, Gavillon R, Budtova T (2011) Aerocellulose from cellulose–ionic liquid solutions: preparation, properties and comparison with cellulose–NaOH and cellulose–NMMO routes. Carbohydr Polym 83:1766–1774

    CAS  Google Scholar 

  273. Duchemin BJC, Staiger MP, Tucker N, Newman RH (2010) Aerocellulose based on all-cellulose composites. J Appl Polym Sci 115:216–221

    CAS  Google Scholar 

  274. Jin H, Nishiyama Y, Wada M, Kuga S (2004) Nanofibrillar cellulose aerogels. Colloid Surf A Physicochem Eng Asp 240:63–67

    CAS  Google Scholar 

  275. Surapolchai W, Schiraldi DA (2010) The effects of physical and chemical interactions in the formation of cellulose aerogels. Polym Bull 65:951–960

    CAS  Google Scholar 

  276. Sehaqui H, Salajkova M, Zhou Q, Berglund LA (2010) Mechanical performance tailoring of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions. Soft Matter 6:1824–1832

    CAS  Google Scholar 

  277. Sehaqui H, Zhou Q, Ikkala O, Berglund LA (2011) Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromolecules 12:3638–3644

    CAS  Google Scholar 

  278. Cai J, Kimura S, Wada M, Kuga S (2009) Nanoporous cellulose as metal nanoparticles support. Biomacromolecules 10:87–94

    CAS  Google Scholar 

  279. Litschauer M, Neouze MA, Haimer E, Henniges U, Potthast A, Rosenau T, Liebner F (2010) Silica modified cellulosic aerogels. Cellulose 18:143–149

    Google Scholar 

  280. Tan CB, Fung BM, Newman JK, Vu C (2001) Organic aerogels with very high impact strength. Adv Mater 13:644–646

    CAS  Google Scholar 

  281. Luong ND, Lee YK, Nam JD (2008) Highly-loaded silver nanoparticles in ultrafine cellulose acetate nanofibrillar aerogel. Eur Polym J 44:3116–3121

    CAS  Google Scholar 

  282. Guilminot E, Fischer F, Chatenet M, Rigacci A, Berthon-Fabry S, Achard P, Chainet E (2007) Use of cellulose-based carbon aerogels as catalyst support for PEM fuel cell electrodes: electrochemical characterization. J Power Sources 166:104–111

    CAS  Google Scholar 

  283. Luong ND, Lee Y, Nam JD (2008) Facile transformation of nanofibrillar polymer aerogel to carbon nanorods catalyzed by platinum nanoparticles. J Mater Chem 18:4254–4259

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruigang Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Li, P., Liu, R. (2015). Cellulose Gels and Microgels: Synthesis, Service, and Supramolecular Interactions. In: Seiffert, S. (eds) Supramolecular Polymer Networks and Gels. Advances in Polymer Science, vol 268. Springer, Cham. https://doi.org/10.1007/978-3-319-15404-6_6

Download citation

Publish with us

Policies and ethics