Skip to main content

Quantum Dots and Their Ligand Passivation

  • Chapter
  • First Online:
Modeling of Nanotoxicity
  • 662 Accesses

Abstract

Another major category of nanoparticles are quantum dots (QDs), which are semiconductor nanocrystals (~2–100 nm) with unique optical and electrical properties, and widely used in biomedical imaging and the electronics industries [19]. These II–VI semiconductor nanostructures (II = Zn, Cd; VI = O, S, Se, Te) display outstanding properties distinct from their bulk counterparts like broad excitation bands, large extinction coefficient, tunable emission features, bright photoluminescence, nonlinear optical properties, and high stability against photobleaching and chemicals due to the quantum nano-confinement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016

    Article  Google Scholar 

  2. Tessler N, Medvedev V, Kazes M, Kan S, Banin U (2002) Efficient near-infrared polymer nanocrystal light-emitting diodes. Science 295:1506–1508

    Article  Google Scholar 

  3. Gorman J, Hasko DG, Williams DA (2005) Charge-qubit operation of an isolated double quantum dot. Phys Rev Lett 95:090502

    Article  Google Scholar 

  4. Csonka S, Weymann I, Zarand G (2012) An electrically controlled quantum dot based spin current injector. Nanoscale 4:3635–3639

    Article  Google Scholar 

  5. Lek JY, Xi L, Kardynal BE, Wong LH, Lam YM (2011) Understanding the effect of surface chemistry on charge generation and transport in Poly (3-hexylthiophene)/CdSe hybrid solar cells. ACS Appl Mater Interf 3:287–292

    Article  Google Scholar 

  6. Kamat PV (2008) Quantum dot solar cells. semiconductor nanocrystals as light harvesters. J Phys Chem C 112:18737–18753

    Article  Google Scholar 

  7. Lokteva I, Radychev N, Witt F, Borchert H, Parisi J, Kolny-Olesiak J (2010) Surface treatment of CdSe nanoparticles for application in hybrid solar cells: the effect of multiple ligand exchange with pyridine. J Phys Chem C 114:12784–12791

    Article  Google Scholar 

  8. Gerion D, Pinaud F, Williams SC, Parak WJ, Zanchet D, Weiss S, Alivisatos AP (2001) Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J Phys Chem B 105:8861–8871

    Article  Google Scholar 

  9. Tryk DA, Fujishima A, Honda K (2000) Recent topics in photoelectrochemistry: achievements and future prospects. Electrochim Acta 45:2363–2376

    Article  Google Scholar 

  10. Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937

    Article  Google Scholar 

  11. Pandey A, Guyot-Sionnest P (2008) Slow electron cooling in colloidal quantum dots. Science 322:929–932

    Article  Google Scholar 

  12. Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115:8706–8715

    Article  Google Scholar 

  13. Shiohara A, Prabakar S, Faramus A, Hsu CY, Lai PS, Northcote PT, Tilley RD (2011) Sized controlled synthesis, purification, and cell studies with silicon quantum dots. Nanoscale 3:3364–3370

    Article  Google Scholar 

  14. Qu LH, Peng XG (2002) Control of photoluminescence properties of CdSe nanocrystals in growth. J Am Chem Soc 124:2049–2055

    Article  Google Scholar 

  15. Scholes GD, Rumbles G (2006) Excitons in nanoscale systems. Nat Mater 5:683–696

    Article  Google Scholar 

  16. Beard M, Midgett A, Law M, Ellingson R, Nozik A (2009) Variations in the quantum efficiency of multiple exciton generation for a series of chemically treated PbSe nanocrystal films. Nano Lett 9:1217–1222

    Article  Google Scholar 

  17. Kang SG et al (2012) Molecular mechanism of pancreatic tumor metastasis inhibition by Gd@ C82 (OH)22 and its implication for de novo design of nanomedicine. PNAS 109:15431–15436. See the Supporting Information for full reference

    Google Scholar 

  18. Kang SG, Huynh T, Zhou RH (2012) Non-destructive inhibition of metallofullerenol Gd@ C82 (OH)22 on WW domain: implication on signal transduction pathway. Sci Rep 2:00957

    Google Scholar 

  19. Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114:165–172

    Article  Google Scholar 

  20. Lovrić J et al (2005) Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J Mol Med (Berl) 83:377–385

    Article  Google Scholar 

  21. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sun-daresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544

    Article  Google Scholar 

  22. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446

    Article  Google Scholar 

  23. Gill R, Zayats M, Willner I (2008) Semiconductor quantum dots for bioanalysis. Angew Chem Int Ed 47:7602–7625

    Article  Google Scholar 

  24. Kumar CSSR (2008) Nanomaterials for medical applications. Kirk-Othmer Encyclopedia of Chemical Technology, Wiley, 2007. http://mrw.interscience.wiley.com/emrw/9780471238966/kirk/article/nanokuma.a01/current/abstract. Accessed 11 Feb 2008

  25. Drbohlavova J, Adam V, Kizek R, Hubalek J (2009) Quantum dots—characterization, preparation and usage in biological systems. J Mol Sci 10:656–673

    Article  Google Scholar 

  26. Smith AM, Nie SM (2009) Next-generation quantum dots. Nat Biotechnol 27:732–733

    Article  Google Scholar 

  27. Smith AM, Nie SM (2008) Minimizing the hydrodynamic size of quantum dots with multifunctional multidentate polymer ligands. J Am Chem Soc 130:11278–11279

    Article  Google Scholar 

  28. Wang Y, Liu YH, Zhang Y, Wang F, Kowalski PJ, Rohrs HW, Loomis RA, Gross ML, Buhro WE (2012) Isolation of the magic-size CdSe nanoclusters [(CdSe)13(n-octylamine)13] and [(CdSe)13(oleylamine)13]. Angew Chem Int Ed 51:6154–6157

    Article  Google Scholar 

  29. Walling MA, Novak JA, Shepard JRE (2009) Quantum dots for live cell and in vivo imaging. J Mol Sci 10:441–491

    Article  Google Scholar 

  30. Chung SY, Lee S, Liu C, Neuhauser D (2009) Structures and electronic spectra of CdSe−Cys complexes: density functional theory study of a simple peptide-coated nanocluster. J Phys Chem B 113:292–301

    Article  Google Scholar 

  31. Kim H, Jang SW, Chung SY, Lee S (2010) Effects of bioconjugation on the structures and electronic spectra of CdSe: density functional theory study of CdSe-Adenine complexes. J Phys Chem B 114:471–479

    Article  Google Scholar 

  32. Albert VV, Ivanov SA, Tretiak S, Kilina SV (2011) Electronic structure of ligated CdSe clusters: dependence on DFT methodology. J Phys Chem C 115:15793–15800

    Article  Google Scholar 

  33. Evans CM, Guo L, Peterson JJ, Maccagnano ZS, Krauss TD (2008) Ultrabright PbSe magic-sized clusters. Nano Lett 8:2896–2899

    Article  Google Scholar 

  34. Nag A, Hazarika A, Shanavas KV, Sharma SM, Dasgupta I, Sarma DD (2011) Crystal structure engineering by fine-tuning the surface energy: the case of CdE (E = S/Se) nanocrystals. J Phys Chem Lett 2:706–712

    Article  Google Scholar 

  35. Gao Y, Zhou B, Kang S, Xin M, Yang P, Dai X, Wang Z, Zhou R (2014) Effect of ligands on characteristics of (CdSe)13 quantum dot. RSC Adv 4:27146–27151

    Article  Google Scholar 

  36. Azpiroz JM, Matxain JM, Infante I, Lopez X, Ugalde JM (2013) A DFT/TDDFT study on the optoelectronic properties of the amine-capped magic (CdSe)13 nanocluster. Phys Chem Chem Phys 15:10996–11005

    Article  Google Scholar 

  37. Kasuya A et al (2004) Ultra-stable nanoparticles of CdSe revealed from mass spectrometry. Nat Mater 3:99–102. See the Supporting Information for full reference

    Google Scholar 

  38. Schreuder MA, McBride JR, Dukes AD III, Sammons JA, Ro-senthal SJ (2009) Control of surface state emission via phosphonic acid modulation in ultrasmall CdSe nanocrystals: the role of ligand electronegativity. J Phys Chem C 113:8169–8176

    Article  Google Scholar 

  39. Knowles K, Tice DB, McArthur EA, SolOMOn GC, Weiss EA (2009) Chemical control of the photoluminescence of CdSe quantum dot−organic complexes with a series of para-substituted aniline ligands. J Am Chem Soc 132:1041–1050

    Article  Google Scholar 

  40. Eichkorn K, Ahlrichs R (1998) Cadmium selenide semiconductor nanocrystals: a theoretical study. Chem Phys Lett 288:235–242

    Article  Google Scholar 

  41. Deglmann P, Ahlrichs R, Tsereteli K (2002) Theoretical studies of ligand-free cadmium selenide and related semiconductor clusters. J Chem Phys 116:1585–1597

    Article  Google Scholar 

  42. Leung K, Whaley KB (1999) Surface relaxation in CdSe nanocrystals. J Chem Phys 110:11012–11022

    Article  Google Scholar 

  43. Troparevsky MC, Chelikowsky JR (2001) Structural and electronic properties of CdS and CdSe clusters. J Chem Phys 114:943–946

    Article  Google Scholar 

  44. Troparevsky MC, Kronik L, Chelikowsky JR (2003) Optical properties of CdSe quantum dots. J Chem Phys 119:2284–2287

    Article  Google Scholar 

  45. Puzder A, Williamson AJ, Gygi F, Galli G (2004) Self-healing of CdSe nanocrystals: first-principles calculations. Phys Rev Lett 92:217401

    Article  Google Scholar 

  46. Yang P, Tretiak S, Masunov A, Ivanov S (2008) Quantum chemistry of the minimal CdSe clusters. J Chem Phys 129:074709

    Article  Google Scholar 

  47. Tian CJ, Xiu P, Meng Y, Zhao WY, Wang ZG, Zhou RH (2012) Enantiomerization mechanism of thalidomide and the role of water and hydroxide ions. Chem Eur J 18:14305–14313

    Article  Google Scholar 

  48. Wang ZG, Yao MG, Pan SF, Jin MX, Liu BB, Zhang HX (2007) A barrierless process from physisorption to chemisorption of H2 molecules on light-element-doped fullerenes. J Phys Chem C 111:4473–4476

    Article  Google Scholar 

  49. Dai X, Cheng C, Zhang W, Xin MS, Huai P, Zhang RQ, Wang ZG (2013) Defect induced electronic structure of uranofullerene. Sci Rep 3:1341

    Google Scholar 

  50. Svetlana K, Sergei I, Sergei T (2009) Effect of surface ligands on optical and electronic spectra of semiconductor nanoclusters. J Am Chem Soc 131:7717–7726

    Article  Google Scholar 

  51. Kuznetsov AE, Balamurugan D, Skourtis SS, Beratan DN (2012) Structural and electronic properties of bare and capped CdnSen/CdnTen Nanoparticles (n = 6, 9). J Phys Chem C 116:6817–6830

    Article  Google Scholar 

  52. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  Google Scholar 

  53. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  Google Scholar 

  54. Miehlich B, Savin A, Stoll H, Preuss H (1989) Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr. Chem Phys Lett 157:200–206

    Article  Google Scholar 

  55. Nadler R, Sanz JF (2013) Simulating the optical properties of CdSe clusters using the RT-TDDFT approach. Theor Chem Acc 132:1–9

    Article  Google Scholar 

  56. Yang P, Tretiak S, Ivanov S (2011) Influence of surfactants and charges on CdSe quantum dots. J Clust Sci 22:405–431

    Article  Google Scholar 

  57. Wang XQ, Zeng Q, Shi J, Jiang G, Yang ML, Liu XY, Enrightb G, Yu K (2013) The structure and optical absorption of single source precursors for II–VI quantum dots. Chem Phys Lett 568–569:125–129

    Article  Google Scholar 

  58. Bloom BP, Zhao LB, Wang Y, Waldeck DH (2013) Ligand-induced changes in the characteristic size-dependent electronic energies of CdSe nanocrystals. J Phys Chem B 117:22401–22411

    Google Scholar 

  59. Muzakir SK, Alias N, Yusoff MM, Jose R (2013) On the missing links in quantum dot solar cells: a DFT study on fluorophore oxidation and reduction processes in sensitized solar cells. Phys Chem Chem Phys 15:16275–16285

    Article  Google Scholar 

  60. Del Ben M, Havenith RWA, Broer R, Stener M (2011) J Phys Chem C 115:16782–16796

    Article  Google Scholar 

  61. Ditchfield R, Hehre WJ, Pople JA (1971) Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. J Chem Phys 54:724–728

    Article  Google Scholar 

  62. Marques MAL, Gross EKU (2004) Time-dependent density functional theory. Annu Rev Phys Chem 55:427–455

    Article  Google Scholar 

  63. Frisch MJ et al (2013) Gaussian 09 Revision D.01, Wallingford CT. See the Supporting Information for full reference

    Google Scholar 

  64. Landes C, Braun M, Burda C, El-Sayed MA (2001) Observation of large changes in the band gap absorption energy of small CdSe nanoparticles induced by the adsorption of a strong hole acceptor. Nano Lett 1:667–670

    Article  Google Scholar 

  65. Kalyuzhny G, Murray RW (2005) Ligand effects on optical properties of CdSe nanocrystals. J Phys Chem B 109:7012–7021

    Article  Google Scholar 

  66. Peng A, Wickham J, Alivisatos AP (1998) Kinetics of II–VI and III–V colloidal semiconductor nanocrystal growth: focusing of size distributions. J Am Chem Soc 120:5343–5344

    Article  Google Scholar 

  67. Margaret AH, Philippe GS (1996) Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J Phys Chem 100:468–471

    Article  Google Scholar 

  68. Nguyen KA, Day PN, Pachter R (2010) Understanding structural and optical properties of nanoscale CdSe magic-size quantum dots: insight from computational prediction. J Phys Chem C 114:16197–16209

    Article  Google Scholar 

  69. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  Google Scholar 

  70. Velde GT, Bickelhaupt FM, Baerends EJ, Guerra CF, Gisbergen SJAV, Snijders JG, Ziegler T (2001) J Comput Chem 22:931–967

    Article  Google Scholar 

  71. Klamt A (1995) J Phys Chem 99:2224–2235

    Article  Google Scholar 

  72. Cossi M, Rega N, Scalmani G, Barone V (2003) J Phys Chem 24:669–681

    Google Scholar 

  73. Kuznetsov AE, Balamurugan D, Skourtis SS, Beratan DN (2012) J Phys Chem C 116:6817–6830

    Article  Google Scholar 

  74. Fischer SA, Crotty AM, Kilina SV, Ivanov SA, Tretiak S (2012) Nanoscale 4:904–914

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruhong Zhou .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhou, R. (2015). Quantum Dots and Their Ligand Passivation. In: Modeling of Nanotoxicity. Springer, Cham. https://doi.org/10.1007/978-3-319-15382-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15382-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15381-0

  • Online ISBN: 978-3-319-15382-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics