Skip to main content

Noble Metal Nanomaterials

  • Chapter
  • First Online:
Modeling of Nanotoxicity
  • 679 Accesses

Abstract

In addition to carbon nanomaterials, noble metal-based nanostructures—such as gold and silver nanoparticles—are among the most widely used nanomaterials in technological and medical applications. Noble metal nanoclusters, nanorods, and nanocrystals exhibit great potential within the contexts of drug delivery, diagnostics, and therapeutics, in a wide range of biomedical fields [13]. The unique surface chemistries and topographical features of such nanomaterials dictate accompanying biological response mechanisms in relation to protein adsorption, cellular uptake, and cytotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ghosh P, Han G, De M, Kim CK, Rotello VM (2008) Gold nanoparticles in delivery applications. Adv Drug Deliver Rev 60(11):1307–1315

    Article  Google Scholar 

  2. Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105(4):1547–1562

    Article  Google Scholar 

  3. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R et al (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2(12):751–760

    Article  Google Scholar 

  4. Luedtke WD, Landman U (1996) Structure, dynamics, and thermodynamics of passivated gold nanocrystallites and their assemblies. J Phys Chem 100(32):13323–13329

    Article  Google Scholar 

  5. Padovan-Merhar O, Lara FV, Starr FW (2011) Stability of DNA-linked nanoparticle crystals: Effect of number of strands, core size, and rigidity of strand attachment. J Chem Phys 134(24):244701

    Article  Google Scholar 

  6. Le Guével X, Hötzer B, Jung G, Hollemeyer K, Trouillet V et al (2011) Formation of fluorescent metal (au, ag) nanoclusters capped in bovine serum albumin followed by fluorescence and spectroscopy. J Phys Chem C 115(22):10955–10963

    Article  Google Scholar 

  7. Van Lehn RC, Alexander-Katz A (2013) Structure of mixed-monolayer-protected nanoparticles in aqueous salt solution from atomistic molecular dynamics simulations. J Phys Chem C 117(39):20104–20115

    Article  Google Scholar 

  8. Verma A, Stellacci F (2010) Effect of surface properties on nanoparticle-cell interactions. Small 6(1):12–21

    Article  Google Scholar 

  9. Negishi Y, Nobusada K, Tsukuda T (2005) Glutathione-protected gold clusters revisited: Bridging the gap between gold(i)-thiolate complexes and thiolate-protected gold nanocrystals. J Am Chem Soc 127(14):5261–5270

    Article  Google Scholar 

  10. Simms GA, Padmos JD, Zhang P (2009) Structural and electronic properties of protein/thiolate-protected gold nanocluster with “staple” motif: A xas, l-dos, and xps study. J Chem Phys 131(21):214703

    Article  Google Scholar 

  11. Xie JP, Zheng YG, Ying JY (2009) Protein-directed synthesis of highly fluorescent gold nanoclusters. J Am Chem Soc 131(3):888–889

    Article  Google Scholar 

  12. Xavier PL, Chaudhari K, Verma PK, Pal SK, Pradeep T (2010) Luminescent quantum clusters of gold in transferrin family protein, lactoferrin exhibiting fret. Nanoscale 2(12):2769–2776

    Article  Google Scholar 

  13. Le Guevel X, Daum N, Schneider M (2011) Synthesis and characterization of human transferrin-stabilized gold nanoclusters. Nanotechnology 22(27):275103

    Article  Google Scholar 

  14. Lin CAJ, Yang TY, Lee CH, Huang SH, Sperling RA et al (2009) Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications. ACS Nano 3(2):395–401

    Article  Google Scholar 

  15. Muhammed MA, Verma PK, Pal SK, Kumar RC, Paul S et al (2009) Bright, nir-emitting au23 from au25: Characterization and applications including biolabeling. Chem Eur J 15(39):10110–10120

    Article  Google Scholar 

  16. Retnakumari A, Setua S, Menon D, Ravindran P, Muhammed H et al (2010) Molecular-receptor-specific, non-toxic, near-infrared-emitting au cluster-protein nanoconjugates for targeted cancer imaging. Nanotechnology 21(5):055103

    Article  Google Scholar 

  17. Wei H, Wang Z, Yang L, Tian S, Hou C et al (2010) Lysozyme-stabilized gold fluorescent cluster: Synthesis and application as hg(2 +) sensor. Analyst 135(6):1406–1410

    Article  Google Scholar 

  18. Shang L, Dong S, Nienhaus GU (2011) Ultra-small fluorescent metal nanoclusters: Synthesis and biological applications. Nano Today 6(4):401–418

    Article  Google Scholar 

  19. Wen F, Dong Y, Feng L, Wang S, Zhang S et al (2011) Horseradish peroxidase functionalized fluorescent gold nanoclusters for hydrogen peroxide sensing. Anal Chem 83(4):1193–1196

    Article  Google Scholar 

  20. Wang Y, Cui Y, Zhao Y, Liu R, Sun Z et al (2012) Bifunctional peptides that precisely biomineralize au clusters and specifically stain cell nuclei. Chem Commun 48(6):871–873

    Article  Google Scholar 

  21. Lu R, Yang D, Cui D, Wang Z, Guo L (2012) Egg white-mediated green synthesis of silver nanoparticles with excellent biocompatibility and enhanced radiation effects on cancer cells. Int J Nanomed 7:2101–2107

    Article  Google Scholar 

  22. Gnanadhas DP, Ben Thomas M, Thomas R, Raichur AM, Chakravortty D (2013) Interaction of silver nanoparticles with serum proteins affects their antimicrobial activity in vivo. Antimicrob Agents Chemother 57(10):4945–4955

    Google Scholar 

  23. Lane JMD, Grest GS (2010) Spontaneous asymmetry of coated spherical nanoparticles in solution and at liquid-vapor interfaces. Phys Rev Lett 104(23)

    Google Scholar 

  24. Guo P, Sknepnek R, Olvera de la Cruz M (2011) Electrostatic-driven ridge formation on nanoparticles coated with charged end-group ligands. J Phys Chem C 115(14):6484–6490

    Article  Google Scholar 

  25. Ghorai PK, Glotzer SC (2007) Molecular dynamics simulation study of self-assembled monolayers of alkanethiol surfactants on spherical gold nanoparticles. J Phys Chem C 111(43):15857–15862

    Article  Google Scholar 

  26. Lin J, Zhang H, Chen Z, Zheng Y (2010) Penetration of lipid membranes by gold nanoparticles: Insights into cellular uptake, cytotoxicity, and their relationship. ACS Nano 4(9):5421–5429

    Article  Google Scholar 

  27. Lin JQ, Zheng YG, Zhang HW, Chen Z (2011) A simulation study on nanoscale holes generated by gold nanoparticles on negative lipid bilayers. Langmuir 27(13):8323–8332

    Article  Google Scholar 

  28. Lee O-S, Schatz GC (2009) Molecular dynamics simulation of DNA-functionalized gold nanoparticles. J Phys Chem C 113(6):2316–2321

    Article  Google Scholar 

  29. Seifpour A, Dahl SR, Jayaraman A (2013) Molecular simulation study of assembly of DNA-grafted nanoparticles: effect of bidispersity in DNA strand length. Mol Simul 39(741):1–14

    Google Scholar 

  30. Lee OS, Schatz GC (2011) Computational simulations of the interaction of lipid membranes with DNA-functionalized gold nanoparticles. Methods Mol Biol 726:283–296

    Article  Google Scholar 

  31. Zheng J, Zhang CW, Dickson RM (2004) Highly fluorescent, water-soluble, size-tunable gold quantum dots. Phys Rev Lett 93(7):077402

    Article  Google Scholar 

  32. Zheng J, Nicovich PR, Dickson RM (2007) Highly fluorescent noble-metal quantum dots. Annu Rev Phys Chem 58:409–431

    Article  Google Scholar 

  33. Guo WW, Yuan JP, Wang EK (2009) Oligonucleotide-stabilized ag nanoclusters as novel fluorescence probes for the highly selective and sensitive detection of the hg2 + ion. Chem Commun 23:3395–3397

    Article  Google Scholar 

  34. Huang CC, Yang Z, Lee KH, Chang HT (2007) Synthesis of highly fluorescent gold nanoparticles for sensing mercury(ii). Angew Chem Int Ed 46(36):6824–6828

    Article  Google Scholar 

  35. Le Guevel X, Hotzer B, Jung G, Hollemeyer K, Trouillet V et al (2011) Formation of fluorescent metal (au, ag) nanoclusters capped in bovine serum albumin followed by fluorescence and spectroscopy. J Phys Chem C 115(22):10955–10963

    Article  Google Scholar 

  36. Padovan-Merhar O, Lara FV, Starr FW (2011) Stability of DNA-linked nanoparticle crystals: effect of number of strands, core size, and rigidity of strand attachment. J Chem Phys 134(24):244701

    Article  Google Scholar 

  37. Sun CJ, Yuan Y, Xu ZH, Ji TJ, Tian YH et al (2015) Fine-tuned h-ferritin nanocage with multiple gold clusters as nearinfrared kidney specific targeting nanoprobe. Bioconjugate Chemistry 26(2):193–196

    Article  Google Scholar 

  38. Fang J, Lu J, Holmgren A (2005) Thioredoxin reductase is irreversibly modified by curcumin: A novel molecular mechanism for its anticancer activity. J Biol Chem 280(26):25284–25290

    Article  Google Scholar 

  39. Soderberg A, Sahaf B, Rosen A (2000) Thioredoxin reductase, a redox-active selenoprotein, is secreted by normal and neoplastic cells: Presence in human plasmal. Cancer Res 60(8):2281–2289

    Google Scholar 

  40. Berggren M, Gallegos A, Gasdaska JR, Gasdaska PY, Warneke J et al (1996) Thioredoxin and thioredoxin reductase gene expression in human tumors and cell lines, and the effects of serum stimulation and hypoxia. Anticancer Res 16:3459–3466

    Google Scholar 

  41. Kahlos K, Soini Y, Saily M, Koistinen P, Kakko S et al (2001) Up-regulation of thioredoxin and thioredoxin reductase in human malignant pleural mesothelioma. Int J Cancer 95:198–204

    Article  Google Scholar 

  42. Berners-Price SJ, Filipovska A (2011) Gold compounds as therapeutic agents for human diseases. Metallomics 3(9):863

    Article  Google Scholar 

  43. Prast-Nielsen S, Cebula M, Pader I, Arner ES (2010) Noble metal targeting of thioredoxin reductase–covalent complexes with thioredoxin and thioredoxin-related protein of 14 kda triggered by cisplatin. Free Radic Biol Med 49(11):1765–1778

    Article  Google Scholar 

  44. Gao X (2013) Highly fluorescent peptide-metallic nanoclusters as bio-probes and methods of synthesis thereof

    Google Scholar 

  45. Liu R, Wang Y, Yuan Q, An D, Li J et al (2014) The au clusters induce tumor cell apoptosis via specifically targeting thioredoxin reductase 1 (trxr1) and suppressing its activity. Chem Commun 50(73):10687–10690

    Article  Google Scholar 

  46. An D, Su J, Weber JK, Gao X, Zhou RH et al (2015) A peptide-coated gold nanocluster exhibits unique behavior in protein activity inhibition. J Am Chem Soc 137

    Google Scholar 

  47. Chen R, Li L, Weng ZP (2003) Zdock: an initial-stage protein-docking algorithm. Proteins Struct Funct Bioinf 52(1):80–87

    Google Scholar 

  48. Verde AV, Acres JM, Maranas JK (2009) Investigating the specificity of peptide adsorption on gold using molecular dynamics simulations. Biomacromolecules 10(8):2118–2128

    Article  Google Scholar 

  49. Jorgensen WL, Maxwell DS, TiradoRives J (1996) Development and testing of the opls all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118(45):11225–11236

    Article  Google Scholar 

  50. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926

    Article  Google Scholar 

  51. Sun CJ, Yang H, Yuan Y, Tian X, Wang LM et al (2011) Controlling assembly of paired gold clusters within apoferritin nanoreactor for in vivo kidney targeting and biomedical imaging. J Am Chem Soc 133(22):8617–8624

    Article  Google Scholar 

  52. Chen JY, Wang DL, Xi JF, Au L, Siekkinen A et al (2007) Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Lett 7(5):1318–1322

    Article  Google Scholar 

  53. Chithrani BD, Ghazani AA, Chan WCW (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6(4):662–668

    Article  Google Scholar 

  54. Qiu Y, Liu Y, Wang LM, Xu LG, Bai R et al (2010) Surface chemistry and aspect ratio mediated cellular uptake of au nanorods. Biomaterials 31(30):7606–7619

    Article  Google Scholar 

  55. Maiorano G, Sabella S, Sorce B, Brunetti V, Malvindi MA et al (2010) Effects of cell culture media on the dynamic formation of protein-nanoparticle complexes and influence on the cellular response. ACS Nano 4(12):7481–7491

    Article  Google Scholar 

  56. Hu WB, Peng C, Lv M, Li XM, Zhang YJ et al (2011) Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano 5(5):3693–3700

    Article  Google Scholar 

  57. Lesniak A, Fenaroli F, Monopoli MR, Aberg C, Dawson KA et al (2012) Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano 6(7):5845–5857

    Article  Google Scholar 

  58. Wang FJ, Yu L, Monopoli MP, Sandin P, Mahon E et al (2013) The biomolecular corona is retained during nanoparticle uptake and protects the cells from the damage induced by cationic nanoparticles until degraded in the lysosomes. Nanomedicine 9(8):1159–1168

    Article  Google Scholar 

  59. Wang LM, Liu Y, Li W, Jiang XM, Ji YL et al (2011) Selective targeting of gold nanorods at the mitochondria of cancer cells: Implications for cancer therapy. Nano Lett 11(2):772–780

    Article  Google Scholar 

  60. Larson TA, Joshi PR, Sokolov K (2012) Preventing protein adsorption and macrophage uptake of gold nanoparticles via a hydrophobic shield. ACS Nano 6(10):9182–9190

    Article  Google Scholar 

  61. Walkey CD, Olsen JB, Guo HB, Emili A, Chan WCW (2012) Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J Am Chem Soc 134(4):2139–2147

    Article  Google Scholar 

  62. Deng ZJ, Liang MT, Monteiro M, Toth I, Minchin RF (2011) Nanoparticle-induced unfolding of fibrinogen promotes mac-1 receptor activation and inflammation. Nat Nanotechnol 6(1):39–44

    Article  Google Scholar 

  63. Wang L, Li J, Pan J, Jiang X, Ji Y et al (2013) Revealing the binding structure of the protein corona on gold nanorods using synchrotron radiation-based techniques: understanding the reduced damage in cell membranes. J Am Chem Soc 135(46):17359–17368

    Article  Google Scholar 

  64. Vairavamurthy A (1998) Using x-ray absorption to probe sulfur oxidation states in complex molecules. Spectrochim Acta Part A Mol Biomol Spectrosc 54(12):2009–2017

    Article  Google Scholar 

  65. Mcrae R, Lai B, Vogt S, Fahrni CJ (2006) Correlative microxrf and optical immunofluorescence microscopy of adherent cells labeled with ultrasmall gold particles. J Struct Biol 155(1):22–29

    Article  Google Scholar 

  66. Bohic S, Murphy K, Paulus W, Cloetens P, Salome M et al (2008) Intracellular chemical imaging of the developmental phases of human neuromelanin using synchrotron x-ray microspectroscopy. Anal Chem 80(24):9557–9566

    Article  Google Scholar 

  67. Corezzi S, Urbanelli L, Cloetens P, Emiliani C, Helfen L et al (2009) Synchrotron-based x-ray fluorescence imaging of human cells labeled with cdse quantum dots. Anal Biochem 388(1):33–39

    Article  Google Scholar 

  68. Sotiriou GA, Pratsinis SE (2010) Antibacterial activity of nanosilver ions and particles. Environ Sci Technol 44(14):5649–5654

    Article  Google Scholar 

  69. Kim KJ, Sung WS, Suh BK, Moon SK, Choi JS et al (2009) Antifungal activity and mode of action of silver nano-particles on candida albicans. Biometals 22(2):235–242

    Article  Google Scholar 

  70. Li R, Chen R, Chen P, Wen Y, Ke PC et al (2013) Computational and experimental characterizations of silver nanoparticle-apolipoprotein biocorona. J Phys Chem B 117(43):13451–13456

    Article  Google Scholar 

  71. Ding F, Radic S, Chen R, Chen P, Geitner NK et al (2013) Direct observation of a single nanoparticle-ubiquitin corona formation. Nanoscale 5(19):9162–9169

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruhong Zhou .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhou, R. (2015). Noble Metal Nanomaterials. In: Modeling of Nanotoxicity. Springer, Cham. https://doi.org/10.1007/978-3-319-15382-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15382-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15381-0

  • Online ISBN: 978-3-319-15382-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics