Skip to main content

Fullerene and Derivatives

  • Chapter
  • First Online:
Modeling of Nanotoxicity
  • 630 Accesses

Abstract

Since the discoveries of fullerene C60 in 1985 [1], carbon nanotubes (CNTs) in 1991 [2], and graphene in 2004 [3], carbon-based nanomaterials have generated a great deal of interest in various biomedical applications [4, 5], such as gene delivery [6], optical imaging [7], and nanotherapeutics [812] due to their excellent mechanical, optical, and electrical properties [1315].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kroto HW, Heath JR, Obrien SC, Curl RF, Smalley RE (1985) C60: Buckminsterfullerene. Nature 318(6042):162–163

    Article  Google Scholar 

  2. Iijima S (1991) Helical microtubules of graphitic carbon Nature 354(6348):56–58

    Google Scholar 

  3. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  Google Scholar 

  4. Lee JS, Joung HA, Kim MG, Park CB (2012) Graphene-based chemiluminescence resonance energy transfer for homogeneous immunoassay. ACS Nano 6(4):2978–2983

    Article  Google Scholar 

  5. Cha CY, Shin SR, Annabi N, Dokmeci MR, Khademhosseini A (2013) Carbon-based nanomaterials: multifunctional materials for biomedical engineering. ACS Nano 7(4):2891–2897

    Article  Google Scholar 

  6. Bao HQ, Pan YZ, Ping Y, Sahoo NG, Wu TF et al (2011) Chitosan-functionalized graphene oxide as a nanocarrier for drug and gene delivery. Small 7(11):1569–1578

    Article  Google Scholar 

  7. Li BL, Cheng YW, Liu J, Yi CW, Brown AS et al (2012) Direct optical imaging of graphene in vitro by nonlinear femtosecond laser spectral reshaping. Nano Lett 12(11):5936–5940

    Article  Google Scholar 

  8. Li M, Yang XJ, Ren JS, Qu KG, Qu XG (2012) Using graphene oxide high near-infrared absorbance for photothermal treatment of alzheimer’.S disease. Adv Mater 24(13):1722–1728

    Article  Google Scholar 

  9. Yang K, Wan JM, Zhang S, Tian B, Zhang YJ et al (2012) The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. Biomaterials 33(7):2206–2214

    Article  Google Scholar 

  10. Wang X, Yang LL, Chen Z, Shin DM (2008) Application of nanotechnology in cancer therapy and imaging. CA-Cancer J Clin 58(2):97–110

    Article  Google Scholar 

  11. Shin DM (2010) Application of nanotechnology in cancer therapy and imaging. Drug Metab Rev 42:13

    Google Scholar 

  12. Yang ZX, Kang SG, Zhou RH (2014) Nanomedicine: De novo design of nanodrugs. Nanoscale 6(2):663–677

    Article  Google Scholar 

  13. Feng LZ, Liu ZA (2011) Graphene in biomedicine: opportunities and challenges. Nanomedicine 6(2):317–324

    Article  Google Scholar 

  14. Sanchez VC, Jachak A, Hurt RH, Kane AB (2012) Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem Res Toxicol 25(1):15–34

    Article  Google Scholar 

  15. Geim AK (2009) Graphene: status and prospects. Science 324(5934):1530–1534

    Article  Google Scholar 

  16. Nel AE, Madler L, Velegol D, Xia T, Hoek EMV et al (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8(7):543–557

    Article  Google Scholar 

  17. Zhao Y, Xing G, Chai Z (2008) Nanotoxicology: are carbon nanotubes safe? Nat Nano 3(4):191–192

    Article  Google Scholar 

  18. Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627

    Article  Google Scholar 

  19. Ge C, Du J, Zhao L, Wang L, Liu Y et al (2011) Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc Natl Acad Sci USA 108(41):16968–16973

    Article  Google Scholar 

  20. Kang SG, Zhou G, Yang P, Liu Y, Sun B et al (2012) Molecular mechanism of pancreatic tumor metastasis inhibition by gd@c82(oh)22 and its implication for de novo design of nanomedicine. Proc Natl Acad Sci USA 109(38):15431–15436

    Article  Google Scholar 

  21. Service RF (2000) Is nanotechnology dangerous? Science 290:1526–1527

    Article  Google Scholar 

  22. Donaldson K, Aitken R, Tran L, Stone V, Duffin R et al (2006) Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci 92:5–22

    Article  Google Scholar 

  23. Gilbert N (2009) Nanoparticle safety in doubt. Nature 460:937

    Article  Google Scholar 

  24. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  Google Scholar 

  25. Zhao Y, Xing G, Chai Z (2008) Nanotoxicology: are carbon nanotubes safe? Nat Nanotechnol 3(4):191–192

    Article  Google Scholar 

  26. Chen Z, Meng H, Xing GM, Chen CY, Zhao YL et al (2006) Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett 163:109–120

    Article  Google Scholar 

  27. Zhang YB, Ali SF, Dervishi E, Xu Y, Li ZR et al (2010) Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived pc12 cells. ACS Nano 4(6):3181–3186

    Article  Google Scholar 

  28. Zuo GH, Kang SG, Xiu P, Zhao YL, Zhou RH (2013) Interactions between proteins and carbon-based nanoparticles: exploring the origin of nanotoxicity at the molecular level. Small 9(9–10):1546–1556

    Article  Google Scholar 

  29. Kang SG, Huynh T, Zhou RH (2012) Non-destructive inhibition of metallofullerenol gd@c82(oh)22 on ww domain: implication on signal transduction pathway. Sci Rep 2:7

    Google Scholar 

  30. Zhang YB, Petibone D, Xu Y, Mahmood M, Karmakar A et al (2014) Toxicity and efficacy of carbon nanotubes and graphene: the utility of carbon-based nanoparticles in nanomedicine. Drug Metab Rev 46(2):232–246

    Article  Google Scholar 

  31. Lanone S, Andujar P, Kermanizadeh A, Boczkowski J (2013) Determinants of carbon nanotube toxicity. Adv Drug Deliv Rev 65(15):2063–2069

    Article  Google Scholar 

  32. Friedman SH, Decamp DL, Sijbesma RP, Srdanov G, Wudl F et al (1993) Inhibition of the HIV-1 protease by fullerene derivatives: model building studies and experimental verification. J Am Chem Soc 115(15):6506–6509

    Article  Google Scholar 

  33. Kang SG, Huynh T, Zhou RH (2013) Metallofullerenol Gd@c82(OH)22 distracts the proline-rich-motif from putative binding on the SH3 domain. Nanoscale 5(7):2703–2712

    Article  Google Scholar 

  34. Zuo GH, Huang Q, Wei GH, Zhou RH, Fang HP (2010) Plugging into proteins: poisoning protein function by a hydrophobic nanoparticle. ACS Nano 4(12):7508–7514

    Article  Google Scholar 

  35. Zuo GH, Gu W, Fang HP, Zhou RH (2011) Carbon nanotube wins the competitive binding over proline-rich motif ligand on SH3 domain. J Phys Chem C 115(25):12322–12328

    Article  Google Scholar 

  36. Zuo G, Xiu P, Zhou X, Zhou R, Fang H (2012) Conformational changes of the protein domains upon binding with carbon nanotubes studied by molecular dynamics simulations. Curr Phys Chem 2(1):12–22

    Article  Google Scholar 

  37. Zuo G, Zhou X, Huang Q, Fang HP, Zhou RH (2011) Adsorption of villin headpiece onto graphene, carbon nanotube, and C60: Effect of contacting surface curvatures on binding affinity. J Phys Chem C 115(47):23323–23328

    Article  Google Scholar 

  38. De Paoli SH, Diduch LL, Tegegn TZ, Orecna M, Strader MB et al (2014) The effect of protein corona composition on the interaction of carbon nanotubes with human blood platelets. Biomaterials 35(24):6182–6194

    Article  Google Scholar 

  39. Tu Y, Lv M, Xiu P, Huynh T, Zhang M et al (2013) Destructive extraction of phospholipids from escherichia coli membranes by graphene nanosheets. Nat Nanotechnol 8(8):594–601

    Article  Google Scholar 

  40. Bakry R, Vallant RM, Najam-ul-Haq M, Rainer M, Szabo Z et al (2007) Medicinal applications of fullerenes. Int J Nanomed 2(4):639–649

    Google Scholar 

  41. Anilkumar P, Lu F, Cao L, Luo PG, Liu JH et al (2011) Fullerenes for applications in biology and medicine. Curr Med Chem 18(14):2045–2059

    Article  Google Scholar 

  42. Chawla P, Chawla V, Maheshwari R, Saraf SA, Saraf SK (2010) Fullerenes: from carbon to nanomedicine. Mini-Rev Med Chem 10(8):662–677

    Article  Google Scholar 

  43. Cai X, Jia H, Liu Z, Hou B, Luo C et al (2008) Polyhydroxylated fullerene derivative C(60)(OH)(24) prevents mitochondrial dysfunction and oxidative damage in an MPP(+)-induced cellular model of parkinson’s disease. J Neurosci Res 86(16):3622–3634

    Article  Google Scholar 

  44. Bogdanovic V, Stankov K, Icevic I, Zikic D, Nikolic A et al (2008) Fullerenol C60(OH)24 effects on antioxidative enzymes activity in irradiated human erythroleukemia cell line. J Radiation research 49(3):321–327

    Article  Google Scholar 

  45. Ashcroft JM, Tsyboulski DA, Hartman KB, Zakharian TY, Marks JW et al (2006) Fullerene (C60) immunoconjugates: interaction of water-soluble C60 derivatives with the murine anti-Gp240 melanoma antibody. Chem Commun (Camb) 28:3004–3006

    Article  Google Scholar 

  46. Makarucha AJ, Todorova N, Yarovsky I (2011) Nanomaterials in biological environment: a review of computer modelling studies. Eur Biophys J Biophys Lett 40(2):103–115

    Article  Google Scholar 

  47. Debouck C (1992) The HIV-1 protease as a therapeutic target for aids. AIDS Res Hum Retroviruses 8(2):153–164

    Article  Google Scholar 

  48. Friedman SH, DeCamp DL, Sijbesma RP, Srdanov G, Wudl F et al (1993) Inhibition of the HIV-1 protease by fullerene derivatives: model building studies and experimental verification. J Am Chem Soc 115:6506–6509

    Article  Google Scholar 

  49. Meng EC, Shoichet BK, Kuntz ID (1992) Automated docking with grid-based energy evaluation. J Comp Chem 13:505–524

    Article  Google Scholar 

  50. Novotny J, Bruccoleri RE, Saul FA (1989) On the attribution of binding energy in antigen-antibody complexes McPC 603, D1.3, and hyhel-5. Biochemistry 28(11):4735–4749

    Article  Google Scholar 

  51. Thaisrivongs S, Tomasselli AG, Moon JB, Hui J, McQuade TJ et al (1991) Inhibitors of the protease from human immunodeficiency virus: design and modeling of a compound containing a dihydroxyethylene isostere insert with high binding affinity and effective antiviral activity. J Med Chem 34(8):2344–2356

    Article  Google Scholar 

  52. DeCamp DL, Babe LM, Salto R, Lucich JL, Koo MS et al (1992) Specific inhibition of HIV-1 protease by boronated porphyrins. J Med Chem 35(18):3426–3428

    Article  Google Scholar 

  53. Chen BX, Wilson SR, Das M, Coughlin DJ, Erlanger BF (1998) Antigenicity of fullerenes: antibodies specific for fullerenes and their characteristics. Proc Natl Acad Sci USA 95(18):10809–10813

    Article  Google Scholar 

  54. Braden BC, Goldbaum FA, Chen BX, Kirschner AN, Wilson SR et al (2000) X-ray crystal structure of an anti-buckminsterfullerene antibody fab fragment: biomolecular recognition of C(60). Proc Natl Acad Sci USA 97(22):12193–12197

    Article  Google Scholar 

  55. Noon WH, Kong Y, Ma J (2002) Molecular dynamics analysis of a buckyball-antibody complex. Proc Natl Acad Sci USA 99(Suppl 2):6466–6470

    Article  Google Scholar 

  56. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935

    Article  Google Scholar 

  57. MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102(18):3586–3616

    Article  Google Scholar 

  58. Chen C, Xing G, Wang J, Zhao Y, Li B et al (2005) Multihydroxylated [Gd@c82(OH)22]n nanoparticles: antineoplastic activity of high efficiency and low toxicity. Nano Lett 5(10):2050–2057

    Article  Google Scholar 

  59. Meng H, Xing G, Sun B, Zhao F, Lei H et al (2010) Potent angiogenesis inhibition by the particulate form of fullerene derivatives. ACS Nano 4(5):2773–2783

    Article  Google Scholar 

  60. Brooks BR, Brooks CL 3rd, Mackerell AD Jr, Nilsson L, Petrella RJ et al (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30(10):1545–1614

    Google Scholar 

  61. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an Nlog(N) method for Ewald sums in large systems. J Chem Phys 98(12):10089–10092

    Article  Google Scholar 

  62. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781–1802

    Article  Google Scholar 

  63. Kumar S, Huang C, Zheng G, Bohm E, Bhatele A et al (2008) Scalable molecular dynamics with NAMD on the IBM Blue Gene/L system. IBM J Res Dev 52(1–2):177–188

    Article  Google Scholar 

  64. Tallant C, Marrero A, Gomis-Ruth FX (2010) Matrix metalloproteinases: fold and function of their catalytic domains. Biochim Biophys Acta 1803(1):20–28

    Article  Google Scholar 

  65. Deryugina EI, Quigley JP (2010) Pleiotropic roles of matrix metalloproteinases in tumor angiogenesis: Contrasting, overlapping and compensatory functions. Biochim Biophys Acta 1803(1):103–120

    Article  Google Scholar 

  66. Overall CM, Lopez-Otin C (2002) Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nat Rev Cancer 2(9):657–672

    Article  Google Scholar 

  67. Overall CM, Kleifeld O (2006) Towards third generation matrix metalloproteinase inhibitors for cancer therapy. Br J Cancer 94(7):941–946

    Article  Google Scholar 

  68. Zhou R, Berne BJ, Germain R (2001) The free energy landscape for beta hairpin folding in explicit water. Proc Natl Acad Sci USA 98(26):14931–14936

    Article  Google Scholar 

  69. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA 98(18):10037–10041

    Article  Google Scholar 

  70. Kadler K, Holmes D, Trotter J, Chapman J (1996) Collagen fibril formation. Biochem J 316:1–11

    Article  Google Scholar 

  71. Myllyharju J, Kivirikko K (2001) Collagens and collagen-related diseases. Ann Med 33(1):7–21

    Article  Google Scholar 

  72. Meng H, Xing G, Blanco E, Song Y, Zhao L et al (2012) Gadolinium metallofullerenol nanoparticles inhibit cancer metastasis through matrix metalloproteinase inhibition: imprisoning instead of poisoning cancer cells. Nanomedicine 8(2):136–146

    Article  Google Scholar 

  73. Grabowska M (1959) Collagen content of normal connective tissue, of tissue surrounding a tumour and of growing rat sarcoma. Nature 183(4669):1186–1187

    Article  Google Scholar 

  74. Veld P, Stevens M (2008) Simulation of the mechanical strength of a single collagen molecule. Biophys J 95(1):33–39

    Article  Google Scholar 

  75. Dai N, Wang X, Etzkorn F (2008) The effect of a trans-locked Gly-Pro alkene isostere on collagen triple helix stability. J Am Chem Soc 130(16):5396

    Google Scholar 

  76. Bachmann A, Kiefhaber T, Boudko S, Engel J, Bachinger H (2005) Collagen triple-helix formation in all-trans chains proceeds by a nucleation/growth mechanism with a purely entropic barrier. Proc Natl Acad Sci USA 102(39):13897–13902

    Article  Google Scholar 

  77. Engel J, Bachinger H (2005) Structure, stability and folding of the collagen triple helix. Top Curr Chem 247:7–33

    Google Scholar 

  78. Gurry T, Nerenberg P, Stultz C (2010) The contribution of interchain salt bridges to triple-helical stability in collagen. Biophys J 98(11):2634–2643

    Article  Google Scholar 

  79. Raman S, Gopalakrishnan R, Wade R, Subramanian V (2011) Structural basis for the varying propensities of different amino acids to adopt the collagen conformation. J Phys Chem B 115(11):2593–2607

    Article  Google Scholar 

  80. Freudenberg U, Behrens SH, Welzel PB, Müller M, Grimmer M et al (2007) Electrostatic interactions modulate the conformation of collagen I. Biophys J 92:2108–2119

    Article  Google Scholar 

  81. Pawson T, Nash P (2003) Assembly of cell regulatory systems through protein interaction domains. Science 300(5618):445–452

    Article  Google Scholar 

  82. Pawson T (2004) Specificity in signal transduction: from phosphotyrosine-SH2 domain interactions to complex cellular systems. Cell 116(2):191–203

    Article  Google Scholar 

  83. Pawson T, Nash P (2000) Protein-protein interactions define specificity in signal transduction. Genes Dev 14(9):1027–1047

    Google Scholar 

  84. Sudol M, Sliwa K, Russo T (2001) Functions of WW domains in the nucleus. FEBS Lett 490(3):190–195

    Article  Google Scholar 

  85. Ingham RJ, Colwill K, Howard C, Dettwiler S, Lim CS et al (2005) WW domains provide a platform for the assembly of multiprotein networks. Mol Cell Biol 25(16):7092–7106

    Article  Google Scholar 

  86. Macias MJ, Hyvonen M, Baraldi E, Schultz J, Sudol M et al (1996) Structure of the WW domain of a kinase-associated protein complexed with a proline-rich peptide. Nature 382(6592):646–649

    Article  Google Scholar 

  87. Macias MJ, Wiesner S, Sudol M (2002) WW and SH3 domains, two different scaffolds to recognize proline-rich ligands. FEBS Lett 513(1):30–37

    Article  Google Scholar 

  88. Pires JR, Taha-Nejad F, Toepert F, Ast T, Hoffmuller U et al (2001) Solution structures of the YAP65 WW domain and the variant l30 k in complex with the peptides GTPPPPYTVG, N-(n-octyl)-GPPPY and PLPPY and the application of peptide libraries reveal a minimal binding epitope. J Mol Biol 314(5):1147–1156

    Article  Google Scholar 

  89. Wu X, Knudsen B, Feller SM, Zheng J, Sali A et al (1995) Structural basis for the specific interaction of lysine-containing proline-rich peptides with the n-terminal SH3 domain of c-Crk. Structure 3(2):215–226

    Article  Google Scholar 

  90. Yamada M, Akasaka T, Nagase S (2010) Endohedral metal atoms in pristine and functionalized fullerene cages. Acc Chem Res 43(1):92–102

    Article  Google Scholar 

  91. Kato H, Kanazawa Y, Okumura M, Taninaka A, Yokawa T et al (2003) Lanthanoid endohedral metallofullerenols for MRI contrast agents. J Am Chem Soc 125(14):4391–4397

    Article  Google Scholar 

  92. Mikawa M, Kato H, Okumura M, Narazaki M, Kanazawa Y et al (2001) Paramagnetic water-soluble metallofullerenes having the highest relaxivity for MRI contrast agents. Bioconjug Chem 12(4):510–514

    Article  Google Scholar 

  93. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868

    Article  Google Scholar 

  94. Van Lenthe E, Baerends EJ (2003) Optimized slater-type basis sets for the elements 1-118. J Comput Chem 24(9):1142–1156

    Article  Google Scholar 

  95. Vanlenthe E, Baerends EJ, Snijders JG (1993) Relativistic regular 2-component hamiltonians. J Chem Phys 99(6):4597–4610

    Article  Google Scholar 

  96. Velde GT, Bickelhaupt FM, Baerends EJ, Guerra CF, Van Gisbergen SJA et al (2001) Chemistry with ADF. J Comput Chem 22(9):931–967

    Article  Google Scholar 

  97. Guerra CF, Snijders JG, te Velde G, Baerends EJ (1998) Towards an order-N DFT method. Theoret Chem Acc 99(6):391–403

    Google Scholar 

  98. Clavaguera C, Calvo F, Dognon JP (2006) Theoretical study of the hydrated Gd3+ ion: structure, dynamics, and charge transfer. J Chem Phys 124(7)

    Google Scholar 

  99. Shinohara H (2000) Endohedral metallofullerenes. Rep Prog Phys 63(6):843–892

    Article  Google Scholar 

  100. Nishibori E, Iwata K, Sakata M, Takata M, Tanaka H et al (2004) Anomalous endohedral structure of Gd@C-82 metallofullerenes. Phys Rev B 69(11)

    Google Scholar 

  101. Tang J, Xing GM, Yuan H, Cao WB, Jing L et al (2005) Tuning electronic properties of metallic atom in bondage to a nanospace. J Phys Chem B 109(18):8779–8785

    Article  Google Scholar 

  102. Tang J, Xing GM, Zhao YL, Jing L, Gao XF et al (2006) Periodical variation of electronic properties in polyhydroxylated metallofullerene materials. Adv Mater 18(11):1458–+

    Google Scholar 

  103. Senapati L, Schrier J, Whaley KB (2004) Electronic transport, structure, and energetics of endohedral Gd@C-82 metallofullerenes. Nano Lett 4(11):2073–2078

    Article  Google Scholar 

  104. Funasaka H, Sakurai K, Oda Y, Yamamoto K, Takahashi T (1995) Magnetic-properties of Gd@C-82 metallofullerene. Chem Phys Lett 232(3):273–277

    Article  Google Scholar 

  105. Huang HJ, Yang SH, Zhang XX (2000) Magnetic properties of heavy rare-earth metallofullerenes M@C-82 (M = Gd, Tb, Dy, Ho, and Er). J Phys Chem B 104(7):1473–1482

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruhong Zhou .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhou, R. (2015). Fullerene and Derivatives. In: Modeling of Nanotoxicity. Springer, Cham. https://doi.org/10.1007/978-3-319-15382-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15382-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15381-0

  • Online ISBN: 978-3-319-15382-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics