Skip to main content

Abstract

Metabolic surgery [is] the operative manipulation of a normal organ or organ system to achieve a biological result for a potential health gain” is our definition of this discipline of surgery from the foreword to our 1978 text titled Metabolic Surgery. This concept is a broad interpretation of the role of the surgeon in medicine’s battle against disease and the capability of surgery to contribute to proactive health care. Surgery had its roots in incisional surgery, which rapidly transitioned to extirpative and subsequently reconstructive surgery, and has presently entered a realization of past and current accomplishments best characterized as metabolic surgery. Bariatric surgery has not transitioned into being metabolic surgery but has always been a part of metabolic surgery. This chapter discusses the old and newly proposed mechanisms of action for the metabolic/bariatric procedures, the specific neurologic networks and hormones involved, the energy metabolism of obesity, the involvement of inflammation, and the present and future outcomes for this acquired knowledge. We must view metabolic surgery not as a compilation of operations but as a means to unravel the etiology of obesity and, in particular, its comorbidity type 2 diabetes. In the final analysis, metabolic surgery is cognitive surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buchwald H, Varco RL, editors. Metabolic surgery. New York: Grune & Stratton Inc; 1978.

    Google Scholar 

  2. Bohdjalian A, Prager G, Aviv R, et al. One-year experience with Tantalus: a new surgical approach to treat morbid obesity. Obes Surg. 2006;16:627–34.

    PubMed  Google Scholar 

  3. Shikora S, Toouli J, Herrera MF, et al. Vagal blocking improves glycemic control and elevated blood pressure in obese subjects with type 2 diabetes mellitus. J Obes. 2013. doi:10.1155/2013/245683.

    PubMed Central  PubMed  Google Scholar 

  4. Khawaled R, Blumen G, Fabricant G, Ben-Arie J, Shikora S. Intestinal electrical stimulation decreases postprandial blood glucose levels in rats. Surg Obes Relat Dis. 2009;5:692–7.

    PubMed  Google Scholar 

  5. Mahfoud F, Schlaich M, Kindermann I, et al. Effect of renal sympathetic denervation on glucose metabolism in patients with resistant hypertension: a pilot study. Circulation. 2011;123:1940–6.

    CAS  PubMed  Google Scholar 

  6. Sener A, Cooper M, Bartlett ST. Is there a role for pancreas transplantation in type 2 diabetes mellitus? Transplantation. 2010;90:121–3.

    PubMed  Google Scholar 

  7. Echeverri GJ. Type 2 diabetes mellitus: metabolic surgery and gastric submucosal islet transplantation, is there a connection? Transplantation. 2010;90:1036.

    PubMed  Google Scholar 

  8. McBryde FD, Ap A, Hendy EB, et al. The carotid body as a putative therapeutic target for the treatment of neurogenic hypertension. Nat Commun. 2013;4:2395. doi:10.1038/ncomms3395.

    PubMed  Google Scholar 

  9. Mayberg HS, Lozano AM, Voon V, McNeely HE, et al. Deep brain stimulation for treatment-resistant depression. Neuron. 2005;45:651–60.

    CAS  PubMed  Google Scholar 

  10. Yuan W, Williams B. Long-term vagus nerve stimulation for severe refractory depression: a case study with a six-year follow-up. J Neuropsychiatry Clin Neurosci. 2012;24(4):E50–1.

    PubMed  Google Scholar 

  11. Ge Y, Hu W, Zhang J, Meng F. Brain stimulation for treatment of refractory epilepsy. Chin Med J. 2013;126:3364–70.

    PubMed  Google Scholar 

  12. Onofrio BM, Yaksh TL, Arnold PG. Continuous low-dose intrathecal morphine administration in the treatment of chronic pain of malignant origin. Mayo Clin Proc. 1981;56:516–20.

    CAS  PubMed  Google Scholar 

  13. Rupp WM, Barbosa JJ, Blackshear PJ, et al. The use of an implantable insulin pump in the treatment of Type II diabetes. N Engl J Med. 1982;307:265–70.

    CAS  PubMed  Google Scholar 

  14. Quaade F, Vaernet K, Larsson S. Stereotaxic stimulation and electrocoagulation of the lateral hypothalamus in obese humans. Acta Neurochir. 1974;30:111–7.

    CAS  PubMed  Google Scholar 

  15. Kral JG. Vagotomy for treatment of severe obesity. Lancet. 1978;311:307–8.

    Google Scholar 

  16. Cigaina V, Pinato GP, Rigo V, et al. Gastric peristalsis control by mono situ electrical stimulation: a preliminary study. Obes Surg. 1996;6:247–9.

    PubMed  Google Scholar 

  17. Klein S, Fabbrini E, Patterson BW, et al. Moderate effect of duodenal-jejunal bypass surgery on glucose homeostasis in patients with type 2 diabetes. Obesity. 2012;20:1266–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Cohen R, Caravatto PP, Correa JL, et al. Glycemic control after stomach-sparing duodenal-jejunal bypass surgery in diabetic patients with low body mass index. Surg Obes Relat Dis. 2012;8:375–80.

    PubMed  Google Scholar 

  19. Mason EE. Ilial transposition and enteroglucagon/GLP-1 in obesity (and diabetic?) surgery. Obes Surg. 1999;9:223–8.

    CAS  PubMed  Google Scholar 

  20. Gagner M. Surgical treatment of nonseverely obese patients with type 2 diabetes mellitus: sleeve gastrectomy with ileal transposition (SGIT) is the same as the neuroendocrine brake (NEB) procedure or ileal interposition associated with sleeve gastrectomy (II-SG), but ileal interposition with diverted sleeve gastrectomy (II-DSG) is the same as duodenal switch. Surg Endosc. 2001;25:655–6.

    Google Scholar 

  21. DePaula AL, Stival AR, DePaula CC, Halpern A, Vencio S. Surgical treatment of type 2 diabetes in patients with BMI below 35: mid-term outcomes of the laparoscopic ileal interposition associated with a sleeve gastrectomy in 202 consecutive cases. J Gastrointest Surg. 2012;16:967–76.

    PubMed  Google Scholar 

  22. Rodriguez-Grunert L, Galvao Neto MP, Alamo M, Ramos AC, Baez PB, Tarnoff M. First human experience with endoscopically delivered and retrieved duodenal-jejunal bypass sleeve. Surg Obes Relat Dis. 2008;4:55–9.

    PubMed  Google Scholar 

  23. Scopinaro N, Adami GF, Marinari GM, et al. Biliopancreatic diversion. World J Surg. 1998;22:936–46.

    CAS  PubMed  Google Scholar 

  24. Pories WJ, Swanson MS, MacDonald KG, et al. Who would have thought it? An operation proves to be the most effective therapy for adult-onset diabetes mellitus. Ann Surg. 1995;222:339–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Buchwald H, Avidor Y, Braunwald E, et al. Bariatric Surgery: a systematic review and meta-analysis. JAMA. 2004;292:1724–37.

    CAS  PubMed  Google Scholar 

  26. Gershon MD. Enteric nervous system: neural connections, neurotransmitters, and the function of 5-hydroxytryptamine. In: Kamm MA, Lennard-Jones JE, editors. Gastrointestinal transit, pathophysiology and pharmacology. Petersfield/Hampshire: Wrightson Biomedical Publishing Ltd; 1991. p. 21–32.

    Google Scholar 

  27. Brodal P. The cranial nerves, the vagus nerve. In: The central nervous system: structure and function. Oxford/New York: Oxford University Press; 2004. p. 355–6.

    Google Scholar 

  28. Brierley SM, Hughes P, Harrington A, Blackshaw LA. Innervation of the gastrointestinal tract by spinal and vagal afferent nerves. In: Johnson LR, Ghishan FK, Kaunitz JD, Merchant JL, Said HM, Wood JD, editors. Physiology of the gastrointestinal tract, vol. 1. 5th ed. San Diego: Elsevier Inc.; 2012. p. 703–31.

    Google Scholar 

  29. Johnson LR. Regulation of food intake. In: Johnson LR, editor. Gastrointestinal physiology. 7th ed. Philadelphia: Mosby/Elsevier; 2000. p. 137–42.

    Google Scholar 

  30. Brodal P. The peripheral autonomic nervous system, effects of sympathetic fibers in the gastrointestinal tract. In: The central nervous system: structure and function. Oxford/New York: Oxford University Press; 2004. p. 385–6.

    Google Scholar 

  31. Netter FH. The CIBA collection of medical illustrations. In: Nervous system, vol. 1. Summit: CIBA; 1962. p. 95.

    Google Scholar 

  32. Selim MM, Wendelschafer-Crabb MS, Redmon JB, et al. Gastric mucosal nerve density: a biomarker for diabetic autonomic neuropathy? Neurology. 2010;75:973–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Sanders KM, Koh SD, Ward SM. Organization and electrophysiology of interstitial cells of cajal and smooth muscle cells in the gastrointestinal tract. In: Johnson LR, Ghishan FK, Kaunitz JD, Merchant JL, Said HM, Wood JD, editors. Physiology of the gastrointestinal tract, vol. 1. 5th ed. San Diego: Elsevier Inc.; 2012. p. 511–56.

    Google Scholar 

  34. Berthoud HR, Shin AC, Zhen H. Obesity surgery and gut-brain communication. Physiol Behav. 2011;105:106–19.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Hernandez EJ, Whitcomb DC, Vigna SR, Taylor IL. Saturable binding of circulating peptide YY in the dorsal vagal complex of rats. Am J Physiol Gastrointest Liver Physiol. 1994;226:G511–6.

    Google Scholar 

  36. Druce MR, Small CJ, Bloom SR. Minireview: gut peptides regulating satiety. Endocrinology. 2004;145:2660–5.

    CAS  PubMed  Google Scholar 

  37. Korner J, Leibel RL. To eat or not to eat – how the gut talks to the brain. N Engl J Med. 2003;349:926–8.

    CAS  PubMed  Google Scholar 

  38. Savage AP, Adrian TE, Carolan G, Chatterjee VK, Bloom SR. Effects of peptide YY (PYY) on mouth to caecum intestinal transit time and on the rate of gastric emptying in healthy volunteers. Gut. 1987;28:166–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Spiller RC, Trotman IF, Adrian TE, et al. Further characterization of the ‘ileal brake’ reflex in man – effect of ileal infusion of partial digests of fat, protein, and starch on jejunal motility and release of neurotensin, enteroglucagon, and peptide YY. Gut. 1988;29:1042–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Spiller RC, Trotman IF, Higgins BE, et al. The ileal brake–inhibition of jejunal motility after ileal fat perfusion in man. Gut. 1984;25:365–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Tolhurst G, Reimann F, Gribble FM. Nutritional regulation of glucagon-like peptide-1 secretion. J Physiol. 2009;587:27–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Lim GE, Brubaker PL. Glucagon-like peptide 1 secretion by the L-cell. The view from within. Diabetes. 2006;55:S70–7.

    CAS  Google Scholar 

  43. Drucker DJ. The biology of incretin hormones. Cell Metab. 2006;3:153–65.

    CAS  PubMed  Google Scholar 

  44. Toft-Nielsen MB, Damholt MB, Madsbad S, et al. Determinants of the impaired secretin of glucagon-like peptide-1 in type 2 diabetic patients. J Clin Endocrinol Metab. 2001;86:3717–23.

    CAS  PubMed  Google Scholar 

  45. Mannucci E, Ognibene A, Cremasco F, et al. Glucagon-like peptide (GLP)-1 and leptin concentrations in obese patients with type 2 diabetes mellitus. Diabet Med. 2000;17:713–9.

    CAS  PubMed  Google Scholar 

  46. Nauck M, Stockmann F, Ebert R, Creutzfeldt W. Reduced incretin effect in type 2 (non-insulin-dependent) diabetes. Diabetologia. 1986;29:46–52.

    CAS  PubMed  Google Scholar 

  47. Lius F, Salva JA, Thompson JC. Peptide YY inhibits the insulinotropic action of gastric inhibitory polypeptide. Gastroenterology. 1989;96:690–4.

    Google Scholar 

  48. Guo YS, Singh P, DeBouno JF, Thompson JC. Effect of peptide YY on insulin release stimulated by 2-deoxyglucose and neuropeptides in dogs. Pancreas. 1988;3:128–34.

    CAS  PubMed  Google Scholar 

  49. Ballantyne GH. Peptide YY(1-36) and peptide (YY(3-36): part I. Distribution, release and actions. Obes Surg. 2006;16:651–8.

    PubMed  Google Scholar 

  50. Sileno AP, Brandt GC, Spann BM, Quay SC. Lower mean weight after 14 days intravenous administration peptide YY(3-36) (PYY(3-36)) in rabbits. Int J Obes. 2006;30:68–72.

    CAS  Google Scholar 

  51. Batterham RL, Cowley MA, Small CJ, et al. Gut hormone PYY(3-36) physiologically inhibits food intake. Nature. 2002;418:650–4.

    CAS  PubMed  Google Scholar 

  52. Batterham RL, Cohen MA, Ellis SM, et al. Inhibition of food intake in obese subjects by peptide YY3-36. N Engl J Med. 2003;349:941–8.

    CAS  PubMed  Google Scholar 

  53. Neary NM, Small CJ, Druce MR, et al. Peptide YY3-36 and glucagon-like peptide-17-36 inhibit food intake additively. Endocrinology. 2005;146:5120–7.

    CAS  PubMed  Google Scholar 

  54. Adrian TE, Savage AP, Sagor GR, et al. Effect of peptide YY on gastric, pancreatic, and biliary function in humans. Gastroenterology. 1985;89:484–9.

    Google Scholar 

  55. Lluis F, Gomez G, Fujimura M, Greeley Jr GH, Thompson JC. Peptide YY inhibits nutrient-, hormonal-, and vagally-stimulated pancreatic exocrine secretion. Pancreas. 1987;2:454–62.

    CAS  PubMed  Google Scholar 

  56. Hosotani R, Inoue K, Kogire M, et al. Effect of natural peptide YY on pancreatic secretion and cholecystokinin release in conscious dogs. Dig Dis Sci. 1989;34:468–73.

    CAS  PubMed  Google Scholar 

  57. Adrian TE, Ferre G-L, Bacarese-Hamilton AJ, Fuessl HS, Polak JM, Bloom SR. Human distribution and release of a putative new gut hormone, peptide YY. Gastroenterology. 1985;89:1070–7.

    CAS  PubMed  Google Scholar 

  58. Greeley Jr GH, Hashimoto T, Izukura M, et al. A comparison of intraduodenally and intracolonically administered nutrients on the release of peptide-YY in the dog. Endocrinology. 1989;125:1761–5.

    CAS  PubMed  Google Scholar 

  59. Zhang T, Brubaker PL, Thompson JC, Greeley Jr GH. Characterization of peptide-YY release in response to intracolonic infusion of amino acids. Endocrinology. 1993;132:553–7.

    CAS  PubMed  Google Scholar 

  60. Aponte GW, Fink AS, Meyer JH, Tatemoto K, Taylor IL. Regional distribution and release of peptide YY with fatty acids of different chain length. Am J Physiol. 1985;249:G745–50.

    CAS  PubMed  Google Scholar 

  61. Adrian TE, Ballantyne GH, Longo WE, et al. Deoxycholate is an important releaser of peptide YY and enteroglucagon from the human colon. Gut. 1993;34:1219–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Onaga T, Zabielski R, Kato S. Multiple regulation of peptide YY secretion in the digestive tract. Peptides. 2002;23:279–90.

    CAS  PubMed  Google Scholar 

  63. Zhang T, Uchida T, Gomez G, Lluis F, Thompson JC, Greeley Jr GH. Neural regulation of peptide YY secretion. Regul Pept. 1993;48:321–8.

    CAS  PubMed  Google Scholar 

  64. Rudnicki M, Rigel DF, McFadden DW. Vagal cooling blocks circulating neuropeptide Y (NPY), peptide YY (PYY), and pancreatic polypeptide (PP) release. J Surg Res. 1991;51:40–5.

    CAS  PubMed  Google Scholar 

  65. Ballantyne GH, Goldenring JR, Savoca PE, et al. Cyclic AMP-mediated release of peptide YY (PYY) from the isolated perfused rabbit distal colon. Regul Pept. 1993;47:117–26.

    CAS  PubMed  Google Scholar 

  66. Greeley Jr GH, Jeng YJ, Gomez G, et al. Evidence for regulation of peptide-YY release by the proximal gut. Endocrinology. 1989;124:1438–43.

    CAS  PubMed  Google Scholar 

  67. Anini Y, Brubaker PL. Role of leptin in the regulation of glucagon-like peptide-1 secretion. Diabetes. 2003;52:252–9.

    CAS  PubMed  Google Scholar 

  68. Williams KW, Scott MM, Elmquist JK. From observation to experimentation: leptin action in the mediobasal hypothalamus. Am J Clin Nutr. 2009;89:9855–905.

    Google Scholar 

  69. Ahima RS, Flier JS. Leptin. Annu Rev Physiol. 2000;62:413–37.

    CAS  PubMed  Google Scholar 

  70. Considine RV, Considine EL, Williams CJ, Hyde TM, Caro JF. The hypothalamic leptin receptor in humans: identification of incidental sequence polymorphisms and absence of the db/db mouse and fa/fa rat mutations. Diabetes. 1996;45:992–4.

    PubMed  Google Scholar 

  71. Friedman JM. Leptin at 14 y of age: an ongoing story. Am J Clin Nutr. 2009;89:973S–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Ahima RS. Revisiting leptin’s role in obesity and weight loss. J Clin Invest. 2008;118:2380–3.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Sinha MK, Opentanova I, Ohannesian JP, et al. Evidence of free and bound leptin in human circulation. Studies in lean and obese subjects and during short-term fasting. J Clin Invest. 1996;98:1277–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Fantuzzi G, Faggioni R. Leptin in the regulation of immunity, inflammation, and hematopoiesis. J Leukocyte Biol. 2000;68:437–46.

    CAS  PubMed  Google Scholar 

  75. Perrier S, Caldefie-Chézet F, Vasson MP. IL-1 family in breast cancer: potential interplay with leptin and other adipocytokines. FEBS Lett. 2009;583:259–65.

    CAS  PubMed  Google Scholar 

  76. Wabitsch M, Jensen PB, Blum WF, et al. Insulin and cortisol promote leptin production in cultured human fat cells. Diabetes. 1996;45:1435–8.

    CAS  PubMed  Google Scholar 

  77. LaPensee CR, Hugo ER, Ben-Jonathan N. Insulin stimulates interleukin-6 expression and release in LS14 human adipocytes through multiple signaling pathways. Endocrinology. 2008;149:5415–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Inui A, Asakawa A, Bowers CY, et al. Ghrelin, appetite, and gastric motility: the emerging role of the stomach as an endocrine organ. FASEB J. 2004;18:439–56.

    CAS  PubMed  Google Scholar 

  79. Howard AD, Feighner SD, Cully DF, et al. A receptor in pituitary and hypothalamus that functions in growth hormone release. Science. 1996;273:974–7.

    CAS  PubMed  Google Scholar 

  80. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999;402:656–60.

    CAS  PubMed  Google Scholar 

  81. Page AJ, Slattery JA, Milte C, et al. Ghrelin selectively reduces mechanosensitivity of upper gastrointestinal vagal afferents. Am J Physiol Gastrointest Liver Physiol. 2007;292:G1376–84.

    CAS  PubMed  Google Scholar 

  82. Lall S, Tung LY, Ohlsson C, Jansson JO, Dickson SL. Growth hormone (GH)-independent stimulation of adiposity by GH secretagogues. Biochem Biophys Res Commun. 2001;280:132–1138.

    CAS  PubMed  Google Scholar 

  83. Tschöp M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature. 2000;407:908–13.

    PubMed  Google Scholar 

  84. Cummings DE, Frayo RS, Marmonier C, Aubert R, Chapelot D. Plasma ghrelin levels and hunger scores in humans initiating meals voluntarily without time- and food-related cues. Am J Physiol Endocrinol Metab. 2004;287:E297–304.

    CAS  PubMed  Google Scholar 

  85. Wren AM, Small CJ, Ward HL, et al. The novel hypothalamic peptide ghrelin stimulates food intake and growth hormone secretion. Endocrinology. 2000;141:4325–8.

    CAS  PubMed  Google Scholar 

  86. Cummings DE, Weigle DS, Frayo RS, et al. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N Engl J Med. 2002;346:1623–30.

    PubMed  Google Scholar 

  87. Goldstone AP, Thomas EL, Brynes AE, et al. Elevated fasting plasma ghrelin in prader-willi syndrome adults is not solely explained by their reduced visceral adiposity and insulin resistance. J Clin Endocrinol Metab. 2004;89:1718–26.

    CAS  PubMed  Google Scholar 

  88. DelParigi A, Tschöp M, Heiman ML, et al. High circulating ghrelin: a potential cause for hyperphagia and obesity in prader-willi syndrome. J Clin Endocrinol Metab. 2002;87:5461–4.

    CAS  PubMed  Google Scholar 

  89. Waseem T, Duxbury M, Ito H, et al. Ghrelin ameliorates TNF-a induced anti-proliferative and pro-apoptotic effects and promotes intestinal epithelial restitution. J Am Coll Surg. 2004;199(3 Suppl):16. doi:10.1016/j.jamcollsurg.2004.05.018.

    Google Scholar 

  90. Waseem T, Duxbury M, Ito H, Ashley SW, Robinson MK. Eogenous ghrelin modulates release of pro- and anti-inflammatory cytokines in LPS-stimulated macrophages through distinct signaling pathways. Surgery. 2008;143:334–42.

    PubMed Central  PubMed  Google Scholar 

  91. Meier JJ, Nauck MA. Glucagon-like peptide 1(GLP-1) in biology and pathology. Diabetes Metab Res Rev. 2005;21:91–117.

    CAS  PubMed  Google Scholar 

  92. Thorens B. Glucagon-like peptide-1 and control of insulin secretion. Diabetes Metab. 1995;21:311–8.

    CAS  Google Scholar 

  93. Skrha J, Hilgertová J, Jarolímková M, Kunešová M, Hill M. Meal test for glucose-dependent insulinotropic peptide (GIP) in obese and type 2 diabetic patients. Physiol Res. 2010;59:749–55.

    CAS  PubMed  Google Scholar 

  94. Lakka H-M, Bouchard C. Etiology of obesity. In: Buchwald H, Cowan GSM, Pories WJ, editors. Surgical management of obesity. Philadelphia: Elsevier; 2007. p. p18–28.

    Google Scholar 

  95. Ikramuddin S. Energy metabolism and biochemistry of obesity. In: Buchwald H, Cowan GSM, Pories WJ, editors. Surgical management of obesity. Philadelphia: Elsevier; 2007. p. 29–33.

    Google Scholar 

  96. Leibel RL, Rosenbaum M, Hirsch J. Changes in energy expenditure resulting from altered body weight. N Engl J Med. 1995;332:621–8.

    CAS  PubMed  Google Scholar 

  97. Flancbaum L, Choban PS, Bradley LR, et al. Changes in measured resting energy expenditure after Roux-en-Y gastric bypass for clinicall severe obesity. Surgery. 1997;122:943–9.

    CAS  PubMed  Google Scholar 

  98. Bobbioni-Harsch E, Morel P, Huber O, et al. Energy economy hampers body weight loss after gastric bypass. J Clin Endocrinol Metab. 2000;85:4695–700.

    CAS  PubMed  Google Scholar 

  99. Das SK, Robert SB, McCrory MA, et al. Long-term changes in energy expenditure and body composition after massive weight loss induced by gastric bypass surgery. Am J Clin Nutr. 2003;78:22–30.

    CAS  PubMed  Google Scholar 

  100. Shapiro A, Mu W, Roncal C, Cheng KY, Johnson RJ, Scarpace PJ. Fructose-induced leptin resistance exacerbates weight gain in response to subsequent high-fat feeding. Am J Physiol Regul Integr Comp Physiol. 2008;295:R1370–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Obici S, Rossetti L. Minireview: nutrient sensing and the regulation of insulin action and energy balance. Endocrinology. 2003;144:5172–8.

    CAS  PubMed  Google Scholar 

  102. Boden G. Lipids and glucose in type 2 diabetes: what is the cause and effect? Diabetes Care. 2004;27:2253–9.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry Buchwald MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Buchwald, H. (2015). Metabolic Surgery. In: Lucchese, M., Scopinaro, N. (eds) Minimally Invasive Bariatric and Metabolic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-319-15356-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15356-8_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15355-1

  • Online ISBN: 978-3-319-15356-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics