Skip to main content

Simulation Optimization Approach to Solve a Complex Multi-objective Redundancy Allocation Problem

  • Chapter
  • First Online:
Applied Simulation and Optimization

Abstract

This chapter addresses the problem of redundancy and reliability allocation in the operational dimensioning of an automated production system. The aim of this research is to improve the global reliability of the system by allocating alternative components (redundancies) that are associated in parallel with each original component. By considering a complex componential approach that simultaneously evaluates the interrelations among subsystems, conflicting goals, and variables of different natures, a solution for the problem is proposed through a multi-objective formulation that joins a multi-objective elitist genetic algorithm with a high-level simulation environment also known as simulation optimization (SIMO) framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Enumerative local search algorithms based on gradients or that use standard techniques of deterministic programming, such as greedy algorithms, or branch and bound techniques [14, 29].

  2. 2.

    The costs of production include

    • CRAMA—cost of the raw materials applied

    • CMPOLl—cost of the manpower of the operation of the line

    • CEEOC—cost of electricity and other combustibles

    • CPSAT—cost of packaging, storing, and transport.

References

  1. Azadivar, F. (1992). A tutorial on simulation optimization. In Proceedings of the, (1992). 24th winter simulation conference, pp. 198–204. doi:10.1145/167293.167332.

  2. Billiton, R. A., Ronald N. (1992). Reliability evaluation of engineering systems: Concepts and techniques (2nd ed). Springer. ISBN-10 0306440636; ISBN-13 978–0306440632.

    Google Scholar 

  3. Coelho, L. S. (2009). Reliability-redundancy optimization by means of a chaotic differential evolution approach. Chaos, Solitons and Fractals, 41(2), 594–602. doi:10.1016/j.chaos.2008.02.028.

  4. Coello, C. A., Lamont, G. B. (2004). Applications of multi-objective evolutionary algorithms. Advances in Natural Computation (Vol. 1). World Scientific Publishing. ISBN 981-256-106-4.

    Google Scholar 

  5. Deb, K. (2001). Multi-objective optimization using evolutionary algorithms. England: Wiley. ISBN 047187339X, 9780471873396.

    Google Scholar 

  6. Deb, K., Pratap, A., & Agarwal, S. (2002). Fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE-Transactions on Evolutionary Computation, 6(2), 182–197. doi:10.1109/4235.996017.

  7. Ergott, M. & Gandibleux, X. (2004). Approximate solution methods for multi-objective combinatorial optimization. Sociedad de Estadística e Investigación Operativa. Madrid. Spain TOP Vol. 12. No. 1. 1–90 June. doi:10.1007/BF02578918.

  8. Gen Mitsuo, Cheng Runwei (2000). Genetic Algortihms & Engineering Optimization. Canada. Wiley. A Wiley-interscience publication. ISBN 0471315311, 9780471315315.

    Google Scholar 

  9. Ghiani Gianpaolo, Legato Pasquale, Musmanno Roberto, Vocaturo Francesca. A combined procedure for discrete simulation-optimization problems based on the simulated annealing framework. Computational Optimization and Applications, September 2007, Volume 38, Issue 1, Pages 133.145. doi:10.1007/s10589-007-9010-7

  10. Hani, Y., et al. (2008). Simulation base optimization of a train maintenance facility. Journal of Intelligent Manufacturing, 19(3), 293–300. doi:10.1007/s10845-008-0082-8.

  11. Holland, John Henry (1975). Adaptation in natural and artificial systems: an introductory analysis eith applications to biology, control and artificial intelligence. University of Michigan Press. ISBN 0472084607, 9780472084609.

    Google Scholar 

  12. Jianping, L. I., & Xishen, J. (1997). A new partial bound enumeration technique for solving reliability redundancy optimization. Microelectronics Reliability, 37(2), 237–242. doi:10.1016/S0026-2714(96)00109-6.

  13. Khalili-Damghani, K., & Maghsoud, A. (2012). Solving binary-state multi-objective reliability redundancy allocation series-parallel problem using efficient epsilon-constraint, multi-start partial bound enumeration algorithm, and DEA. Reliability Engineering and System Safety, 103, 35–44. doi:10.1016/j.ress.2012.03.006.

  14. Kulturel-Konak, S., & Coit, D. W. (2007). Determination of Pruned Pareto sets for the multi-objective system redundancy allocation problem. IEEE Symposium on computational intelligence in multicriteria decision making, pp. 390–394. doi:10.1109/MCDM.2007.369118.

  15. Kulturel-Konak, S., Smith, A. E., & Norman, B. A. (2006). Multi-objective tabu search using a multinomial probability mass function. European Journal of Operational Research, 169, 918–931. doi:10.1016/j.ejor.2004.08.026.

  16. Kumar, R., Izui, K., Yoshimura, M., & Nishiwaki, S. (2009). Multi-objective hierarchical genetic algorithms for multilevel redundancy allocation optimization. Reliability Engineering and System Safety, 94(4), 891–904. doi:10.016/j.ress.2008.10.002.

  17. Kuo, W., Prasad, V. R., Tillman, F. A., & Hwang, C.-L. (2001). Optimal reliability design fundamentals and applications. Cambridge University Press. ISBN 0521781272, 9780521781275.

    Google Scholar 

  18. Kuo, W., Zuo, M. J. (2003). Optimal reliability modeling. Principles and applications. New Jersey: Wiley. ISBN 047139761X, 9780471397618.

    Google Scholar 

  19. Liang, Y.-C., & Lo, M.-H. (2010). Multi-objective redundancy allocation optimization using a variable neighborhood search algorithm. Journal of Heuristics, 16, 511–535. doi:10.1007/s10732-009-9108-4.

  20. Lins, Isis Didier, & Droguett, Enrique López. (2011). Redundancy allocation problems considering systems with imperfect repairs using multi-objective genetic algorithms and discrete event simulation. Simulation Modelling Practice and Theory, 19, 362–381. doi:10.1016/j.simpat.2010.07.010.

  21. Lisnianski, A., & Levitin, G. (2003). Multi-state system reliability Assessment optimization and application (Vol. 6). Singapore: World Scientific Publishing. Series on Quality reliability and Engineering statistics. ISBN 981-238-306-9.

    Google Scholar 

  22. Loo Hay Lee, Ek Peng Chew, Kee Hui Chua, Zhuo Sun, Lu Zhen. A Simulation Optimisation Framework for Container Terminal Layout Design. Multi-objective Evolutionary Optimisation for Product Design and Manufacturing 2011, Pages 385–400. doi:10.1007/978-0-85729-652-8_14.

  23. Mattila, V., Virtanen, K. (2005). A simulation-based optimization model to schedule periodic maintenance of a fleet of aircraft. In Proceedings 2005. European simulation and modeling conference, Porto, Portugal, October 24–26, pp. 479–483.

    Google Scholar 

  24. Meedeniya, I., Aleti, A. & Buhnova, B. (2009). Redundancy allocation in automotive systems using multi-objective optimization. Jacobs school UCSD symposium on automotive/avionics systems engineering SAASE 2009. http://www.jacobsschool.ucsd.edu/GordonCenter/g_leadership/l_summer/s_saase/schedule.shtml

  25. Mehmet, Çunkaş. (2010). Intelligent design of induction motors by multiobjective fuzzy genetic algorithm. Journal of Intelligent Manufacturing, 21(4), 393–402. doi:10.007/s10845-008-0187-0.

  26. Merkuryeva, G., & Napalkova, L. (2008). Development of multi-objective simulation-based genetic algorithm for supply chain cyclic planning and optimization. In International conference 204th EURO mini conference continuous optimization and knowledge-based technologies (EurOPT) May 20.23. Neringa, Lithuania. ISBN 978-9955-28-283-9.

    Google Scholar 

  27. Misra, K. B., Sharma, U. (1991). An efficient approach for multiple criteria redundancy optimization problems. Microelectronics Reliability, 31(2/3), 303–321. doi:10.016/0026-2714(91)90216.

  28. Murata. T. (1989). Petri Nets: Properties, Analysis and applications. Proceedings of the IEEE. Vol. 77. No 4. pp 541-580. doi: 10.1109/5.24143.

    Google Scholar 

  29. Nesmachnow, Sergio (2004). A parallel version of evolutionary algorithm for multiobjective optimization NSGA-II. Proceedings of X Argentine Computation Science Congress, Buenos Aires, Argentina, 2004.

    Google Scholar 

  30. Olafsson Sigurdur, Kim Jumi. Simulation Optimization. Proceedings of the IEEE Winter Simulation Conference, Pages 79–82, 2002.

    Google Scholar 

  31. Peterson. J.L. (1981) Petri Net Theory and the Modeling of Systems. Prentice-Hall. N.J. ISBN 0136619835.

    Google Scholar 

  32. Robin F, Orzati A, Moreno E, Homan O J, Bachtold W. Simulation and evolutionary optimization of electron-beam lithography with genetic and simplex-downhill algorithms. IEEE Transactions on Evolutionary Computation, Volume 7, Issue 1, February 2003, Pages 69–82.

    Google Scholar 

  33. Rozenberg Grzegorz, Reisig Wolfgang, Desel Jörg (2004). Lectures on concurrency and Petri Nets. Advances in Petri Nets. Lecture notes in Computer Science. Vol. 3098. doi: 10.1007/b98282.

    Google Scholar 

  34. Salazar, D., Rocco, C. M., & Galvan, B. J. (2006). Optimization of constrained multiple-objective reliability problems using evolutionary algorithms. Reliability Engineering and System Safety, 91(9), 1057–1070. doi:10.1016/j.ress.2005.11.040.

  35. Shelokar, P. S., Jayaraman, V. K., & Kulkami, B. D. (2002). Ant algorithm for single and multiobjective reliability optimization problems. Quality and Reliability Engineering International, 18, 497–514. doi:10.1002/qre.499.

  36. Soundharajan, B; Sudheer K.P. Sensitivity analysis and auto-calibration of ORYZA2000 using simulation-optimization framework. Paddy and Water Environment, January 2013 - Volume 11, Issue 1–4, Pages 59–71. doi:10.1007/s10333-011-0293-z.

  37. Swisher, J. R., Hyden, P. D., Jacobson, S. H., & Schruben, L. W. (2000). A survey of simulation optimization techniques and procedures. In Proceedings of 2000. Winter simulation conference (Vol. 1, No. 10–13, pp. 119–128). Dec 2000. doi:10.1109/WSC.2000.899706.

  38. Taboada, H. A. & Coit, D. W. (2008). Development of multiple objective genetic algorithm for solving reliability design allocation problems. In J. Fowler, & S. Masons (Eds), Proceedings of the 2008 industrial engineering research conference. Available at: http://ie.rutgers.edu/resource/research_paper/paper_08-004.pdf

  39. Taboada, H. A., Baheranwala, F., Coit, D. W., & Wattanapongsakorn, N. (2007). Practical solutions for multi-objective optimization: An application to system reliability design problems. Reliability Engineering and System Safety, 92, 314–322. doi:10.1016/j.ress.2006.04.014.

  40. Taboada, H. A., & Coit, D. W. (2012). A new multiple objective evolutionary algorithm for reliability optimization of series-parallel systems. Applied Evolutionary Computation, 3(2), 1–18. doi:10.4018/jaec.2012040101.

  41. Tian, Shigang, & Suo, Ming J. (2006). Redundancy allocation for multi-state systems using physical programming and genetic algorithms. Reliability Engineering and System Safety, 91, 1049–1056. doi:10.1016/j.ress.2005.11.039.

  42. Tian, Z., Lin, D., & Bairong, W. (2012). Condition based maintenance optimization considering multiple objectives. Journal of Intelligent Manufacturing, 33(2), 333–340. doi:10.1007/s10845-009-0358-7.

  43. Tzu-Chieh, H. & Kuei-Yuan, C. (2011). Uncertainity quantifications of Pareto optima in multiobjective problems. Journal of Intelligent Manufacturing. doi:10.1007/s10845-011-0602-9.

  44. Ullrich, Christian. Exchange Rate Hedging in a Simulation/Optimization Framework. Forecasting and Hedging in the Foreign exchange Markets. Lectures Notes in Economics and Mathematical Systems, Volume 623, 2009, Pages 185–188. doi:10.1007/978-3-642-00495-7_17.

  45. Wang, Z., & Chen T., Tang K., Yao X. (2009). A multi-objective approach to redundancy allocation problem in parallel-series systems. IEEE Congress on evolutionary computation–CEC, pp. 582–589. doi:10.1109/CEC.2009.4982998.

  46. Yang Taho, Chou Pohung. Solving a multiresponse simulation-optimization problem with discrete variables using a multiple-attribute decision-making method. Mathematics and Computers in Simulation, Volume 68, Issue 1, 3 February 2005, Pages 9–21.

    Google Scholar 

  47. Zhou, L., Yoke San, W., & Kim Seng, Lee. (2011). A manufacturing-oriented approach for multi-platforming product family design with modified genetic algorithm. Journal of Intelligent Manufacturing, 22(6), 891–907. doi:10.1007/s10845-009-0365-8.

  48. Zio, E. & Zille, V. (2007). Multi-objective optimization of network systems by using ANT algorithms. Quality Technology of Quantitative management. 4(2), 211–224. Available at: http://web.it.nctu.edu.tw/qtqm/qtqmpapers/2007V4N2/2007V4N2_F4.pdf

Download references

Acknowledgments

To Dr. Deb and his team at the Kanpur Genetic Algorithms Laboratory (KanGAL) for providing the source code of the MOEA NSGA-II used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Henrique Mariano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mariano, C.H., Pece, C.A.Z. (2015). Simulation Optimization Approach to Solve a Complex Multi-objective Redundancy Allocation Problem. In: Mujica Mota, M., De La Mota, I., Guimarans Serrano, D. (eds) Applied Simulation and Optimization. Springer, Cham. https://doi.org/10.1007/978-3-319-15033-8_2

Download citation

Publish with us

Policies and ethics