Skip to main content

Optical Guided Wave Switching

  • Chapter
  • First Online:
All-Optical Signal Processing

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 194))

  • 2841 Accesses

Abstract

Optical switching is a key functionality for enabling transparent all-optical networks. We present an overview of optical switching devices, based on either optical or electrical control signals, which permit to avoid the necessity of optics-electronics-optics conversion. We describe the basic principles of various guided wave optical switching devices, which exploit either relatively long interaction lengths in order to reduce the operating power requirements, or strong transverse confinement to reduce device dimensions. These devices include nonlinear mode couplers and interferometers based on optical fibers, as well as integrated waveguides based on photonic crystal structures or surface wave interactions in novel materials such as graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Yariv, Coupled-mode theory for guided-wave optics. IEEE J. Quantum Electron. 9, 919–933 (1973)

    Article  ADS  Google Scholar 

  2. S.M. Jensen, The nonlinear coherent coupler. IEEE J. Quantum Electron. 18, 1580–1583 (1982)

    Article  ADS  Google Scholar 

  3. A.A. Maier, Optical transistors and bistable devices utilizing nonlinear transmission of light in systems with undirectional coupled waves. Sov. J. Quantum Electron. 12, 1490–1494 (1982)

    Article  ADS  Google Scholar 

  4. G.I. Stegeman, E.M. Wright, All-optical waveguide switching. Opt. Quant. Electron. 22, 95–122 (1990)

    Article  Google Scholar 

  5. H.G. Winful, Self-induced polarization changes in birefringent optical fibers. Appl. Phys. Lett. 47, 213–215 (1985)

    Article  ADS  Google Scholar 

  6. B. Daino, G. Gregori, S. Wabnitz, New all-optical devices based on third-order nonlinearity of birefringent fibers. Opt. Lett. 11, 42–44 (1986)

    Article  ADS  Google Scholar 

  7. S. Trillo, S. Wabnitz, Nonlinear dynamics and instabilities of coupled waves and solitons in optical fibers, in Anisotropic and Nonlinear Optical Waveguides, ed. by C.S. Someda, G.I. Stegeman (Elsevier, Amsterdam, 1992), pp. 185–236

    Chapter  Google Scholar 

  8. B. Daino, G. Gregori, S. Wabnitz, Stability analysis of nonlinear coherent coupling. J. Appl. Phys. 58, 4512–4514 (1985)

    Article  ADS  Google Scholar 

  9. H.G. Winful, Polarization instabilities in birefringent nonlinear media: application to fiber-optics devices. Opt. Lett. 11, 33–35 (1986)

    Article  ADS  Google Scholar 

  10. S. Wabnitz, E.M. Wright, C.T. Seaton, G.I. Stegeman, Instabilities and all-optical phase-controlled switching in a nonlinear directional coherent coupler. Appl. Phys. Lett. 49, 838–840 (1986)

    Article  ADS  Google Scholar 

  11. D.D. Gusovskii, E.M. Dianov, A.A. Maier, V.B. Neustruev, E.I. Shklovskii, I.A. Shcherbakov, Nonlinear light transfer in tunnel-coupled optical waveguides. Sov. J. Quantum Electron. 15, 1523–1526 (1985)

    Article  ADS  Google Scholar 

  12. D.D. Gusovskii, E.M. Dianov, A.A. Maier, V.B. Neustruev, V.V. Osiko, A.M. Prokhorov, KYu. Sitarskii, I.A. Shcherbakov, Experimental observation of the self-switching of radiation in tunnel-coupled optical waveguides. Sov. J. Quantum Electron. 17, 724–727 (1987)

    Article  ADS  Google Scholar 

  13. S.R. Friberg, Y. Silberberg, M.K. Oliver, M.J. Andrejco, M.A. Saifi, P.W. Smith, Ultrafast all-optical switching in a dual-core fiber nonlinear coupler. Appl. Phys. Lett. 51, 1135–1137 (1987)

    Article  ADS  Google Scholar 

  14. A.M. Weiner, Y. Silberberg, S.R. Friberg, B.G. Sfez, P.W. Smith, Femtosecond all-optical switching in a dual-core fiber nonlinear coupler. Opt. Lett. 13, 904–906 (1988)

    Article  ADS  Google Scholar 

  15. A.M. Weiner, Y. Silberberg, H. Fouckhardt, D.E. Leaird, M.A. Saifi, M.J. Andrejco, P.W. Smith, Use of femtosecond square pulses to avoid pulse breakup in all-optical switching. IEEE J. Quantum Electron. 25, 2648–2655 (1989)

    Article  ADS  Google Scholar 

  16. S. Trillo, S. Wabnitz, R.H. Stolen, G. Assanto, C.T. Seaton, G.I. Stegeman, Experimental observation of polarization instability in a birefringent optical fiber. Appl. Phys. Lett. 49, 1224–1226 (1986)

    Article  ADS  Google Scholar 

  17. S. Trillo, S. Wabnitz, W.C. Banyai, N. Finlayson, C.T. Seaton, G.I. Stegeman, R.H. Stolen, Picosecond nonlinear polarization switching with a fiber filter. Appl. Phys. Lett. 53, 837–839 (1988)

    Article  ADS  Google Scholar 

  18. S. Trillo, S. Wabnitz, W.C. Banyai, N. Finlayson, C.T. Seaton, G.I. Stegeman, R.H. Stolen, Observation of ultrafast nonlinear polarization switching induced by polarization instability in a birefringent fiber rocking filter. IEEE J. Quantum Electron. 25, 104–112 (1989)

    Article  ADS  Google Scholar 

  19. P. Ferro, M. Haelterman, S. Trillo, S. Wabnitz, B. Daino, Polarization switching in spun birefringent fiber. Appl. Phys. Lett. 59, 2082–2084 (1991)

    Article  ADS  Google Scholar 

  20. P. Ferro, M. Haelterman, S. Trillo, S. Wabnitz, B. Daino, All-optical polarization switch with a long low-birefringence fiber. Electron. Lett. 27, 1407–1408 (1991)

    Article  Google Scholar 

  21. P. Ferro, S. Trillo, S. Wabnitz, All-optical polarization differential amplification with a birefringent fiber. Electron. Lett. 30, 1616–1617 (1994)

    Article  Google Scholar 

  22. P. Ferro, S. Trillo, S. Wabnitz, Phase control of a nonlinear coherent coupler: the multibeatlength twisted birefringent fiber. Appl. Phys. Lett. 64, 2872–2874 (1994)

    Article  Google Scholar 

  23. P. Ferro, S. Trillo, S. Wabnitz, Demonstration of nonlinear nonreciprocity and logic operations with a twisted birefringent optical fiber. Opt. Lett. 19, 263–265 (1994)

    Article  ADS  Google Scholar 

  24. N.J. Doran, D. Wood, Soliton processing element for all-optical switching and logic. J. Opt. Soc. Am. B 4, 1843–1846 (1987)

    Article  ADS  Google Scholar 

  25. N. Imoto, S. Watkins, Y. Sasaki, A nonlinear optical-fiber interferometer for nondemolitional measurement of photon number. Opt. Commun. 61, 159–163 (1987)

    Article  ADS  Google Scholar 

  26. B.K. Nayar, N. Finlayson, N.J. Doran, S.T. Davey, W.L. Williams, J.W. Arkwright, All-optical switching in a 200-m twin-core fiber nonlinear Mach-Zehnder interferometer. Opt. Lett. 16, 408–410 (1991)

    Article  ADS  Google Scholar 

  27. M. Asobe, Effects of group-velocity dispersion in all-optical switching devices using highly nonlinear optical waveguides. J. Opt. Soc. Am. B 12, 1287–1299 (1995)

    Article  ADS  Google Scholar 

  28. N.J. Doran, D.S. Forrester, B.K. Nayar, Experimental investigation of all-optical switching in a fibre loop mirror device. Electron. Lett. 25, 267–268 (1989)

    Article  Google Scholar 

  29. K. Otsuka, Nonlinear antiresonant ring interferometer. Opt. Lett. 8, 471–473 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  30. D.B. Mortimore, Fiber loop reflectors. J. Lightwave Technol. 6, 1217–1224 (1988)

    Article  ADS  Google Scholar 

  31. N.J. Doran, D. Wood, Nonlinear optical loop mirror. Opt. Lett. 13, 56–58 (1988)

    Article  ADS  Google Scholar 

  32. K.J. Blow, N.J. Doran, B.K. Nayar, Experimental demonstration of optical soliton switching in an all-fiber nonlinear Sagnac interferometer. Opt. Lett. 14, 754–756 (1989)

    Article  ADS  Google Scholar 

  33. M.N. Islam, E.R. Sunderman, R.H. Stolen, W. Pleibel, J.R. Simpson, Soliton switching in a fiber nonlinear loop mirror. Opt. Lett. 14, 811–813 (1989)

    Article  ADS  Google Scholar 

  34. M.C. Farries, D.N. Payne, Optical fiber switch employing a Sagnac interferometer. Appl. Phys. Lett. 55, 25–26 (1989)

    Article  ADS  Google Scholar 

  35. K.J. Blow, N.J. Doran, B.K. Nayar, B.P. Nelson, Pulse shaping, compression, and pedestal suppression employing a nonlinear-optical loop mirror. Opt. Lett. 15, 248–250 (1990)

    Article  ADS  Google Scholar 

  36. M. Jinno, T. Matsumoto, Ultrafast, low power, and highly stable all-optical switching in an all polarization maintaining fiber Sagnac interferometer. IEEE Photon. Technol. Lett. 2, 349–351 (1990)

    Article  ADS  Google Scholar 

  37. M. Jinno, T. Matsumoto, Ultrafast all-optical logic operations in a nonlinear Sagnac interferometer with two control beams Opt. Lett. 16, 220–222 (1991)

    Google Scholar 

  38. L.F. Stokes, M. Chodorow, H.J. Shaw, All-single-mode fiber resonator. Opt. Lett. 7, 288–290 (1982)

    Article  ADS  Google Scholar 

  39. H. Nakatsuka, S. Asaka, H. Itoh, K. Ikeda, M. Matsuoka, Observation of bifurcation to chaos in an all-optical bistable system. Phys. Rev. Lett. 50, 109–112 (1983)

    Article  ADS  Google Scholar 

  40. B. Crosignani, B. Daino, P. Di Porto, S. Wabnitz, Optical multistability in a fiber-optic passive-loop resonator. Opt. Commun. 59, 309–312 (1986)

    Article  ADS  Google Scholar 

  41. M. Haelterman, S. Trillo, S. Wabnitz, Dissipative modulation instability in a nonlinear dispersive ring cavity. Opt. Commun. 91, 401–407 (1992)

    Article  ADS  Google Scholar 

  42. S. Coen, M. Haelterman, P. Emplit, L. Delage, L.M. Simohamed, F. Reynaud, Experimental investigation of the dynamics of a stabilized nonlinear fiber ring resonator. J. Opt. Soc. Am. B 15, 2283–2293 (1998)

    Article  ADS  Google Scholar 

  43. S. Trillo, S. Wabnitz, E.M. Wright, G.I. Stegeman, Soliton switching in fiber nonlinear directional couplers. Opt. Lett. 13, 672–674 (1988)

    Article  ADS  Google Scholar 

  44. S. Trillo, S. Wabnitz, Weak-pulse-activated soliton switching in nonlinear couplers. Opt. Lett. 16, 1–3 (1991)

    Article  ADS  Google Scholar 

  45. M. Romagnoli, S. Trillo, S. Wabnitz, Soliton switching in nonlinear couplers. Opt. Quant. Electron. 24, S1237–S1267 (1992)

    Article  Google Scholar 

  46. J.D. Joannopoulos, R.D. Meade, J.N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 1995)

    MATH  Google Scholar 

  47. J.D. Joannopoulos, P.R. Villeneuve, S. Fan, Photonic crystals: putting a new twist on light. Nature 386, 143–149 (1997)

    Article  ADS  Google Scholar 

  48. M. Soljacic, M. Ibanescu, S.G. Johnson, Y. Fink, J.D. Joannopoulos, Optimal bistable switching in nonlinear photonic crystals. Phys. Rev. E 66, 055601 (2002)

    Article  ADS  Google Scholar 

  49. S.F. Mingaleev, Y.S. Kivshar, Nonlinear transmission and light localization in photonic-crystal waveguides. J. Opt. Soc. Am. B 19, 2241–2249 (2002)

    Article  ADS  Google Scholar 

  50. M. Soljacic, C. Luo, J.D. Joannopoulos, S. Fan, Nonlinear photonic crystal microdevices for optical integration. Opt. Lett. 28, 637–639 (2003)

    Article  ADS  Google Scholar 

  51. S. Boscolo, M. Midrio, C.G. Someda, Coupling and decoupling of electromagnetic waves in parallel 2-D photonic crystal waveguides. IEEE J. Quantum Electron. 38, 47–53 (2002)

    Article  ADS  Google Scholar 

  52. A. Martinez, F. Cuesta, J. Marti, Ultrashort 2-D photonic crystal directional couplers. IEEE Photon. Technol. Lett. 15, 694–696 (2003)

    Article  ADS  Google Scholar 

  53. M. Thorhauge, L.H. Frandsen, P.I. Borel, Efficient photonic crystal directional couplers. Opt. Lett. 28, 1525–1527 (2003)

    Article  ADS  Google Scholar 

  54. A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, 2000)

    Google Scholar 

  55. R.M. Joseph, A. Taflove, FDTD Maxwell’s equations models for nonlinear electrodynamics and optics. IEEE Trans. Antennas Propag. 45, 364–374 (1997)

    Article  ADS  Google Scholar 

  56. A. Locatelli, D. Modotto, D. Paloschi, C. De Angelis, All optical switching in ultrashort photonic crystal couplers. Opt. Commun. 237, 97–102 (2004)

    Article  ADS  Google Scholar 

  57. J.S. Aitchison, D.C. Hutchings, J.U. Kang, G.I. Stegeman, A. Villeneuve, The nonlinear optical properties of AlGaAs at the half band gap. IEEE J. Quantum Electron. 33, 341–348 (1997)

    Article  ADS  Google Scholar 

  58. S.G. Johnson, P.R. Villeneuve, S. Fan, J.D. Joannopoulos, Linear waveguides in photonic-crystal slabs. Phys. Rev. B 62, 8212–8222 (2000)

    Article  ADS  Google Scholar 

  59. S.G. Johnson, J.D. Joannopoulos, Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Opt. Express 8, 173–190 (2001)

    Article  ADS  Google Scholar 

  60. T.D. Happ, M. Kamp, A. Forchel, Photonic crystal tapers for ultracompact mode conversion. Opt. Lett. 26, 1102–1104 (2001)

    Article  ADS  Google Scholar 

  61. P. Bienstman, S. Assefa, S.G. Johnson, J.D. Joannopoulos, G.S. Petrich, L.A. Kolodziejski, Taper structures for coupling into photonic crystal slab waveguides. J. Opt. Soc. Am. B 20, 1817–1821 (2003)

    Article  ADS  Google Scholar 

  62. A.L. Reynolds, U. Peschel, F. Lederer, P.J. Roberts, T.F. Krauss, P.J.I. de Maagt, Coupled defects in photonic crystals. IEEE Trans. Microwave Theory Tech. 49, 1860–1867 (2001)

    Article  ADS  Google Scholar 

  63. U. Peschel, A.L. Reynolds, B. Arredondo, F. Lederer, P.J. Roberts, T.F. Krauss, P.J.I. de Maagt, Transmission and reflection analysis of functional coupled cavity components. IEEE J. Quantum Electron. 38, 830–836 (2002)

    Article  ADS  Google Scholar 

  64. D.N. Christodoulides, N.K. Efremidis, Discrete temporal solitons along a chain of nonlinear coupled microcavities embedded in photonic crystals. Opt. Lett. 27, 568–570 (2002)

    Article  ADS  Google Scholar 

  65. K. Al-hemyari, A. Villeneuve, J.U. Kang, J.S. Aitchison, C.N. Ironside, G.I. Stegeman, Ultrafast all-optical switching in GaAlAs directional couplers at 1.55 µm without multiphoton absorption. Appl. Phys. Lett. 63, 3562–3564 (1993)

    Article  ADS  Google Scholar 

  66. J.S. Aitchison, A. Villeneuve, G.I. Stegeman, All-optical switching in two cascaded nonlinear directional couplers. Opt. Lett. 20, 698–700 (1995)

    Article  ADS  Google Scholar 

  67. A. Auditore, C. De Angelis, A. Locatelli, A.B. Aceves, Tuning of surface plasmon polaritons beat length in graphene directional couplers. Opt. Lett. 38, 4228–4231 (2013)

    Article  Google Scholar 

  68. A. Auditore, C. De Angelis, A. Locatelli, S. Boscolo, M. Midrio, M. Romagnoli, A.-D. Capobianco, G. Nalesso, Graphene sustained nonlinear modes in dielectric waveguides. Opt. Lett. 38, 631–633 (2013)

    Article  ADS  Google Scholar 

  69. D.A. Smirnova, A.V. Gorbach, I.V. Iorsh, I.V. Shadrivov, Y.S. Kivshar, Nonlinear switching with a graphene coupler. Phys. Rev. B 88, 045433 (2013)

    Article  ADS  Google Scholar 

  70. P.I. Buslaev, I.V. Iorsh, I.V. Shadrivov, P.A. Belov, Y.S. Kivshar, Plasmons in waveguide structures formed by two graphene layers. JETP Lett. 97, 535–539 (2013)

    Article  ADS  Google Scholar 

  71. A. Locatelli, A.-D. Capobianco, G. Nalesso, S. Boscolo, M. Midrio, C. De Angelis, Graphene based electro-optical control of the beat length of dielectric couplers. Opt. Commun. 318, 175–179 (2014)

    Article  ADS  Google Scholar 

  72. Y.V. Bludov, D.A. Smirnova, YuS Kivshar, N.M.R. Peres, M.I. Vasilevskiy, Nonlinear TE-polarized surface polaritons on graphene. Phys. Rev. B 89, 035406 (2014)

    Article  ADS  Google Scholar 

  73. S.A. Mikhailov, K. Ziegler, New electromagnetic mode in graphene. Phys. Rev. Lett. 99, 016803 (2007)

    Article  ADS  Google Scholar 

  74. S.A. Mikhailov, K. Ziegler, Nonlinear electromagnetic response of graphene: frequency multiplication and the self-consistent-field effects. J. Phys.: Condens. Matter 20, 1–10 (2008)

    Google Scholar 

  75. M. Jablan, H. Buljan, M. Soljacic, Plasmonics in graphene at infra-red frequencies. Phys. Rev. B 80, 245435 (2009)

    Article  ADS  Google Scholar 

  76. H. Zhang, S. Virally, Q. Bao, L.K. Ping, S. Massar, N. Godbout, P. Kockaert, Z-scan measurement of the nonlinear refractive index of graphene. Opt. Lett. 37, 1856–1858 (2012)

    Article  ADS  Google Scholar 

  77. A.V. Gorbach, Nonlinear graphene plasmonics: amplitude equation for surface plasmons. Phys. Rev. A 87, 013830 (2013)

    Article  ADS  Google Scholar 

  78. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H.A. Bechtel, X. Liang, A. Zettl, Y.R. Shen, F. Wang, Nat. Nanotechnol. 6, 630 (2011)

    Article  ADS  Google Scholar 

  79. J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. Javier Garcia De Abajo, R. Hillenbrand, F.H.L. Koppens, Optical nano-imaging of gate-tunable graphene plasmons. Nature 486, 77–81 (2012)

    Google Scholar 

  80. Z. Fei, A.S. Rodin, G.O. Andreev, W. Bao, A.S. McLeod, M. Wagner, L.M. Zhang, Z. Zhao, G. Dominguez, M. Thiemens, M.M. Fogler, A.H. Castro-Neto, C.N. Lau, F. Keilmann, D.N. Basov, Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012)

    ADS  Google Scholar 

  81. B. Wang, X. Zhang, X. Yuan, J. Teng, Optical coupling of surface plasmons between graphene sheets. Appl. Phys. Lett. 100, 131111 (2012)

    Article  ADS  Google Scholar 

  82. A. Vakil, N. Engheta, Transformation optics using graphene. Science 332, 1291–1294 (2011)

    Article  ADS  Google Scholar 

  83. T. Stauber, N.M.R. Peres, A.K. Geim, Optical conductivity of graphene in the visible region of the spectrum. Phys. Rev. B 78, 085432 (2008)

    Article  ADS  Google Scholar 

  84. C.M. Bender, S. Boettcher, Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  85. G.W. Hanson, Dyadic Green’s functions for an anisotropic, non-local model of biased graphene. IEEE Trans. Antennas Propag. 56, 747–757 (2008)

    Article  ADS  Google Scholar 

  86. A. Locatelli, A.-D. Capobianco, M. Midrio, S. Boscolo, C. De Angelis, Graphene-assisted control of coupling between optical waveguides. Opt. Express 20, 28479 (2012)

    Article  ADS  Google Scholar 

  87. S. Klaiman, U. Gunther, N. Moiseyev, Visualization of branch points in PT-symmetric waveguides. Phys. Rev. Lett. 101, 080402 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  88. A. Guo, G.J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G.A. Siviloglou, D.N. Christodoulides, Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009)

    Article  ADS  Google Scholar 

  89. S. Yu, G.X. Piao, D.R. Mason, S. In, N. Park, Spatiospectral separation of exceptional points in PT-symmetric optical potentials. Phys. Rev. A 86, 031802 (2012)

    Article  ADS  Google Scholar 

  90. H. Yang, X. Feng, Q. Wang, H. Huang, W. Chen, A.T.S. Wee, W. Ji, Giant two-photon absorption in bilayer graphene. Nano Lett. 11, 2622–2627 (2011)

    Article  Google Scholar 

  91. K. Kim, J.Y. Choi, T. Kim, S.H. Cho, H.J. Chung, A role for graphene in silicon-based semiconductor devices. Nature 479, 338–344 (2011)

    Article  ADS  Google Scholar 

  92. F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Graphene photonics and optoelectronics. Nat. Photon. 4, 611–622 (2010)

    Article  ADS  Google Scholar 

  93. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang, A graphene-based broadband optical modulator. Nature 474, 64–67 (2011)

    Article  ADS  Google Scholar 

  94. M. Liu, X. Yin, X. Zhang, Double-layer graphene optical modulator. Nano Lett. 12, 1482–1485 (2012)

    Article  ADS  Google Scholar 

  95. M. Midrio, S. Boscolo, M. Moresco, M. Romagnoli, C. De Angelis, A. Locatelli, A.-D. Capobianco, Graphene-assisted critically-coupled optical ring modulator. Opt. Express 20, 23144–23155 (2012)

    Article  ADS  Google Scholar 

  96. Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Lim, Y. Wang, D.Y. Tang, K.P. Loh, Broadband graphene polarizer. Nat. Photon. 5, 411–415 (2011)

    Article  ADS  Google Scholar 

  97. J.T. Kim, C.G. Choi, Graphene-based polymer waveguide polarizer. Opt. Express 20, 3556–3562 (2012)

    Article  ADS  Google Scholar 

  98. Z.Q. Li, E.A. Henriksen, Z. Jiang, Z. Hao, M.C. Martin, P. Kim, H.L. Stormer, D.N. Basov, Dirac charge dynamics in graphene by infrared spectroscopy. Nat. Phys. 4, 532–535 (2008)

    Article  Google Scholar 

  99. A.-D. Capobianco, A. Locatelli, C. De Angelis, M. Midrio, S. Boscolo, Finite-difference beam propagation method for graphene-based devices. IEEE Photon. Technol. Lett. 26, 1007–1010 (2014)

    Article  ADS  Google Scholar 

  100. D.N. Christodoulides, R.I. Joseph, Discrete self-focusing in nonlinear arrays of coupled waveguides. Opt. Lett. 13, 794–796 (1988)

    Article  ADS  Google Scholar 

  101. T. Pertsch, T. Zentgraf, U. Peschel, A. Brauer, F. Lederer, Anomalous refraction and diffraction in discrete optical systems. Phys. Rev. Lett. 88, 093901 (2002)

    Article  ADS  Google Scholar 

  102. A. Locatelli, M. Conforti, D. Modotto, C. De Angelis, Diffraction engineering in arrays of photonic crystal waveguides. Opt. Lett. 30, 2894–2896 (2005)

    Article  ADS  Google Scholar 

  103. A. Locatelli, M. Conforti, D. Modotto, C. De Angelis, Discrete negative refraction in photonic crystal waveguide arrays. Opt. Lett. 31, 1343–1345 (2006)

    Article  ADS  Google Scholar 

  104. M. Guasoni, A. Locatelli, C. De Angelis, Peculiar properties of photonic crystal binary waveguide arrays. J. Opt. Soc. Am. B 25, 1515–1522 (2008)

    Article  ADS  Google Scholar 

  105. M. Conforti, M. Guasoni, C. De Angelis, Subwavelength diffraction management. Opt. Lett. 33, 2662–2664 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was funded by Fondazione Cariplo (grants no. 2011-0395 and no. 2013-0736), the Italian Ministry of University and Research (grant no. 2012BFNWZ2), and the US Army (grants no. W911NF-12-1-0590 and no. W911NF-13-1-0466).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Wabnitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

De Angelis, C., Modotto, D., Locatelli, A., Wabnitz, S. (2015). Optical Guided Wave Switching. In: Wabnitz, S., Eggleton, B. (eds) All-Optical Signal Processing. Springer Series in Optical Sciences, vol 194. Springer, Cham. https://doi.org/10.1007/978-3-319-14992-9_3

Download citation

Publish with us

Policies and ethics