Skip to main content

Effect of Humic Substances and Bioorganic Substrates from Urban Wastes in Nanostructured Materials Applications and Synthesis

  • Chapter
  • First Online:
Soluble Bio-based Substances Isolated From Urban Wastes

Part of the book series: SpringerBriefs in Molecular Science ((GREENCHEMIST))

Abstract

Humic substances were widely studied for preparing materials to be used for adsorption, photocatalysis and so on. Their parent soluble bio-organic materials (SBO) have potentially similar applications which have to be evaluated. The main advantage of the use of SBO substances concerns their low cost, but they are appealing also for the development of a strategy of recycle and reuse of wastes which needs to be followed worldwide. The application of SBO in materials synthesis is promizing, since they can be used as synthesis intermediates but also as active phases for developing adsorbing and/or photoactive materials usable for environmental applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dudare, D., & Klavins, M. (2013). Peat humic substances as sorbent for nanomaterials. In 13th SGEM GeoConference on Nano, Bio and Green-Technologies for a Sustainable Future (pp. 67–74.). www.sgem.org, SGEM2013 Conference Proceedings. ISBN 978-619-7105-06-3/ISSN 1314-2704.

  2. Montoneri, E., Boffa, V., Quagliotto, P. L., Mendich, R., Chierotti, M. R., Gobetto, R., & Medana, C. (2008). Humic acid-like matter isolated from green urban wastes. Part I: Structure and surfactant properties. BioResources, 3, 123–141.

    CAS  Google Scholar 

  3. Montoneri, E., Savarino, P., Bottigliengo, S., Musso, G., Boffa, V., Bianco Prevot, A., et al. (2008). Humic acid-like matter isolated from green urban wastes. Part II: Performance in chemical and environmental technologies. BioResources, 3, 217–233.

    Google Scholar 

  4. Gu, B., Schmitt, J., Chen, Z., Liang, L., & McCarthy, J. F. (1994). Adsorption and desorption of natural organic matter on iron oxide: Mechanisms and models. Environmental Science and Technology, 28, 38–46.

    Article  CAS  Google Scholar 

  5. Zhang, Y., Chen, Y., Westerhoff, P., & Crittenden, J. (2009). Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles. Water Research, 43, 4249–4257.

    Article  CAS  Google Scholar 

  6. Adegboyega, N. F., Sharma, V. K., Siskova, K., Zbořil, R., Sohn, M., & Schultz, B. J. (2013). Interactions of aqueous Ag+ with fulvic acids: mechanisms of silver nanoparticle formation and investigation of stability. Environmental Science and Technology, 47, 757–764.

    Article  CAS  Google Scholar 

  7. Yang, K., Lin, D., & Xing, B. (2009). Interactions of humic acid with nanosized inorganic oxides. Langmuir, 25, 3571–3576.

    Article  CAS  Google Scholar 

  8. Ohashi, H., & Nakazawa, H. (1996). The microstructure of humic acid montmorillonite composites. Clay Minerals, 31, 347–354.

    Article  CAS  Google Scholar 

  9. Illés, E., & Tombácz, E. (2006). The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles. Journal of Colloid and Interface Science, 295, 115–123.

    Article  Google Scholar 

  10. Maris, K., & Linda, A. (2009). Study of interaction between humic acids and fullerene C60 using fluorescence quenching approach. Ecological Chemistry and Engineering S, 17, 351–362.

    Google Scholar 

  11. Klavins, M., Ansone, L., & Zicmanis, A. (2011). Behaviour of nanomaterials in the environment: A study of interaction between humic acids and fullerene C60. Latvian Journal of Chemistry, 49, 283–293.

    Google Scholar 

  12. Chappell, M. A., George, A. J., Dontsova, K. M., Porter, B. E., Price, C. L., Zhou, P., et al. (2009). Surfactive stabilization of multi-walled carbon nanotube dispersions with dissolved humic substances. Environmental Pollution, 157, 1081–1087.

    Article  CAS  Google Scholar 

  13. Chen, K., & Elimelech, M. (2008). Interaction of fullerene (C60) nanoparticles with humic acid and alginate coated silica surfaces: Measurements, mechanisms, and environmental implications. Environmental Science and Technology, 42, 7607–7614.

    Article  CAS  Google Scholar 

  14. Tang, W.-W., Zeng, G.-M., Gong, J.-L., Liang, J., Xu, P., Zhang, C., & Huang, B.-B. (2014). Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: A review. Science of the Total Environment, 468–469, 1014–1027.

    Article  Google Scholar 

  15. Liu, J.-F., Zhao, Z.-S., & Jiang, G.-B. (2008). Coating Fe3O4 Magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environmental Science and Technology, 42, 6949–6954.

    Article  CAS  Google Scholar 

  16. Amstaetter, K., Borch, T., & Kappler, A. (2012). Influence of humic acid imposed changes of ferrihydrite aggregation on microbial Fe(III) reduction. Geochimica et Cosmochimica Acta, 85, 326–341.

    Article  CAS  Google Scholar 

  17. Sanchez, C., Julian, B., Belleville, P., & Popall, M. (2005). Applications of hybrid organic–inorganic nanocomposites. Journal of Materials Chemistry, 15, 3559–3592.

    Article  CAS  Google Scholar 

  18. Mercado, D. F., Magnacca, G., Malandrino, M., Rubert, A., Montoneri, E., Celi, L., et al. (2014). Paramagnetic iron-doped hydroxyapatite nanoparticles with improved metal sorption properties. A Bio-organic substrates-mediated synthesis. ACS Applied Materials and Interface, 6, 3937–3946.

    Article  CAS  Google Scholar 

  19. Montoneri, E., Mainero, D., Boffa, V., Perrone, D. G., & Montoneri, C. (2011). Biochemenergy: a project to turn an urban wastes treatment plant into biorefinery for the production of energy, chemicals and consumer’s products with friendly environmental impact. International Journal of Global Environment Issues, 11, 170–196.

    Article  Google Scholar 

  20. Bianco Prevot, A., Fabbri, D., Pramauro, E., Baiocchi, C., Medana, C., Montoneri, E., & Boffa, V. (2010). Sensitizing effect of bio-based chemicals from urban wastes on the photodegradation of azo-dyes. Journal of Photochemistry and Photobiology A: Chemistry, 209, 224–231.

    Article  CAS  Google Scholar 

  21. Bianco Prevot, A., Avetta, P., Fabbri, D., Laurenti, E., Marchis, T., Perrone, D. G., et al. (2011). Waste derived bioorganic substances for light induced generation of reactive oxygenated species. ChemSusChem, 4, 85–90.

    Article  CAS  Google Scholar 

  22. Gomis, J., Vercher, R. F., Amat, A. M., Mártire, D. O., González, M. C., Bianco Prevot, A., et al. (2013). Application of soluble bio-organic substances (SBO) as photocatalysts for wastewater treatment: Sensitizing effect and photo-Fenton-like process. Catalysis Today, 209, 176–180.

    Article  CAS  Google Scholar 

  23. Montoneri, E., Boffa, V., Savarino, P., Perrone, D. G., Montoneri, C., Mendichi, R., et al. (2010). Behaviour and properties in aqueous solution of bio-polymers isolated from urban refuse. Biomacromolecules, 11, 3036–3042.

    Article  CAS  Google Scholar 

  24. Boffa, V., Perrone, D. G., Montoneri, E., Magnacca, G., Bertinetti, L., Garlasco, L., & Mendichi, R. (2010). A waste derived biosurfactant for preparation of templated silica powders. ChemSusChem, 3, 445–452.

    Article  CAS  Google Scholar 

  25. Carlos, L., Cipollone, M., Soria, D. B., Sergio Moreno, M., Ogilby, P. R., García Einschlag, F. S., & Mártire, D. O. (2012). The effect of humic acid binding to magnetite nanoparticles on the photogeneration of reactive oxygen species. Separation and Purification Technology, 91, 23–29.

    Article  CAS  Google Scholar 

  26. Magnacca, G., Allera, A., Montoneri, E., Celi, L., Benito, D. E., Gagliardi, L. G., et al. (2014). ACS Sustainable Chemistry & Engineering, 2, 1518–1524.

    Article  CAS  Google Scholar 

  27. Silva, A. R., Wilson, K., Clark, J. H., & Freire, C. (2006). Covalent attachment of chiral manganese(III) salen complexes onto functionalised hexagonal mesoporous silica and application to the asymmetric epoxidation of alkenes. Microporous and Mesoporous Materials, 91, 128–138.

    Article  CAS  Google Scholar 

  28. Testa, M. L., Tummino, M. L., Agostini, S., Avetta, P., Deganello, F., Montoneri, E., Magnacca, G., Bianco Prevot, A. Synthesis, characterization and environmental application of silicas modified with waste-derived photoactive substances. Submitted to Chemical Engineering Journal.

    Google Scholar 

  29. Magnacca, G., Laurenti, E., Vigna, E., Franzoso, F., Tomasso, L., Montoneri, E., & Boffa, V. (2012). Refuse derived bio-organics and immobilizer soybean peroxidase for green chemical technology. Process Biochemistry, 47, 2025–2031.

    Article  CAS  Google Scholar 

  30. Knechtel, R. (2005). Glass frit bonding: an universal technology for wafer level encapsulation and packaging. Microsystem Technologies, 12, 63–68.

    Article  CAS  Google Scholar 

  31. Lupasteanu, A. M., Laurenti, E., Magnacca, G., & Montoneri, E. (2012). New monolith configuration for the immobilization of lipase from Candida antarctica. Environment Engineering and Management Journal, 11, 2023–2028.

    CAS  Google Scholar 

  32. Deganello, F., Marcì, G., & Deganello, G. (2009). Citrate–nitrate auto-combustion synthesis of perovskite-type nanopowders: A systematic approach. Journal of the European Ceramic Society, 29, 439–450.

    Article  CAS  Google Scholar 

  33. Deganello, F., Tummino, M. L., Calabrese, C., Testa, M. L., Avetta, P., Fabbri, D., Bianco Prevot, A., Montoneri, E., Magnacca, G. (2014). New eco-friendly LaFeO3 material prepared from urban wastes New Journal of Chemistry, 2014. doi:10.1039/C4NJ01279H.

  34. Magnacca, G., Spezzati, G., Deganello, F., & Testa, M. L. (2013). A new in situ methodology for the quantification of the oxygen storage potential in perovskite-type materials. RSC Advances, 3, 26352–26360.

    Article  CAS  Google Scholar 

  35. Jabariyan, S., & Zanjanchi, M. A. (2012). A simple and fast sonication procedure to remove surfactant templates from mesoporous MCM-41. Ultrasonics Sonochemistry, 19, 1087–1093.

    Article  CAS  Google Scholar 

  36. Boffa, V., Perrone, D. G., Magnacca, G., & Montoneri, E. (2014). Role of a waste-derived biosurfactant in the sol-gel synthesis of nanocrystalline titanium dioxide. Ceramic International, 40, 12161–12169.

    Article  CAS  Google Scholar 

  37. He, W., Cui, J., Yue, Y., Zhang, X., Xia, X., Liu, H., & Lui, S. (2011). High-performance TiO2 from Baker’s yeast. Journal of Colloid and Interface Science, 354, 109–115.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Gonzalez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Magnacca, G., Laurenti, E., Gonzalez, M.C. (2015). Effect of Humic Substances and Bioorganic Substrates from Urban Wastes in Nanostructured Materials Applications and Synthesis. In: Arques, A., Bianco Prevot, A. (eds) Soluble Bio-based Substances Isolated From Urban Wastes. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-14744-4_4

Download citation

Publish with us

Policies and ethics