Skip to main content

SBO in Water Detoxification: Photo-Fenton Processes at Mild Conditions

  • Chapter
  • First Online:
Soluble Bio-based Substances Isolated From Urban Wastes

Part of the book series: SpringerBriefs in Molecular Science ((GREENCHEMIST))

Abstract

The implementation of a photo-Fenton process at mild acidic conditions is a potential environmental application for SBOs. The Fenton reagent (sacrificial amounts of hydrogen peroxide and catalytic iron salts) has been demonstrated as an efficient method for the removal of toxic xenobiotics that is enhanced upon irradiation; sunlight can be used for this purpose. In order to avoid precipitation of iron at pH above 3, several strategies have been tested. One of them involves formation of photoactive iron complexes. Humic substances have been employed for this purpose, due to their ability to complex iron. Because of its similar chemical properties, SBO are candidates for this purpose. Experiments carried out with different pollutants have shown that SBO are not good photocatalysts because of the strong screen effect associated to their color, while they are useful to drive a photo-Fenton at milder pH, as they are good complexing agents for iron. Döehlert matrixes have been employed to determine that the pH range for efficient photo-Fenton can be extended to values of ca. 5 and that optimal SBO concentration is approximately 20 mg/L. Finally, SBO have demonstrated to be non toxic, scarcely biodegradable and relatively resistant to oxidizing conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oller, I., Malato, S., & Sánchez-Pérez, J. A. (2011). Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review. Science of the Total Environment, 409(4141), 4146.

    Google Scholar 

  2. Legrini, O., Oliveros, E., & Braun, A. M. (1994). Photochemical processes for water treatment. Chemical Reviews, 93(671), 698.

    Google Scholar 

  3. Malato, S., Blanco, J., Vidal, A., & Richter, C. (2002). Photocatalysis with solar energy at a pilot-plant scale: An overview. Applied Catalysis B: Environmental, 37, 1–15.

    Article  CAS  Google Scholar 

  4. Malato, S., Fernández-Ibáñez, P., Maldonado, M. I., Blanco, J., & Gernjak, W. (2009). Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catalysis Today, 147, 1–59.

    Article  CAS  Google Scholar 

  5. Gaya, U. I., & Abdullah, A. H. (2008). Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 9, 1–12.

    Article  CAS  Google Scholar 

  6. Marín, M. L., Arques, A., Santos-Juanes, L., Amat, A. M., & Miranda, M. A. (2012). Organic photocatalysis for the oxidation of pollutants and model compounds. Chemical Reviews, 112, 1710–1750.

    Article  Google Scholar 

  7. Pignatello, J. J., Oliveros, E., & Mackay, A. (2006). Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Critical Reviews in Environmental Science and Technology, 36, 1–84.

    Article  CAS  Google Scholar 

  8. Klamerth, N., Rizzo, L., Malato, S., Maldonado, M. I., Agüera, A., & Fernández-Alba, A. (2010). Degradation of fifteen emerging contaminants at 1 μg L−1 initial concentrations by mild solar photo-Fenton in MWTP effluents. Water Research, 44, 545–554.

    Article  CAS  Google Scholar 

  9. Bernabeu, A., Vercher, R. F., Santos-Juanes, L., Simón, P. J., Lardín, C., Martínez, M. A., et al. (2011). Solar photocatalysis as a tertiary treatment to remove emerging pollutants from wastewater treatment plant effluents. Catalysis Today, 161, 233–240.

    Article  Google Scholar 

  10. Bernabeu, A., Palacios, S., Vicente, R., Vercher, R. F., Malato, S., Arques, A., & Amat, A. M. (2012). Solar photo-Fenton at mild conditions to treat a mixture of six emerging pollutants. Chemical Engineering Journal, 198–199, 65–72.

    Article  Google Scholar 

  11. Nie, J., Hu, C., Qu, J., Zhou, L., & Hu, X. (2007). Photoassisted degradation of azo dyes over FexH2x-3/Fe0 in the presence of H2O2 at neutral values. Environmental Science and Technology, 41, 4715–4719.

    Article  CAS  Google Scholar 

  12. Fukuchi, S., Nishimoto, R., Fukushima, M., & Zhu, Q. (2014). Effects of reducing agents on the degradation of 2,4,6-tribromophenol in a heterogeneous Fenton-like system with an iron-loaded natural zeolite. Applied Catalysis B: Environmental, 147, 411–419.

    Article  CAS  Google Scholar 

  13. Mazille, F., Schoettl, T., Klamerth, N., Malato, S., & Pulgarin, C. (2010). Field solar degradation of pesticides and emerging water contaminants mediated by polymer films containing titanium and iron oxide with synergistic heterogeneous photocatalytic activity at neutral pH. Water Research, 44, 3029–3038.

    Article  CAS  Google Scholar 

  14. Monteagudo, J. M., Durán, A. M., & López-Almodóvar, C. (2008). Homogeneous ferrioxa-late-assisted solar photo-Fenton degradation of Orange II aqueous solutions. Applied Catalysis B: Environmental, 83, 46–55.

    Article  CAS  Google Scholar 

  15. Hong, J., Lu, S., Zhang, C., Qi, S., & Wang, Y. (2011). Removal of Rhodamine B under visible irradiation in the presence of Fe0, H2O2, citrate and aeration at circumneutral pH. Chemosphere, 84, 1542–1547.

    Article  CAS  Google Scholar 

  16. Silva, M. R. A., Trovó, A. G., & Nogueira, R. F. P. (2007). Degradation of the herbicide tebuthiuron using solar photo-Fenton process and ferric citrate complex at circumneutral pH. Journal of Photochemistry and Photobiology A: Chemistry, 191, 187–192.

    Article  CAS  Google Scholar 

  17. Huang, W., Brigante, M., Wu, F., Hanna, K., & Mailhot, G. (2013). Effect of ethylenediamine-N, N’-disuccinic acid on Fenton and photo Fenton processes using goethite as an iron source: Optimization of parameters for bisphenol A degradation. Environmental Science and Pollution Research, 20, 39–50.

    Article  CAS  Google Scholar 

  18. Klamerth, N., Malato, S., Agüera, A., & Fernández-Alba, A. R. (2013). Photo-Fenton and modified photo-Fenton at neutral pH for the treatment of emerging contaminants in wastewater treatment plant effluents: A comparison. Water Research, 47, 833–840.

    Article  CAS  Google Scholar 

  19. De Luca, A., Dantas, R. F., & Esplugas, S. (2014). Assessment of iron chelates efficiency for photo-Fenton at neutral pH. Water Research, 61, 232–242.

    Article  Google Scholar 

  20. Hug, S. J., & Leupin, O. (2003). Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction. Environmental Science and Technology, 37, 2734–2742.

    Article  CAS  Google Scholar 

  21. Chin, Y. P., Aiken, G., & O’Loughlin, E. (1994). Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances. Environmental Science and Technology, 28, 1853–1858.

    Article  CAS  Google Scholar 

  22. Mikutta, C., & Kretzschmar, R. (2011). Spectroscopic evidence for ternary complex formation between arsenate and ferric iron complexes of humic substances. Environmental Science and Technology, 45, 9550–9557.

    Article  CAS  Google Scholar 

  23. Lipczynska-Kochany, E., & Kochany, J. (2008). Effect of humic substances on the Fenton treatment of wastewater at acidic and neutral pH. Chemosphere, 73, 745–750.

    Article  CAS  Google Scholar 

  24. Georgi, A., Schierz, A., Trommler, U., Horwitz, C. P., Collins, T. J., & Kopinke, F. D. (2007). Humic modified Fenton reagent for enhancement of the working pH range. Applied Catalysis B: Environmental, 72, 26–36.

    Article  CAS  Google Scholar 

  25. Fan, C., Tsui, L., & Liao, M. (2011). Parathion degradation and its intermediate formation by Fenton process in neutral environment. Chemosphere, 82, 229–236.

    Article  CAS  Google Scholar 

  26. Klamerth, N., Malato, S., Maldonado, M. I., Agüera, A., & Fernández-Alba, A. R. (2011). Modified photo-Fenton for degradation of emerging contaminants in municipal wastewater effluents. Catalysis Today, 161, 241–246.

    Article  CAS  Google Scholar 

  27. Khan, J. A., He, X., Khan, H. M., Shah, N. S., & Dionysiou, D. D. (2013). Oxidative degradation of atrazine in aqueous solution by UV/H2O2/Fe2+ and UV/HSO5−/Fe2+ processes: A comparative study. Chemical Engineering Journal, 218, 376–383.

    Article  CAS  Google Scholar 

  28. Vermilyea, W., & Voelker, B. M. (2009). Photo-Fenton reaction at near neutral pH. Environmental Science and Technology, 43, 6927–6933.

    Article  CAS  Google Scholar 

  29. Gomis, J., Vercher, R. F., Amat, A. M., Mártire, D. O., González, M. C., Bianco Prevot, A., et al. (2013). Application of soluble bio-organic substances (SBO) as photocatalysts for wastewater treatment: Sensitizing effect and photo-Fenton-like process. Catalysis Today, 209, 176–180.

    Article  CAS  Google Scholar 

  30. Gomis, J., Bianco Prevot, A., Montoneri, E., González, M. C., Amat, A. M., Mártire, D. O., et al. (2014). Waste sourced bio-based substances for solar-driven wastewater remediation: Photodegradation of emerging pollutants. Chemical Engineering Journal, 235, 236–243.

    Article  CAS  Google Scholar 

  31. Ferreira, S. L. C., dos Santos, W. N. L., Quintella, C. M., Neto, B. B., & Bosque-Sendra, J. M. (2004). Doehler matrix: A chemometric tool for analytical chemistry. Review Talanta, 63, 1061–1067.

    Article  CAS  Google Scholar 

  32. Gomis, J., Carlos, L., Bianco-Prevot, A., Teixeira, A. C. S. C., Mora, M., Amat, A. M., et al. (2014). Bio-based substances from urban waste as auxiliaries for solarphoto-Fenton treatment under mild conditions: Optimization of operational variables. Catalysis Today. doi:10.1016/j.cattod.2014.03.034.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Amat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Gomis, J., Mora, M., Vicente, R., Vercher, R., Amat, A.M., Arques, A. (2015). SBO in Water Detoxification: Photo-Fenton Processes at Mild Conditions. In: Arques, A., Bianco Prevot, A. (eds) Soluble Bio-based Substances Isolated From Urban Wastes. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-14744-4_3

Download citation

Publish with us

Policies and ethics