Skip to main content

Photogeneration of Reactive Oxygen Species by SBO and Application in Waste-Water Treatment

  • Chapter
  • First Online:
Soluble Bio-based Substances Isolated From Urban Wastes

Part of the book series: SpringerBriefs in Molecular Science ((GREENCHEMIST))

  • 366 Accesses

Abstract

Soluble bio-based substances (SBO) extracted from urban bio-wastes have similar chemical properties to humic substances (HS) present in natural waters and soils. Therefore, SBO are also expected to have photochemical properties similar to HS. In this chapter, a summary of the photochemistry of HS is presented along with the recent advances related to the photogeneration of reactive species upon irradiation of aqueous solutions of SBO and some examples of pollutant degradation photo-induced by SBO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Montoneri, E., Mainero, D., Boffa, V., Perrone, D. G., & Montoneri, C. (2011). Biochemenergy: A project to turn an urban wastes treatment plant into biorefinery for the production of energy, chemicals and consumer’s products with friendly environmental impact. International Journal of Global Environmental Issues, 11, 170–196.

    Article  Google Scholar 

  2. Sutton, R., & Sposito, G. (2005). Molecular structure in soil humic substances: The new view. Environmental Science and Technology, 39, 9009–9015.

    Article  CAS  Google Scholar 

  3. Kelleher, B. P., & Simpson, A. J. (2006). Humic substances in soils: Are they really chemically distinct? Environmental Science and Technology, 40, 4605–4611.

    Article  CAS  Google Scholar 

  4. Quagliotto, P., Montoneri, E., Tambone, F., Adani, F., Gobetto, R., & Viscardi, G. (2006). Chemicals from wastes: Compost-derived humic acid-like matter as surfactant. Environmental Science and Technology, 40, 1686–1692.

    Article  CAS  Google Scholar 

  5. Korshin, G. V., Li, C.-W., & Benjamin, M. M. (1997). Monitoring the properties of natural organic matter through UV spectroscopy: A consistent theory. Water Research, 31, 1787–1795.

    Article  CAS  Google Scholar 

  6. Senesi, N., Miano, T. M., Provenzano, M. R., & Brunetti, G. (1989). Spectroscopic and compositional comparative characterization of I.H.S.S. reference and standard fulvic and humic acids of various origin. Science of the Total Environment, 81–82, 143–156.

    Article  Google Scholar 

  7. Coble, P. G. (2007). Marine optical biogeochemistry: The chemistry of ocean color. Chemical Reviews, 107, 402–418.

    Article  CAS  Google Scholar 

  8. Chen, Y., Senesi, N., & Schnitzer, M. (1977). Information provided on humic substances by E4/E6 ratios1. Soil Science Society of America Journal, 41, 352–358.

    Article  CAS  Google Scholar 

  9. Lguirati, A., Ait Baddi, G., El Mousadik, A., Gilard, V., Revel, J. C., & Hafidi, M. (2005). Analysis of humic acids from aerated and non-aerated urban landfill composts. International Biodeterioration and Biodegradation, 56, 8–16.

    Article  CAS  Google Scholar 

  10. Ma, J., Del Vecchio, R., Golanoski, K. S., Boyle, E. S., & Blough, N. V. (2010). Optical properties of humic substances and CDOM: Effects of borohydride reduction. Environmental Science and Technology, 44, 5395–5402.

    Article  CAS  Google Scholar 

  11. Sharpless, C. M., & Blough, N. V. (2014). The importance of charge-transfer interactions in determining chromophoric dissolved organic matter (CDOM) optical and photochemical properties. Environmental Science: Processes & Impacts, 16, 654–671.

    CAS  Google Scholar 

  12. Thomas-Smith, T. E., & Blough, N. V. (2001). Photoproduction of hydrated electron from constituents of natural waters. Environmental Science and Technology, 35, 2721–2726.

    Article  CAS  Google Scholar 

  13. Zepp, R. G., Braun, A. M., Hoigne, J., & Leenheer, J. A. (1987). Photoproduction of hydrated electrons from natural organic solutes in aquatic environments. Environmental Science and Technology, 21, 485–490.

    Article  CAS  Google Scholar 

  14. Wang, W., Zafiriou, O. C., Chan, Iu Y, Zepp, R. G., & Blough, N. V. (2007). Production of hydrated electrons from photoionization of dissolved organic matter in natural waters. Environmental Science and Technology, 41, 1601–1607.

    Article  CAS  Google Scholar 

  15. Grebel, J. E., Pignatello, J. J., & Mitch, W. A. (2011). Sorbic acid as a quantitative probe for the formation, scavenging and steady-state concentrations of the triplet-excited state of organic compounds. Water Research, 45, 6535–6544.

    Article  CAS  Google Scholar 

  16. Bruccoleri, A., Pant, B. C., Sharma, D. K., & Langford, C. H. (1993). Evaluation of primary photoproduct quantum yields in fulvic acid. Environmental Science and Technology, 27, 889–894.

    Article  CAS  Google Scholar 

  17. Zepp, R. G., Schlotzhauer, P. F., & Sink, R. M. (1985). Photosensitized transformations involving electronic energy transfer in natural waters: Role of humic substances. Environmental Science and Technology, 19, 74–81.

    Article  Google Scholar 

  18. Paul, A., Hackbarth, S., Vogt, R. D., Röder, B., Burnison, B. K., & Steinberg, C. E. W. (2004). Photogeneration of singlet oxygen by humic substances: Comparison of humic substances of aquatic and terrestrial origin. Photochemical & Photobiological Sciences, 3, 273–280.

    Article  CAS  Google Scholar 

  19. Dalrymple, R. M., Carfagno, A. K., & Sharpless, C. M. (2010). Correlations between dissolved organic matter optical properties and quantum yields of singlet oxygen and hydrogen peroxide. Environmental Science and Technology, 44, 5824–5829.

    Article  CAS  Google Scholar 

  20. Garg, S., Rose, A. L., & Waite, T. D. (2011). Photochemical production of superoxide and hydrogen peroxide from natural organic matter. Geochimica et Cosmochimica Acta, 75, 4310–4320.

    Article  CAS  Google Scholar 

  21. Page, S. E., Arnold, W. A., & McNeill, K. (2011). Assessing the contribution of free hydroxyl radical in organic matter-sensitized photohydroxylation reactions. Environmental Science and Technology, 45, 2818–2825.

    Article  CAS  Google Scholar 

  22. Page, S. E., Sander, M., Arnold, W. A., & McNeill, K. (2012). Hydroxyl radical formation upon oxidation of reduced humic acids by oxygen in the dark. Environmental Science and Technology, 46, 1590–1597.

    Article  CAS  Google Scholar 

  23. Rosario-Ortiz, F. L., Mezyk, S. P., Doud, D. F. R., & Snyder, S. A. (2008). Quantitative correlation of absolute hydroxyl radical rate constants with non-isolated effluent organic matter bulk properties in water. Environmental Science and Technology, 42, 5924–5930.

    Article  CAS  Google Scholar 

  24. Miller, C. J., Rose, A. L., & Waite, T. D. (2012). Hydroxyl radical production by H2O2-mediated oxidation of Fe(II) complexed by Suwannee river fulvic acid under circumneutral freshwater conditions. Environmental Science and Technology, 47, 829–835.

    Article  Google Scholar 

  25. Scully, N. M., Cooper, W. J., & Tranvik, L. J. (2003). Photochemical effects on microbial activity in natural waters: The interaction of reactive oxygen species and dissolved organic matter. FEMS Microbiology Ecology, 46, 353–357.

    Article  CAS  Google Scholar 

  26. Bosio, G. N., David Gara, P. M., Einschlag, F. S., Gonzalez, M. C., Del Panno, M. T., & Martire, D. O. (2008). Photodegradation of soil organic matter and its effect on gram-negative bacterial growth. Photochemistry and Photobiology, 84, 1126–1132.

    Article  CAS  Google Scholar 

  27. Aguer, J. P., Richard, C., & Andreux, F. (1997). Comparison of the photoinductive properties of commercial, synthetic and soil-extracted humic substances. Journal of Photochemistry and Photobiology A: Chemistry, 103, 163–168.

    Article  CAS  Google Scholar 

  28. Halladja, S., ter Halle, A., Aguer, J.-P., Boulkamh, A., & Richard, C. (2007). Inhibition of humic substances mediated photooxygenation of furfuryl alcohol by 2,4,6-trimethylphenol. Evidence for reactivity of the phenol with humic triplet excited states. Environmental Science and Technology, 41, 6066–6073.

    Article  CAS  Google Scholar 

  29. Bianco Prevot, A., Avetta, P., Fabbri, D., Laurenti, E., Marchis, T., Perrone, D. G., et al. (2011). Waste-derived bioorganic substances for light-induced generation of reactive oxygenated species. ChemSusChem, 4, 85–90.

    Article  CAS  Google Scholar 

  30. Avetta, P., Bianco, P. A., Fabbri, D., Montoneri, E., & Tomasso, L. (2012). Photodegradation of naphthalene sulfonic compounds in the presence of a bio-waste derived sensitizer. Chemical Engineering Journal, 197, 193–198.

    Article  CAS  Google Scholar 

  31. Bianco Prevot, A., Fabbri, D., Pramauro, E., Baiocchi, C., Medana, C., Montoneri, E., & Boffa, V. (2010). Sensitizing effect of bio-based chemicals from urban wastes on the photodegradation of azo-dyes. Journal of Photochemistry and Photobiology A: Chemistry, 209, 224–231.

    Article  CAS  Google Scholar 

  32. Gomis, J., Vercher, R. F., Amat, A. M., Mártire, D. O., González, M. C., Bianco Prevot, A., et al. (2013). Application of soluble bio-organic substances (SBO) as photocatalysts for wastewater treatment: Sensitizing effect and photo-Fenton-like process. Catalysis Today, 209, 176–180.

    Article  CAS  Google Scholar 

  33. Vione, D., Maurino, V., Minero, C., & Pelizzetti, E. (2001). Phenol photonitration upon UV irradiation of nitrite in aqueous solution I: Effects of oxygen and 2-propanol. Chemosphere, 45, 893–902.

    Article  CAS  Google Scholar 

  34. Avetta, P., Bella, F., Bianco, A. P., Laurenti, E., Montoneri, E., Arques, A., & Carlos, L. (2013). Waste cleaning waste: Photodegradation of monochlorophenols in the presence of waste-derived photosensitizer. ACS Sustainable Chemistry & Engineering, 1, 1545–1550.

    Article  CAS  Google Scholar 

  35. Tratnyek, P. G., & Hoigne, J. (1991). Oxidation of substituted phenols in the environment: A QSAR analysis of rate constants for reaction with singlet oxygen. Environmental Science and Technology, 25, 1596–1604.

    Article  CAS  Google Scholar 

  36. Carlos, L., Mártire, D. O., Gonzalez, M. C., Gomis, J., Bernabeu, A., Amat, A. M., & Arques, A. (2012). Photochemical fate of a mixture of emerging pollutants in the presence of humic substances. Water Research, 46, 4732–4740.

    Article  CAS  Google Scholar 

  37. Gomis, J., Bianco, A. P., Montoneri, E., González, M. C., Amat, A. M., Mártire, D. O., et al. (2014). Waste sourced bio-based substances for solar-driven wastewater remediation: Photodegradation of emerging pollutants. Chemical Engineering Journal, 235, 236–243.

    Article  CAS  Google Scholar 

  38. García Einschlag, F. S., Carlos, L., Capparelli, A. L., Braun, A. M., & Oliveros, E. (2002). Degradation of nitroaromatic compounds by the UV-H2O2 process using polychromatic radiation sources. Photochemical & Photobiological Sciences, 1, 520–525.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano Carlos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Carlos, L., Mártire, D.O. (2015). Photogeneration of Reactive Oxygen Species by SBO and Application in Waste-Water Treatment. In: Arques, A., Bianco Prevot, A. (eds) Soluble Bio-based Substances Isolated From Urban Wastes. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-14744-4_2

Download citation

Publish with us

Policies and ethics