Skip to main content

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

  • 621 Accesses

Abstract

SPICE simulations are introduced by pointing out their benefits and describing the basic simulation principle. A 3-layer 2-dimensional SPICE model of a PV device is designed in three levels: microcell, cell and module level. The purpose and design of each level is explained and simplification guidelines are proposed. As the smallest homogeneous part of the model, different representations of the microcell are presented, and ways to determine the initial parameters are discussed. The simulation procedure is described separately for different measuring techniques, with emphasis on luminescence, current density map transformation to luminescence and iterative procedure for parameter extraction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nagel LW, Donald OP (1973) SPICE: simulation program with integrated circuit emphasis. Electronics Research Laboratory, College of Engineering, University of California, California

    Google Scholar 

  2. Castañer L, Silvestre S (2002) Modelling photovoltaic systems using PSpice. Wiley, Chichester

    Book  Google Scholar 

  3. Bokalič M, Raguse J, Sites JR, Topič M (2013) Analysis of electroluminescence images in small-area circular CdTe solar cells. J Appl Phys 114:123102. doi:10.1063/1.4820392

    Article  Google Scholar 

  4. Koishiyev GT, Sites JR (2009) Impact of sheet resistance on 2-D modeling of thin-film solar cells. Sol Energ Mat Sol Cells 93:350–354. doi:10.1016/j.solmat.2008.11.015

    Article  Google Scholar 

  5. Brecl K, Topič M (2008) Simulation of losses in thin-film silicon modules for different configurations and front contacts. Prog Photovolt Res Appl 16:479–488. doi:10.1002/pip.831

    Article  Google Scholar 

  6. Koishiyev GT (2010) Analysis of impact of non-uniformities on thin-film solar cells and modules with 2-D simulations. PhD thesis, Colorado State University

    Google Scholar 

  7. Pieters BE (2014) A free and open source finite-difference simulation tool for solar modules. In: Proceedings of IEEE 40th photovoltaic specialist conference (PVSC), 2014, pp 1370–1375

    Google Scholar 

  8. Pieters BE (2011) Spatial modeling of thin-film solar modules using the network simulation method and SPICE. IEEE J Photovolt 1:93–98. doi:10.1109/JPHOTOV.2011.2160524

    Article  Google Scholar 

  9. Vorasayan P, Betts TR, Gottschalg R (2011) Spatially distributed model for the analysis of laser beam induced current (LBIC) measurements of thin film silicon solar modules. Sol Energ Mat Sol Cells 95:111–114. doi:10.1016/j.solmat.2010.02.020

    Article  Google Scholar 

  10. Kasemann M, Grote D, Walter B, Kwapil W, Trupke T, Augarten Y, Bardos RA, Pink E, Abbott MD, Warta W (2008) Luminescence imaging for the detection of shunts on silicon solar cells. Prog Photovolt Res Appl 16:297–305. doi:10.1002/pip.812

    Article  Google Scholar 

  11. Ott T, Runai FR, Schwäble F, Walter T (2012) 2D network simulation and luminescence characterization of Cu(In, Ga)Se2 thin film modules. Prog Photovolt Res Appl 20:600–605. doi:10.1002/pip.2171

    Article  Google Scholar 

  12. Nesswetter H, Lugli P, Bett AW, Zimmermann CG (2013) Electroluminescence and photoluminescence characterization of multijunction solar cells. IEEE J Photovolt 3:353–358. doi:10.1109/JPHOTOV.2012.2213801

    Article  Google Scholar 

  13. Brecl K, Topič M, Smole F (2005) A detailed study of monolithic contacts and electrical losses in a large-area thin-film module. Prog Photovolt Res Appl 13:297–310. doi:10.1002/pip.589

    Article  Google Scholar 

  14. Haug H, Kimmerle A, Greulich J, Wolf A, Stensrud Marstein E (2014) Implementation of Fermi–Dirac statistics and advanced models in PC1D for precise simulations of silicon solar cells. Sol Energ Mat Sol Cells. doi:10.1016/j.solmat.2014.06.021

  15. Isabella O, Smets AHM, Zeman M (2014) Thin-film silicon-based quadruple junction solar cells approaching 20 % conversion efficiency. Sol Energ Mat Sol Cells 129:82–89. doi:10.1016/j.solmat.2014.03.021

    Article  Google Scholar 

  16. Filipič M, Holman ZC, Smole F, Wolf SD, Ballif C, Topič M (2013) Analysis of lateral transport through the inversion layer in amorphous silicon/crystalline silicon heterojunction solar cells. J Appl Phys 114:074504. doi:10.1063/1.4818709

    Article  Google Scholar 

  17. Sentaurus Process (2014) Synopsys. http://www.synopsys.com/Tools/TCAD/ProcessSimulation/Pages/SentaurusProcess.aspx. Accessed 26 Aug 2014

  18. Bokalič M, Brecl K, Raguse J, Zaunbrecher K, Sites JR, Topič M (2012) SPICE simulations of circumstances at monolithic contacts of CdTe modules supported by electroluminescent measurements. In: 27th EUPVSEC Proceedings. Frankfurt, Germany, pp 2222–2225

    Google Scholar 

  19. Hočevar M, Krašovec UO, Bokalič M, Topič M, Veurman W, Brandt H, Hinsch A (2013) Sol-gel based TiO2 paste applied in screen-printed dye-sensitized solar cells and modules. J Ind Eng Chem 19:1464–1469. doi:10.1016/j.jiec.2012.12.046

    Article  Google Scholar 

  20. Rau U (2007) Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells. Phys Rev B 76:085303. doi:10.1103/PhysRevB.76.085303

    Article  Google Scholar 

  21. Price KJ, Vasko A, Gorrelland L, Compaan AD (2003) Temperature-dependent electroluminescence from CdTe/CdS solar cells. MRS Online Proceedings Library 763:195–200

    Google Scholar 

  22. Fuyuki T, Kondo H, Kaji Y, Ogane A, Takahashi Y (2007) Analytic findings in the electroluminescence characterization of crystalline silicon solar cells. J Appl Phys 101:023711–023711–023711–023715. doi:10.1063/1.2431075

    Article  Google Scholar 

  23. Wen-Bo X, Wei-Qing L, Xing-Dao H (2013) Analysis of electron recombination in dye sensitized solar cells based on the forward bias dependence of dark current and electroluminescence characterization. Chin Phys Lett 30:108801. doi:10.1088/0256-307X/30/10/108801

    Article  Google Scholar 

  24. Bokalič M, Sites JR, Topič M (2012) Spice simulations of solar cells’ electroluminescence mapping. In: Proceedings of 48th international conference on microelectronics, devices and materials and the workshop on ceramic microsystems, MIDEM 2012. Otočec, Slovenija, pp 109–114

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matevž Bokalič .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Bokalič, M., Topič, M. (2015). SPICE Model and Simulations. In: Spatially Resolved Characterization in Thin-Film Photovoltaics. SpringerBriefs in Electrical and Computer Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-14651-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14651-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14650-8

  • Online ISBN: 978-3-319-14651-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics