Skip to main content

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

  • 575 Accesses

Abstract

Thin-film photovoltaics is briefly introduced by outlining different technologies and stating their record efficiencies. The main loss mechanisms, design procedure and important challenges in up-scaling of these devices are presented. A need for spatially resolved characterisation in research and development is justified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jäger-Waldau A (2013) PV status report 2013. European Commission, Joint Research Centre, Institute for Energy and Transport

    Google Scholar 

  2. Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED (2014) Solar cell efficiency tables (version 44). Prog Photovolt Res Appl 22:701–710. doi:10.1002/pip.2525

    Article  Google Scholar 

  3. NREL best research-cell efficiencies. http://www.nrel.gov/ncpv/images/efficiency_chart.jpg. Accessed 24 Oct 2014

  4. Luque A, Hegedus S (2011) Handbook of photovoltaic science and engineering, 2nd edn. Wiley, New York

    Google Scholar 

  5. Meillaud F, Shah A, Droz C, Vallat-Sauvain E, Miazza C (2006) Efficiency limits for single-junction and tandem solar cells. Sol Energ Mat Sol Cells 90:2952–2959. doi:10.1016/j.solmat.2006.06.002

    Article  Google Scholar 

  6. Shah AV, Meier J, Vallat-Sauvain E, Wyrsch N, Kroll U, Droz C, Graf U (2003) Material and solar cell research in microcrystalline silicon. Sol Energ Mat Sol Cells 78:469–491. doi:10.1016/S0927-0248(02)00448-8

    Article  Google Scholar 

  7. Sites JR, Granata JE, Hiltner JF (1998) Losses due to polycrystallinity in thin-film solar cells. Sol Energ Mat Sol Cells 55:43–50. doi:10.1016/S0927-0248(98)00045-2

    Article  Google Scholar 

  8. Sites JR (2003) Quantification of losses in thin-film polycrystalline solar cells. Sol Energ Mat Sol Cells 75:243–251. doi:10.1016/S0927-0248(02)00166-6

    Article  Google Scholar 

  9. Sites JR (2009) Impact of grain boundaries on thin-film photovoltaics. Informacije MIDEM 39:220–222

    Google Scholar 

  10. Snaith HJ (2010) Estimating the maximum attainable efficiency in dye-sensitized solar cells. Adv Funct Mater 20:13–19. doi:10.1002/adfm.200901476

    Article  Google Scholar 

  11. Hardin BE, Snaith HJ, McGehee MD (2012) The renaissance of dye-sensitized solar cells. Nat Photonics 6:162–169. doi:10.1038/nphoton.2012.22

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matevž Bokalič .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Bokalič, M., Topič, M. (2015). Introduction. In: Spatially Resolved Characterization in Thin-Film Photovoltaics. SpringerBriefs in Electrical and Computer Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-14651-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14651-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14650-8

  • Online ISBN: 978-3-319-14651-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics