Skip to main content

Algebraization of Maximal Rank Webs

  • Chapter
  • First Online:
An Invitation to Web Geometry

Part of the book series: IMPA Monographs ((IMPA,volume 2))

  • 905 Accesses

Abstract

This chapter is devoted to the following result.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Grassmannian \(\mathrm{Grass}(V,r)\) is isomorphic to the projectivization of the image of the multilinear map

    $$\displaystyle\begin{array}{rcl} \varphi: V ^{r}& --\rightarrow &\bigwedge ^{r}V \, {}\\ (v_{1},\ldots,v_{r})& \mapsto & v_{1} \wedge \cdots \wedge v_{r}\,. {}\\ \end{array}$$

    The isomorphism is given of course by associating with any W ∈ Grass(V, r) the point \([\varphi (w_{1},\ldots,w_{r})] \in \mathbb{P}(\wedge ^{r}V )\) where w 1, , w r is an arbitrary basis of W. Clearly, \([\varphi (w_{1},\ldots,w_{r})]\) does not depend on the chosen basis. The induced map \(\mathrm{Grass}(V,r) \rightarrow \mathbb{P}\left (\wedge ^{r}V \right )\) is the so-called Plücker embedding of \(\mathrm{Grass}(V,r)\).

  2. 2.

    Here the abelian relations η (j) are seen as coordinate functions on \(\mathcal{A}_{2}(\mathcal{W})\), which is the same as thinking of them as elements of \(\mathcal{A}_{2}(\mathcal{W})^{{\ast}}\).

  3. 3.

    This is just the set of morphisms from \(\mathbb{P}^{1}\) to \(\mathbb{P}^{n}\) of degree kn − 1 which can be naturally identified with a Zariski open subset of \(\mathbb{P}\left (\mathbb{C}_{k-n-1}[s,t]^{\pi }\right )\).

Bibliography

  1. Andreotti, A.: Théorèmes de dépendance algébrique sur les espaces complexes pseudo-concaves. Bull. Soc. Math. France 91, 1–38 (1963). http://www.numdam.org/item?id=BSMF_1963__91__1_0

  2. Blaschke, W.: Über die Tangenten einer ebenen Kurve fünfter Klasse. Abh. Math. Hamburg Univ. 9, 313–317 (1933). Doi:10.1007/BF02940657

    Article  MathSciNet  Google Scholar 

  3. Bol, G.: Über ein bemerkenswertes Fünfgewebe in der Ebene. Abh. Math. Hamburg Univ. 11, 387–393 (1936). Doi:10.1007/bf02940735

    Article  MathSciNet  Google Scholar 

  4. Chern, S.-S., Griffiths, P.A.: Abel’s theorem and webs. Jahresberichte der Deutsch. Math.-Ver. 80, 13–110 (1978). http://eudml.org/doc/146681

  5. Chern, S.-S., Griffiths, P.A.: Corrections and addenda to our paper:“Abel’s theorem and webs”. Jahresberichte der Deutsch. Math.-Ver. 83, 78–83 (1981)

    MATH  MathSciNet  Google Scholar 

  6. Griffiths, P.A., Harris, J.: Principles of algebraic geometry. Pure and Applied Mathematics. Wiley-Interscience, New York (1978)

    MATH  Google Scholar 

  7. Harris, J.: A bound on the geometric genus of projective varieties. Ann. Sc. Norm. Super. 8, 35–68 (1981). http://www.numdam.org/item?id=ASNSP_1981_4_8_1_35_0

  8. Hartshorne, R.: Cohomological dimension of algebraic varieties. Ann. Math. 88, 403–450 (1968). Doi:10.2307/1970720

    Article  MATH  MathSciNet  Google Scholar 

  9. Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 52. Springer, New York (1977)

    Google Scholar 

  10. Poincaré, H.: Sur les surfaces de translation et les fonctions abéliennes. Bull. Soc. Math. France 29, 61–86 (1901)

    MATH  MathSciNet  Google Scholar 

  11. Trépreau, J.-M.: Algébrisation des Tissus de Codimension 1 – La généralisation d’un Théorème de Bol. In: Griffiths, P.A. (ed.) Inspired by Chern, Nankai Tracts in Mathematics, vol. 11, pp. 399–433. World Scientific, Singapore (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pereira, J.V., Pirio, L. (2015). Algebraization of Maximal Rank Webs. In: An Invitation to Web Geometry. IMPA Monographs, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-14562-4_5

Download citation

Publish with us

Policies and ethics