Skip to main content

The Converse to Abel’s Theorem

  • Chapter
  • First Online:
An Invitation to Web Geometry

Part of the book series: IMPA Monographs ((IMPA,volume 2))

  • 929 Accesses

Abstract

The main result of this chapter is a converse to Abel’s addition Theorem stated in Sect. 4.1. It ensures the algebraicity of local datum satisfying the hypotheses of Abel’s addition Theorem. Its first version was established by Sophus Lie in the context of double-translation surfaces. Lie’s arguments consisted in a tour-de-force analysis of an overdetermined system of PDEs. Later Poincaré introduced a geometrical method to handle the problem solved analytically by Lie. Poincaré’s approach was later revisited, and made more precise by Darboux, to whom the approach presented in Sect. 4.2 can be traced back. By the way, those willing to take for granted the validity of the converse of Abel’s Theorem can safely skip Sect. 4.2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Here and throughout in the proof of the converse of Abel’s Theorem, the notation (X, Y ) means the germ of the variety X along (or at) Y. One should think of open subsets of X, arbitrarily small among the ones containing Y.

  2. 2.

    Here and throughout, the convention about germs made in Sect. 1.1.1 is in use. If one wants to be more precise, then \(\mathcal{W}\) has to be thought as a web defined on an open subset U of \(\mathbb{C}^{n}\) containing the origin and \(F_{x}^{1}\mathcal{A}(\mathcal{W})\) is the filtration of the germ of \(\mathcal{W}\) at x.

  3. 3.

    This is the case if and only if \(\mathcal{W}\) has an abelian relation whose ith component is non-trivial.

  4. 4.

    Recall that the canonical map of the projective curve C is defined as

    $$\displaystyle\begin{array}{rcl} \kappa _{C}:\, C& --\rightarrow & \mathbb{P}H^{0}(C,\omega _{ C})^{{\ast}}\simeq \mathbb{P}^{g_{a}(C)-1} {}\\ x& \longmapsto & \mathbb{P}(\ker \{\omega \mapsto \omega (x)\})\,. {}\\ \end{array}$$
  5. 5.

    The Riemann’s theta function θ A of a polarized abelian variety \(A = \mathbb{C}^{g}/\Delta \) with \(\Delta = (I_{g},Z)\) (where \(Z \in M_{g}(\mathbb{C})\) is such that \(Z =\! ^{t}\!Z\) and Im Z > 0) is defined by \(\theta _{A}(z) =\sum _{m\in \mathbb{Z}^{g}}\exp \big(i\pi \langle m,Zm\rangle + 2i\pi \langle m,z\rangle \big)\) for all \(z \in \mathbb{C}^{g}\) (see [7, Chap. I]).

Bibliography

  1. Arbarello, E., Cornalba, M., Griffiths, P.A., Harris, J.: Geometry of Algebraic Curves, vol. I. Grundlehren der Mathematischen Wissenschaften, vol. 267. Springer, New York (1985)

    Google Scholar 

  2. Beauville, A.: Le problème de Schottky et la conjecture de Novikov. Séminaire Bourbaki, Vol. 1986/87. Astérisque No. 152–153, 101–112 (1987). http://eudml.org/doc/110074

  3. Blaschke, W., Bol, G.: Geometrie der Gewebe. Die Grundlehren der Math, vol. 49. Springer, Berlin (1938)

    Google Scholar 

  4. Fabre, B.: Nouvelles variations sur les théorèmes d’Abel et de Lie. Thèse de Doctorat de L’Université Paris VI, 2000. Available at http://tel.archives-ouvertes.fr/.

  5. Griffiths, P.A.: Variations on a theorem of Abel. Invent. Math. 35, 321–390 (1976). Doi:10.1007/BF01390145

    Article  MATH  MathSciNet  Google Scholar 

  6. Griffiths, P.A., Harris, J.: Principles of algebraic geometry. Pure and Applied Mathematics. Wiley-Interscience, New York (1978)

    MATH  Google Scholar 

  7. Harris, J.: A bound on the geometric genus of projective varieties. Ann. Sc. Norm. Super. 8, 35–68 (1981). http://www.numdam.org/item?id=ASNSP_1981_4_8_1_35_0

  8. Hénaut, A.: Caractérisation des tissus de \(\mathbb{C}^{2}\) dont le rang est maximal et qui sont linéarisables. Compos. Math. 94, 247–268 (1994). http://www.numdam.org/item?id=CM_1994__94_3_247_0

  9. Henkin, G., Passare, M.: Abelian differentials on singular varieties and variations on a theorem of Lie-Griffiths. Invent. Math. 135, 297–328 (1999). Doi:10.1007/s002220050287

    Article  MATH  MathSciNet  Google Scholar 

  10. Little, J.B.: Translation manifolds and the converse of Abel’s theorem. Compos. Math. 49, 147–171 (1983). http://www.numdam.org/item?id=CM_1983__49_2_147_0

  11. Mumford, D.: The Red Book Of Varieties And Schemes. Lecture Notes in Mathematics, vol. 1358, Springer, New York (1999)

    Google Scholar 

  12. Pirio, L: Équations fonctionnelles abéliennes et géométrie des tissus. Thèse de Doctorat de l’Université Paris VI (2004). Available electronically at http://tel.archives-ouvertes.fr.

  13. Weimann, M.: Trace et calcul résiduel: une nouvelle version du théorème d’Abel inverse, formes abéliennes. Ann. Fac. Sci. Toulouse Math. 16, 397–424 (2007). Doi:10.5802/afst.1154

    Article  MATH  MathSciNet  Google Scholar 

  14. Wirtinger, W.: Lie’s Translationmannigfaltigkeiten und das Abelsche Integrale. Monatsch. Math. Phys. 46, 384–431 (1938). Doi:10.1007/BF01792693

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pereira, J.V., Pirio, L. (2015). The Converse to Abel’s Theorem. In: An Invitation to Web Geometry. IMPA Monographs, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-14562-4_4

Download citation

Publish with us

Policies and ethics