Skip to main content

Abel’s Addition Theorem

  • Chapter
  • First Online:
An Invitation to Web Geometry

Part of the book series: IMPA Monographs ((IMPA,volume 2))

  • 963 Accesses

Abstract

So far, not many examples of abelian relations for webs appeared in this book. Besides the abelian relations for hexagonal 3-webs, the polynomial abelian relations for parallel webs (see Example 2.2.1), and the abelian relations for the planar quasi-parallel webs discussed in Example 2.2.4, which are by the way also polynomial, no other example was studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here \(\Omega _{\mathbb{C}(Y )}\) stands for the module of Kähler differentials over \(\mathbb{C}(Y )\): by definition, it is the \(\mathbb{C}(Y )\)-module spanned by elements of the form \(d\varphi\) for \(\varphi \in \mathbb{C}(Y )\) subjected to the following relations: dc = 0 for every \(c \in \mathbb{C}\); and \(d(\phi \varphi ) =\phi d\varphi +\varphi d\phi\) for every \(\phi,\varphi \in \mathbb{C}(Y )\), see [70, II.§8].

  2. 2.

    There is a subtlety here: a priori, [ω] is not intrinsically defined. According to [10], it is only defined up to the addition of a \(\overline{\partial }\)-closed current of type (1, 0) supported on the (finite) singular set of X (cf. [49] for a non-trivial example). In any case, the condition for [ω] to be \(\overline{\partial }\)-closed is well defined and intrinsic.

  3. 3.

    In the formula, \(\chi (X,\mathcal{L})\) stands for the Euler-characteristic of the line-bundle \(\mathcal{L}\) which, by definition, is \(h^{0}(X,\mathcal{L}) - h^{1}(X,\mathcal{L})\).

  4. 4.

    The interested reader may consult, for instance, [7, 67], or [68].

  5. 5.

    Here, non-degenerate means that the curve is not contained in any abelian subvariety. Although this differs from our assumption on C, one of the first steps in the proof of this result is to establish that the maps PI used in the proof of Lemma  3.4.4 contain open subsets of A n in their images. Consequently, if C is non-degenerate, then the \(\mathcal{X}\) -dual web \(\mathcal{W}_{C}^{\mathcal{X}}\) is generically smooth.

Bibliography

  1. Arbarello, E., Cornalba, M., Griffiths, P.A., Harris, J.: Geometry of Algebraic Curves, vol. I. Grundlehren der Mathematischen Wissenschaften, vol. 267. Springer, New York (1985)

    Google Scholar 

  2. Ballico, E.: The bound of the genus for reducible curves. Rend. Mat. Appl. 7, 177–179 (1987)

    MATH  MathSciNet  Google Scholar 

  3. Barlet, D.: Le faisceau ω X sur un espace analytique X de dimension pure. In: Norguet, F. (ed.) Fonctions de Plusieurs Variables Complexes III. Lecture Notes in Mathematics, vol. 670, pp. 187–204. Springer, Berlin (1978). Doi:10.1007/BFb0064400

    Chapter  Google Scholar 

  4. Barth, W., Hulek, C., Peters, C., Van de Ven, A.: Compact Complex Surfaces. Springer, New York (2004)

    Book  MATH  Google Scholar 

  5. Chern, S.-S., Griffiths, P.A.: Abel’s theorem and webs. Jahresberichte der Deutsch. Math.-Ver. 80, 13–110 (1978). http://eudml.org/doc/146681

  6. El Haouzi, A.: Sur la torsion des courants \(\overline{\partial }\)-fermés sur un espace analytique complexe. C. R. Acad. Sci. Paris Sér. I Math. 332, 205–208 (2001). Doi:10.1016/S0764-4442(00)01804-8

    Article  MATH  Google Scholar 

  7. Harris, J.: A bound on the geometric genus of projective varieties. Ann. Sc. Norm. Super. 8, 35–68 (1981). http://www.numdam.org/item?id=ASNSP_1981_4_8_1_35_0

  8. Harris, J.: Curves in projective space. With the collaboration of David Eisenbud. Séminaire de Mathématiques Supérieures, 85, Presses de l’Université de Montréal, Montréal (1982)

    Google Scholar 

  9. Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 52. Springer, New York (1977)

    Google Scholar 

  10. Hartshorne, R.: The genus of space curves. Ann. Univ. Ferrara Sez. 40, 207–223 (1994). Doi:10.1007/BF02834521

    MathSciNet  Google Scholar 

  11. Henkin, G., Passare, M.: Abelian differentials on singular varieties and variations on a theorem of Lie-Griffiths. Invent. Math. 135, 297–328 (1999). Doi:10.1007/s002220050287

    Article  MATH  MathSciNet  Google Scholar 

  12. Kleiman, S.: What is Abel’s theorem anyway? In: Laudal, O., Piene, R. (eds.) The Legacy of Niels Henrik Abel, pp. 395–440. Springer, New York (2004)

    Chapter  Google Scholar 

  13. Pareschi, G., Popa, M.: Castelnuovo theory and the geometric Schottky problem. J. Reine Angew. Math. 615, 25–44 (2008). Doi:10.1515/CRELLE.2008.008

    MATH  MathSciNet  Google Scholar 

  14. Rosenlicht, M.: Equivalence relations on algebraic curves. Ann. Math. 56, 169–191 (1952). Doi:10.2307/1969773

    Article  MATH  MathSciNet  Google Scholar 

  15. Tedeschi, G.: The genus of reduced space curves. Rend. Sem. Mat. Univ. Politec. Torino 56 81–88 (1998)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pereira, J.V., Pirio, L. (2015). Abel’s Addition Theorem. In: An Invitation to Web Geometry. IMPA Monographs, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-14562-4_3

Download citation

Publish with us

Policies and ethics