Skip to main content

Abelian Relations

  • Chapter
  • First Online:
An Invitation to Web Geometry

Part of the book series: IMPA Monographs ((IMPA,volume 2))

  • 909 Accesses

Abstract

In this chapter, the key concept of abelian relation is introduced. Roughly speaking, an abelian relation for a web \(\mathcal{W}\) is an additive functional equation among the first integrals of its foliations. The credo here is that the notion of abelian relation must be considered as a generalization for webs of the more classical notion of holomorphic differential form on a projective variety. The most compelling evidences supporting this credo will be presented in the next two chapters through the study of abelian relations of algebraic webs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here, for \(n \in \mathbb{N}\), w n stands for the n-th differential operator obtained by applying n times w: inductively, one has \(w^{n}(u) = w(w^{n-1}(u))\) for any holomorphic germ u, with the convention that w 0 = Id.

  2. 2.

    When a i  = 0, the linear subspace \(\mathbb{P}^{a_{i}}\) is nothing but a point \(p_{i} \in \mathbb{P}^{n}\). In this case, the following convention is adopted: the rational normal curve in \(\mathbb{P}^{a_{i}}\) is not a curve, but the point p i .

Bibliography

  1. Abel, N.H.: Méthode générale pour trouver des functions d’une seule quantité variable lorsqu’une propriété de ces fonctions est exprimée par une équation entre deux variables. In: O​euvres complètes de N.H. Abel, Tome 1, pp. 1–10. Grondhal Son, Rhode Island (1981)

    Google Scholar 

  2. Cavalier, V., Lehmann, D.: Ordinary webs of codimension one. Ann. Sci. Norm. Super. Pisa 11, 197–214 (2012). Doi:10.2422/2036-2145.201003_007

    MATH  MathSciNet  Google Scholar 

  3. Cerveau, D., Mattei, J.-F.: Formes intégrables holomorphes singulières. Astérisque, vol. 97. Société Mathematique de France, Paris (1982)

    Google Scholar 

  4. Eisenbud, D., Harris, J.: On varieties of minimal degree (a centennial account). Proc. Symp. Pure Math. 46, 3–13 (1987). Doi:10.1090/pspum/046.1

    Article  MathSciNet  Google Scholar 

  5. Godbillon, G.: Géométrie Différentielle et Mécanique Analytique. Hermann, Paris (1969)

    Google Scholar 

  6. Harris, J.: Curves in projective space. With the collaboration of David Eisenbud. Séminaire de Mathématiques Supérieures, 85, Presses de l’Université de Montréal, Montréal (1982)

    Google Scholar 

  7. Pereira, J.V.: Vector fields, invariant varieties and linear systems. Ann. Inst. Fourier 51, 1385–1405 (2001). Doi:10.5802/aif.1858

    Article  MATH  Google Scholar 

  8. Pereira, J.V., Sanchez, P.F.: Transformation groups of holomorphic foliations. Comm. Anal. Geom. 10, 1115–1123 (2002)

    MATH  MathSciNet  Google Scholar 

  9. Pirio, L: Équations fonctionnelles abéliennes et géométrie des tissus. Thèse de Doctorat de l’Université Paris VI (2004). Available electronically at http://tel.archives-ouvertes.fr.

  10. Pirio, L.: Abelian functional equations, planar web geometry and polylogarithms. Selecta Math. 11, 453–489 (2005). Doi:10.1007/s00029-005-0012-y

    Article  MATH  MathSciNet  Google Scholar 

  11. Pirio, L., Trépreau, J.-M.: Tissus plans exceptionnels et fonctions Thêta. Ann. Inst. Fourier 55, 2209–2237 (2005). Doi:10.5802/aif.2159

    Article  MATH  Google Scholar 

  12. Trépreau, J.-M.: Algébrisation des Tissus de Codimension 1 – La généralisation d’un Théorème de Bol. In: Griffiths, P.A. (ed.) Inspired by Chern, Nankai Tracts in Mathematics, vol. 11, pp. 399–433. World Scientific, Singapore (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pereira, J.V., Pirio, L. (2015). Abelian Relations. In: An Invitation to Web Geometry. IMPA Monographs, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-14562-4_2

Download citation

Publish with us

Policies and ethics