Skip to main content

Perinatal Programming of Cardiovascular Disease

  • Chapter
  • First Online:
Arterial Disorders
  • 1332 Accesses

Abstract

Impairment of intrauterine environment during critical periods may result in perturbations in growth and development of the fetus. Barker et al. have originally proposed the hypothesis that several chronic adult diseases can be programmed in early life. These authors examined the mortality records of 5,654 men who were born during 1911–1930 in Hertfordshire (UK). In this report was found that the men with the lowest weights at birth subsequently had the highest death rates from ischemic heart disease. In addition, a retrospective study of babies born during the Dutch famine of 1945 has demonstrated a significant association between cardiovascular disease (CVD) and early nutritional impairment during gestation. In this programming concept, stimulus or injury during the critical period of development can result in the permanent changes in physiology and the metabolism and produces persistent effects throughout life. Afterward, Hales and Barker suggested the “Thrifty Phenotype Hypothesis” or “Economic Phenotype” to explain the biological basis of the fetal origin hypothesis. In this context, impairment of fetal environment can result in a physiological adaptive response that promotes early survival at the detrimental of later health. In fact, poor nutritional conditions during pregnancy can alter the development of a fetus to prepare him or her to survive in an environment with low nutritional resources. The main basis of this hypothesis is that the deleterious effects are more pronounced when there is a significant difference between the early nutritional deficiency and later nutritional intake. Reduced growth, represented mainly by low birth weight, is the major result of a suboptimal intrauterine environment and is associated with chronic conditions in adulthood, such as type 2 diabetes, hypertension, and CVD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barker DJ, Winter PD, Osmond C et al (1989) Weight in infancy and death from ischaemic heart disease. Lancet 2:577–580

    Article  CAS  PubMed  Google Scholar 

  2. Roseboom TJ, van der Meulen JH, Ravelli AC et al (2001) Effects of prenatal exposure to the Dutch famine on adult disease in later life: an overview. Twin Res 4:293–298

    Article  CAS  PubMed  Google Scholar 

  3. Gluckman PD, Hanson MA (2004) The developmental origins of the metabolic syndrome. Trends Endocrinol Metab 15:183–187

    Article  CAS  PubMed  Google Scholar 

  4. McMillen IC, Robinson JS (2005) Developmental origins of the metabolic syndrome: prediction. Plast Program Physiol Rev 85:571–633

    CAS  Google Scholar 

  5. Jarvelin M-R (2000) Fetal and infant markers of adult heart disease. Heart 84:219–226

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Brenner BM, Garcia DL, Anderson S (1998) Glomeruli and blood pressure: less of one, more the other? Am J Hypertens 1:335–347

    Article  Google Scholar 

  7. Schreuder M, Delemarre-van de Waal H, Van Wijk A (2006) Consequences of intrauterine growth restriction for the kidney. Kidney Blood Press Res 29:108–125

    Article  CAS  PubMed  Google Scholar 

  8. Konje JC, Bell SC, Morton JJ, deChazal R, Taylor D (1996) Human fetal kidney morphometry during gestation and the relationship between weight, kidney morphometry and plasma active renin concentration at birth. Clin Sci 91:169–175

    CAS  PubMed  Google Scholar 

  9. Spencer J, Wang Z, Hoy W (2001) Low birth weight and reduced renal volume in Aboriginal children. Am J Kidney Dis 375:915–920

    Article  Google Scholar 

  10. Feig DI, Nakagawa T, Karumanchi SA (2004) Hypothesis: uric acid, nephron number, and the pathogenesis of essential hypertension. Kidney Int 66:281–287

    Article  CAS  PubMed  Google Scholar 

  11. Hoy WE, Hughson MD, Bertram JF et al (2005) Nephron number, hypertension, renal disease, and renal failure. J Am Soc Nephrol 16:2557–2564

    Article  PubMed  Google Scholar 

  12. Giapros V, Drougia A, Hotoura E et al (2006) Kidney growth in small-for-gestational-age infants: evidence of early accelerated renal growth. Nephrol Dial Transplant 21:3422–3427

    Article  PubMed  Google Scholar 

  13. Hoy WE, Rees M, Kile M et al (1999) A new dimension to the Barker hypothesis: low birth weight and susceptibility to renal disease. Kidney Int 56:1072–1077

    Article  CAS  PubMed  Google Scholar 

  14. Nelson RG, Morgenstern H, Bennett PH (1998) Birth weight and renal disease in Pima Indians with type 2 diabetes mellitus. Am J Epidemiol 148:650–656

    Article  CAS  PubMed  Google Scholar 

  15. Monge M, García-Nieto VM, Domenech E et al (1998) Study of renal metabolic disturbances related to renal lithiasis at school age in very-low-birth-weight children. Nephron 79:269–273

    Article  CAS  PubMed  Google Scholar 

  16. Giapros V, Papadimitriou P, Challa A, Andronikou S (2007) The effect of intrauterine growth retardation on renal function in the first two months of life. Nephrol Dial Transplant 22:96–103

    Article  PubMed  Google Scholar 

  17. Franco MC, Nishida SK, Sesso R (2008) GFR estimated from cystatin C versus creatinine in children born small for gestational age. Am J Kidney Dis 51:925–932

    Article  CAS  PubMed  Google Scholar 

  18. Hoek FJ, Kemperman FA, Krediet RT (2003) A comparison between cystatin C, plasma creatinine and the Cockcroft and Gault formula for the estimation of glomerular filtration rate. Nephrol Dial Transplant 18:2024–2031

    Article  CAS  PubMed  Google Scholar 

  19. Coll E, Botey A, Alvarez L (2000) Serum cystatin C as a new marker for non invasive estimation of glomerular filtration rate and as a marker for early renal impairment. Am J Kidney Dis 36:29–34

    Article  CAS  PubMed  Google Scholar 

  20. Filler G, Bokenkamp A, Hofmann W et al (2005) Cystatin C as a marker of GFR-history, indications, and future research. Clin Biochem 38:1–8

    Article  CAS  PubMed  Google Scholar 

  21. Merlet-Benichou C, Gilbert T, Muffat MJ et al (1994) Intrauterine growth retardation leads to a permanent nephron deficit in the rat. Pediatr Nephrol 8:175–180

    Article  CAS  PubMed  Google Scholar 

  22. Woods LL (2000) Fetal origins of adult hypertension: a renal mechanism? Curr Opin Nephrol Hypertens 9:419–425

    Article  CAS  PubMed  Google Scholar 

  23. Langley-Evans SC, Welham SJM, Jackson AA (1999) Fetal exposure to a maternal low protein diet impairs nephrogenesis and promotes hypertension in the rat. Life Sci 64:965–974

    Article  CAS  PubMed  Google Scholar 

  24. Nwagwu MO, Cook A, Langley-Evans SC (2000) Evidence of progressive deterioration of renal function in rats exposed to a maternal low-protein diet in utero. Br J Nutr 83:79–85

    CAS  PubMed  Google Scholar 

  25. McMillen IC, Robinson JS (2005) Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol Rev 85:571–633

    Article  CAS  PubMed  Google Scholar 

  26. Lucas SRR, Gil ZF, Silva VLC, Miraglia SM (1991) Functional and morphometric evaluation of intrauterine undernutrition on kidney development of the progeny. Braz J Med Biol Res 24:967–970

    CAS  PubMed  Google Scholar 

  27. Lucas SRR, Silva VLC, Miraglia SM, Gil FZ (1997) Functional and morphometric evaluation of offspring kidney after intrauterine undernutrition. Pediatr Nephrol 11:719–723

    Article  CAS  PubMed  Google Scholar 

  28. Lucas SRR, Miraglia SM, Gil FZ, Coimbra TM (2001) Intrauterine food restriction as a determinant of nephrosclerosis. Am J Kidney Dis 37:467–476

    Article  PubMed  Google Scholar 

  29. Guron G, Friberg P (2000) An intact renin–angiotensin system is a prerequisite for normal renal development. J Hypertens 18:123–137

    Article  CAS  PubMed  Google Scholar 

  30. Franco MCP, Nigro D, Fortes ZB et al (2003) Intrauterine undernutrition–renal and vascular origin of hypertension. Cardiovasc Res 60:228–234

    Article  CAS  Google Scholar 

  31. Woods LL, Ingelfinger JR, Nyengaard JR, Rasch R (2001) Maternal protein restriction suppresses the newborn renin–angiotensin system and programs adult hypertension in rats. Pediatr Res 49:460–467

    Article  CAS  PubMed  Google Scholar 

  32. Zandi-Nejad K, Luyckx VA, Brenner BM (2006) Adult hypertension and kidney disease: the role of fetal programming. Hypertension 47:502–508

    Article  CAS  PubMed  Google Scholar 

  33. Manning J, Vehaskari VM (2001) Low birth weight associated adult hypertension in the rat. Pediatr Nephrol 16:417–422

    Article  CAS  PubMed  Google Scholar 

  34. Manning J, Beutler K, Knepper MA, Vehaskari VM (2002) Upregulation of renal BSC1 and TSC in prenatally programmed hypertension. Am J Physiol 283:F202–F206

    CAS  Google Scholar 

  35. Leeson CPM, Whincup PH, Cook DG et al (1997) Flow-mediated dilatation in 9–11 year old children: the influence of intrauterine and childhood factors. Circulation 96:2233–2238

    Article  CAS  PubMed  Google Scholar 

  36. Franco MC, Christofalo DM, Sawaya AL et al (2006) Effects of low birth weight in 8- to 13-year-old children: implications in endothelial function and uric acid levels. Hypertension 48(1):45–50

    Article  CAS  PubMed  Google Scholar 

  37. Goodfellow J, Bellamy MF, Gorman ST et al (1998) Endothelial function is impaired in fit young adults of low birth weight. Cardiovasc Res 40:600–606

    Article  CAS  PubMed  Google Scholar 

  38. Leeson CPM, Kattenhorn M, Morley R et al (2001) Impact of low birth weight and cardiovascular risk factors on endothelial function in early adult life. Circulation 103:1264–1268

    Article  CAS  PubMed  Google Scholar 

  39. Holemans K, Gerber R, Meurrens K et al (1999) Maternal food restriction in the second half of pregnancy affects vascular function but not blood pressure of rat female offspring. Br J Nutr 81:73–79

    CAS  PubMed  Google Scholar 

  40. Ozaki T, Nishina P, Hanson MA, Poston L (2001) Dietary restriction in pregnant rats causes gender-related hypertension and vascular dysfunction in offspring. J Physiol 530(1):141–158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Franco MC, Akamine EH, Di Marco GS et al (2003) NADPH oxidase and enhanced superoxide generation in intrauterine undernourished rats: involvement of the renin-angiotensin system. Cardiovasc Res 59:767–775

    Article  CAS  Google Scholar 

  42. Franco MCP, Dantas APV, Arruda RMP et al (2002) Intrauterine undernutrition: expression and activity of the endothelial nitric oxide synthase in male and female adult offspring. Cardiovasc Res 56:145–153

    Article  CAS  Google Scholar 

  43. Franco MCP, Arruda RMMP, Fortes ZB et al (2002) Severe nutritional restriction in pregnant rats aggravates hypertension, altered vascular reactivity and renal development in spontaneously hypertensive rats offspring. J Cardiovasc Pharmacol 29(3):369–377

    Article  Google Scholar 

  44. Lamireau D, Nuyt AM, Hou X et al (2002) Altered vascular function in fetal programming of hypertension. Stroke 33(12):2992–2998

    Article  PubMed  Google Scholar 

  45. Franco MC, Akamine EH, Rebouças N et al (2007) Long-term effects of intrauterine malnutrition on vascular function in female offspring: implications of oxidative stress. Life Sci 80(8):709–715

    Article  CAS  PubMed  Google Scholar 

  46. Alves GM, Barão MA, Nascimento Gomes G et al (2002) L-Arginine effects on blood pressure and renal function of intrauterine restricted rats. Pediatr Nephrol 17(10):856–862

    Article  PubMed  Google Scholar 

  47. Franco MC, Fortes ZB, Akamine EH et al (2004) Tetrahydrobiopterin improves endothelial dysfunction and vascular oxidative stress in microvessels of intrauterine undernourished rats. J Physiol 558:239–248

    Article  PubMed Central  CAS  Google Scholar 

  48. Rutherford RA, McCarthy A, Sullivan MH et al (1995) Nitric oxide synthase in human placenta and umbilical cord from normal, intrauterine growth-retarded and pre-eclamptic pregnancies. Br J Pharmacol 116:3099–3109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Hata T, Hashimoto M, Manabe A et al (1998) Maternal and fetal nitric oxide synthesis is decreased in pregnancies with small for gestational age infants. Hum Reprod 13:1070–1073

    Article  CAS  PubMed  Google Scholar 

  50. Schiessl B, Strasburger C, Bidlingmaier M et al (2006) Plasma and urine concentrations of nitrite/nitrate and cyclic Guanosinemonophosphate in intrauterine growth restricted and preeclamptic pregnancies. Arch Gynecol Obstet 274:150–154

    Article  CAS  PubMed  Google Scholar 

  51. Franco MC, Higa EM, D’Almeida V et al (2007) Homocysteine and nitric oxide are related to blood pressure and vascular function in small-for-gestational-age children. Hypertension 50(2):396–402

    Article  CAS  PubMed  Google Scholar 

  52. Harrison DG (1997) Cellular and molecular mechanism of endothelial cell dysfunction. J Clin Invest 100:2153–2157

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Franco MCP, Dantas APV, Akamine HE et al (2002) Enhanced oxidative stress as a potential mechanism underlying the programming of hypertension in utero. J Cardiovasc Pharmacol 40:501–509

    Article  CAS  Google Scholar 

  54. Franco Mdo C, Akamine EH, Aparecida de Oliveira M et al (2003) Vitamins C and E improve endothelial dysfunction in intrauterine-undernourished rats by decreasing vascular superoxide anion concentration. J Cardiovasc Pharmacol 42(2):211–217

    Article  PubMed  Google Scholar 

  55. Gupta P, Narang M, Banerjee BD, Basu S (2004) Oxidative stress in term small for gestational age neonates born to undernourished mothers: a case control study. BMC Pediatr 20:4–14

    Google Scholar 

  56. Franco MC, Kawamoto EM, Gorjão R et al (2007) Biomarkers of oxidative stress and antioxidant status in children born small for gestational age: evidence of lipid peroxidation. Pediatr Res 62:204–208

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Franco PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Franco, M. (2015). Perinatal Programming of Cardiovascular Disease. In: Berbari, A., Mancia, G. (eds) Arterial Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-14556-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14556-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14555-6

  • Online ISBN: 978-3-319-14556-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics