Skip to main content

Thermal and Energy Modeling of PCM-Enhanced Building Envelopes

  • Chapter
  • First Online:
PCM-Enhanced Building Components

Part of the book series: Engineering Materials and Processes ((EMP))

Abstract

Energy storage in building envelopes can be accomplished by means of sensible and latent heat accumulation. A large number of numerical tools enabling thermal and energy performance analysis of building envelopes containing PCM have been already developed. They now successfully support numerical optimization of thermal characteristics for building technologies utilizing latent heat storage. At the same time, reliable whole building energy models can numerically facilitate an optimized design of the PCM enhanced building components without the need for time-consuming and expensive whole-building field experiments. This chapter offers a review of the best-known numerical methods useful for the performance analysis of PCM-enhanced building envelopes. It also presents a selection of the most popular computer programs useful for system-scale thermal analysis and several best-known whole building energy simulation tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.comsol.com/products.

  2. 2.

    http://www.wufi.de/index_e.html.

  3. 3.

    http://www.trnsys.com/.

  4. 4.

    http://apps1.eere.energy.gov/buildings/energyplus/.

  5. 5.

    U.S. Army Corps of Engineers Engineer Research and Development Center, Phase I, Contract # W9132T-12-C-0012.

  6. 6.

    http://www.esru.strath.ac.uk/EandE/Web_sites/10-11/Schools/Model.html.

  7. 7.

    http://www.esru.strath.ac.uk/EandE/Web_sites/10-11/Schools/Model.html.

  8. 8.

    http://www.oecd-nea.org/tools/abstract/detail/psr-0199/.

  9. 9.

    http://www.comsol.com/.

  10. 10.

    http://www.hoki.ibp.fhg.de/wufi/WhatsNewIn50_e.html.

  11. 11.

    http://apps1.eere.energy.gov/buildings/tools_directory/software.cfm/ID=85/pagename=alpha_list.

  12. 12.

    http://sel.me.wisc.edu/trnsys/index.html.

  13. 13.

    http://www.trnsys.com/assets/docs/03-ComponentLibraryOverview.pdf.

  14. 14.

    http://www.trnsys.com/tess-libraries/individual-components.php.

  15. 15.

    http://www.esru.strath.ac.uk/Programs/ESP-r.htm.

  16. 16.

    EnergyPlus Engineering Reference: The Reference to EnergyPlus Calculations. 2011, Ernest Orlando Lawrence Berkeley National Laboratory. p. 1130—available at http://apps1.eere.energy.gov/buildings/energyplus/pdfs/engineeringreference.pdf.

  17. 17.

    http://195.20.235.12/pdf/RAL-GZ_896.pdf.

  18. 18.

    http://www.pcm-ral.de/en/products/planungs-und-simulationsprogramme.html.

  19. 19.

    http://energy.gov/articles/making-smart-windows-smarter.

  20. 20.

    http://newscenter.lbl.gov/news-releases/2013/08/14/raising-the-iq-of-smart-windows/.

References

  • Agyenim F, Hewitt N, Eames P, Smyth M (2010) A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renew Sustain Energy Rev 14:615–628

    Google Scholar 

  • Ahmad M, Bontemps A, Salle H, Quenard D (2006) Thermal testing and numerical simulation of a prototype cell using light wallboards coupling vacuum insulation panels and phase change materials. Energy Build 38(2006):673–681

    Article  Google Scholar 

  • Alderman RJ, Yarbrough DW (2007) Use of phase-change materials to enhance the thermal performance of building insulations. In: Proceedings of the 29th international thermal conductivity conference, Birmingham, 24–27 June 2007

    Google Scholar 

  • Alexiades V, Solomon AD (1993) Mathematical modeling of melting and freezing processes. Hemisphere Publishing Corporation, New York

    Google Scholar 

  • Almeida F, Zhang D, Fung AS, Leong WH (2011) Comparison of corrective phase change material algorithm with ESP-r simulation. In: Proceedings of the building simulation 2011, 12th conference of international building performance simulation association, Sydney

    Google Scholar 

  • AL-Saadi SN, Zhai Z (2013) Modeling phase change materials embedded in building enclosure: a review. Renew Sustain Energy Rev 21:659–673

    Google Scholar 

  • Antonopoulos KA, Tzivanidis C (1997) Numerical solution of unsteady three-dimensional heat transfer during space cooling using ceiling-embedded piping. Energy 22(1):59–67

    Google Scholar 

  • Antonopoulos KA, Koronaki EP, Tzivanidis C (1998) Effects of building thermal mass during space cooling using ceiling-embedded piping. In: Proceedings of international conference ECOS ‘98, Nancy France

    Google Scholar 

  • ASHRAE RP-1145 (2001) Modeling two and three-dimensional heat transfer through composite wall and roof assemblies in hourly simulation programs. Project report prepared by Enermodel Engineering Ltd. for American society of heating, refrigeration and air-conditioning engineers, Inc. (ASHRAE), Atlanta

    Google Scholar 

  • ASHRAE (2004) ANSI/ASHRAE standard 140-2004. In: Standard method of test for the evaluation of building energy analysis computer programs. ASHRAE, Atlanta, p 151

    Google Scholar 

  • Athienitis AK, Liu C, Hawes D, Banu D, Feldman D (1997) Investigation of the thermal performance of a passive solar test-room with wall latent heat storage. Build Environ 32(5):405–410

    Google Scholar 

  • Baghban MH, Hovde PJ, Gustavsen A (2010) Numerical simulation of a building envelope with high performance materials. In: Proceedings of the 2010 COMSOL conference, Paris

    Google Scholar 

  • Balcomb JD, Kosiewicz CE, Lazarus GS, McFarland RD, Wray WO (1983) Passive solar design handbook vol.3, Los Alamos National Lab. ISBN 0-89553-106-2

    Google Scholar 

  • Basu B, Date A (1988) Numerical modeling of melting and solidification problems—a review. Sadhana 13:169–213

    Google Scholar 

  • Beasley DE, Clark JA (1984) Transient response of a packed bed for thermal energy storage. Int J Heat Mass Transf 27(9):1659–1669

    Article  Google Scholar 

  • Bedecarrats J, Castaing-Lasvignottes J, Strub F, Dumas J (2009a) Study of a phase change energy storage using spherical capsules; part I: experimental results. Energy Convers Manage 50(10):2527–2536

    Article  Google Scholar 

  • Bedecarrats J, Castaing-Lasvignottes J, Strub F, Dumas J (2009b) Study of a phase change energy storage using spherical capsules; part II: numerical modeling. Energy Convers Manage 50(10):2537–2546

    Article  Google Scholar 

  • Bentz DP, Turpin R (2007) Potential applications of phase change materials in concrete technology. Cement Concr Compos 29(2007):527–532

    Article  Google Scholar 

  • Bony J, Citherlet S (2007) Numerical model and experimental validation of heat storage with phase change materials. Energy Build 39(10):1065–1072

    Article  Google Scholar 

  • Brillouin M (1930) Sur Quelques Problèmes non Résolus de la Physique Mathématique Classique Propagation de la Fusion. Annales de l’institut Henri Poincaré 1(3):285–308

    MathSciNet  Google Scholar 

  • Brousseau P, Lacroix M (1998) Numerical simulation of a multi-layer latent heat thermal energy storage system. Int J Energy Res 22(1998):1–15

    Article  Google Scholar 

  • Buhl WF, Erdem E, Nataf J-M, Winkelmann F, Moshier MA, Sowell EF (1990) Advances in SPARK. In: Proceedings of the 3rd international conference on system simulation in buildings, Lawrence Berkeley laboratory report LBL-29419, Rev. 1, Liege, 3–5 Dec 1990

    Google Scholar 

  • Cabeza LF, Castellón C, Nogués M, Medrano M, Leppers R, Zubillaga O (2007) Use of microencapsulated PCM in concrete walls for energy savings. Energy Build 39(2007):113–119

    Article  Google Scholar 

  • Caldwell J, Kwan YY (2004) Numerical methods for one-dimensional Stefan problems. Commun Numer Methods Eng 20:535–545

    Google Scholar 

  • Campbell KR, Sailor DJ (2011) Phase change materials as thermal storage for high performance homes. In: Proceedings of the 2011 ASME international mechanical engineering congress & exposition, IMECE 2011, Denver, 11–17 Nov 2011

    Google Scholar 

  • Cao Y, Faghri AA (1990) Numerical analysis of phase-change problems including natural convection. J Heat Transf 112:812–816

    Google Scholar 

  • Carslaw HS, Jaeger JC (1959) Conduction of heat in solids. Clarendon Press, Oxford

    Google Scholar 

  • Castell A, Medrano M, Castellón C, Cabeza LF (2009) Analysis of the simulation models for the Use of PCM in buildings. In: Proceedings of Effstock 2009—the 11th international conference on thermal energy storage, Stockholm, 14–17 June 2009

    Google Scholar 

  • Castell A, Martorell I, Medrano M, Pérez G, Cabeza LF (2010) Experimental study of using PCM in Brick constructive solutions for passive cooling. Energy Build ENERG BLDG 42(4):534–540

    Article  Google Scholar 

  • Castellón C, Günther E, Mehling H, Hiebler S, Cabeza LF (2008) Determination of the enthalpy of PCM as a function of temperature using a heat-flux DSC—a study of different

    Google Scholar 

  • Chen CR, Sharma A (2006) Numerical investigation of melt fraction of PCMs in a latent heat storage system. J Eng Appl Sci 1(2006):437–444

    Google Scholar 

  • Chen CR, Sharma A, Tyagi SK, Buddhi D (2008a) Numerical heat transfer studies of PCMs used in a box-type solar cooker. Renew Energy 33(2008):1121–1129

    Article  Google Scholar 

  • Chen C, Guo H, Liu Y, Yue H, Wang C (2008b) A new kind of phase change material (PCM) for energy-storing wallboard. Energy Build 40:882–890

    Google Scholar 

  • Childs KW, Stovall TK (2012) Use of phase change material in a building wall assembly: a case study of technical potential in two climates. In: Proceedings of international high performance buildings conference, Purdue University, West Lafayette, 16–19 July 2012

    Google Scholar 

  • Christian JE, Kośny J (1995) Toward a national opaque wall rating label. In: Proceedings thermal performance of the exterior envelopes VI, ASHRAE ISBN 1-883413-29-X, Dec 1995

    Google Scholar 

  • Clapeyron BPE, Lamé MM (1831) Mémoire sur la solidification par Refroidissement d’un globe liquid. Ann Chim Phys 47:250–256

    Google Scholar 

  • Comini G, Del Guidice S, Lewis RW, Zienkiewicz OC (1974) Finite element solution of non-linear heat conduction problems with special reference to phase change. Int J Numer Methods Eng 8:613–624

    Google Scholar 

  • Constantinescu M, Anghel EA, Buixaderas E, Pavel PM, Popa VT (2013) Shape-stabilized nano composite elements based on phase change materials (PCM)-Epoxy for hauses with low energy consumption. In: Proceedings of the 2nd international conference on sustainable energy storage in buildings, Trinity College, Dublin, Ireland, June 19–21, 2013

    Google Scholar 

  • Costa M, Buddhi D, Oliva A (1998) Numerical simulation of a latent heat thermal energy storage system with enhanced heat conduction. Energy Convers Manage 39(3/4):319–330

    Google Scholar 

  • Crank J (1981) How to deal with moving boundaries in thermal problems. In: Lewis RW, Morgan K, Zienkiewicz OC (eds) Numerical methods in heat transfer, Wiley, New York, pp 177–200

    Google Scholar 

  • Crank J (1984) Free and moving boundary problems. Clarendon Press, Oxford

    Google Scholar 

  • Crawley DB, Hand JW, Kummert M, Griffith BT (2005) Contrasting the capabilities of building energy performance simulation programs. A joint report, US DOE, University of Strathclyde UK, University of Wisconsin, Madison, USA and National Renewable Energy Renewable Laboratory, USA

    Google Scholar 

  • Dalhuijsen A, Segal A (1986) Comparison of finite element techniques for solidification problems. Int J Numer Methods Eng. 23:1807–1829

    Google Scholar 

  • Darkwa K, O’Callaghan PW (2005) Simulation of phase change drywalls in a passive solar building. Appl Therm Eng 26:853–858

    Google Scholar 

  • Dentel A, Stephan W (2013) TRNSYS TYPE 399, Phase change materials in passive and active wall constructions: model description and implementing into TRNSYS. Georg Simon Ohm University of applied sciences, institute for energy and building. Version 1.5, Germany, May 2013. http://www.transsolar.com/__software/download/de/ts_type_399_en.pdf

  • Desta TZ, Roels S (2010) Experimental and numerical analysis of heat, air, and moisture transfer in a lightweight building wall. In: Proceedings of DOE, ASHRAE, ORNL, conference—thermal envelopes XI—thermal performance of the exterior envelopes of buildings, Clearwater, Dec 2010

    Google Scholar 

  • Dhanusiya G, Rajakumar S (2013) Thermal analysis of PCM based building wall for cooling. Int J Sci Eng Technol Res (IJSETR) 2(4)

    Google Scholar 

  • Douglas J (1957) A uniqueness theorem for the solution of a Stefan problem. Proc Am Math Soc 8:402–408

    Article  MATH  Google Scholar 

  • Drake JB, Geist GA, Morris MD, Solomon AD, Martin J, Tomlinson J (1987) Design of PCM enhanced passive solar structures, ORNL-6281, Oak Ridge National Laboratory, project report

    Google Scholar 

  • Dutil Y, Rousse DR, Salahb NB, Lassue S, Zalewski S (2011) A review on phase-change materials: mathematical modeling and simulations. Renew Sustain Energy Rev 15(1):112–130

    Google Scholar 

  • Egolf PW, Manz H (1994) Theory of phase change materials with and without mushy regions. Int. J Heat Mass Transf 37:2917–24

    Google Scholar 

  • Evans GW (1951) A note on the existence of a solution to a problem of Stefan. Q Appl Math 9:185–193

    MATH  Google Scholar 

  • Eyres NR, Hartree DR, Ingham J, Jackson R, Sarjant RJ, Wagstaff JB (1946) The calculation of variable heat flow in solids. Philos Trans Roy Soc London Ser A, Math Phys Sci 240:1–57

    Google Scholar 

  • Fallahi A, Shukla N, Kośny J (2012) Numerical thermal performance analysis of PCMs integrated with residential attics. In: SimBuild-2012 conference, Madison

    Google Scholar 

  • Fang Y, Medina M (2009) Proposed modifications for models of heat transfer problems involving partially melted phase change processes J ASTM Int 6(9). ISSN: 1546-962X

    Google Scholar 

  • Feustel HE (1995) Simplified numerical description of latent storage characteristics for phase change wallboard. Lawrence Berkeley laboratory report LBL-36933, Berkeley

    Google Scholar 

  • Feustel HE, Stetiu C (1997) Thermal performance of phase change wallboard for residential cooling application. Indoor environment program energy and environment division Lawrence Berkeley national laboratory, University of California Berkeley, CA 94720, USA. Report—LBL-38320 UC-1600

    Google Scholar 

  • Fox L (1975) What are the best numerical methods? In: Ockendon JR, Hodgkins WR (eds) Moving boundary problems in heat flow and diffusion. Clarendon Press, Oxford, pp 210–241

    Google Scholar 

  • Friedman A (1964) Partial differential equations of parabolic type. Prentice-Hall, New Jersey

    Google Scholar 

  • Furzeland RM (1980) Comparative study of numerical methods for moving boundary problems. IMA J Appl Math 26:411–29

    Google Scholar 

  • Gelissier A (2008) SPMCMP56 subroutine in ESP-r source standard code. http://espr.trac.cvsdude.com/espr/browser/branches/Joe_Clarke/src/esrubld/spmatl.F?rev=4529

  • Glück B (2006) Dynamisches Raummodell zur wärmetechnischen und wärmephysiologischen Bewertung. Rud. Otto-Meyer Umweltstiftung, Hamburg, Germany

    Google Scholar 

  • Ghoneim AA, Klein SA, Duffie JA (1991) Analysis of collector-storage building walls using phase-change materials. Sol Energy 47:237–242

    Google Scholar 

  • Gowreesunker BL, Tassou SA, Kolokotroni M (2012) Improved simulation of phase change processes in applications where conduction is the dominant heat transfer mode. Energy Build 47:353–359

    Article  Google Scholar 

  • Gowreesunker BL, Tassou SA, Kolokotroni M (2013) Coupled TRNSYS-CFD simulations evaluating the performance of PCM plate heat exchangers in an airport terminal building displacement conditioning system. Build Environ 65:132–145

    Google Scholar 

  • Grau K, Rode K (2006) A model for air flow in ventilated cavities implemented in a tool for whole-building hygrothermal analysis. IEA annex 41 meeting, Lyon, Oct 2006

    Google Scholar 

  • Grau K, Rode C (2007) A model for advection heat and moisture flows implemented in a program for whole-building hygrothermal simulation. IEA Annex 41 meeting, April 2007, Florianopolis, Brazil

    Google Scholar 

  • Grunewald J (1997) Diffusiver und konvektiver stoff- und energietransport in kapillarporösen baustoffen. Ph.D. Thesis, Institut für Bauklimatik, Technische Universität Dresden, Dresden

    Google Scholar 

  • Günther E, Mehling H, Hiebler S (2007) Modeling of subcooling and solidification of phase change materials. Modell Simul Mater Sci Eng 15(8)

    Google Scholar 

  • Günther E, Hiebler S, Mehling H, Redlich R (2009) Enthalpy of phase change materials as a function of temperature: required accuracy and suitable measurement methods. Int J Thermophys 30:1257–1269

    Google Scholar 

  • Haavi T, Gustavsen A, Cao S, Uvsløkk S, Jelle BP (2011) Numerical simulations of a well-insulated wall assembly with integrated phase change material panels—comparison with hot box experiments. In: Proceedings of the international conference on sustainable systems and the environment, Sharjah

    Google Scholar 

  • Halford CK, Boehm RF (2007) Modeling of phase change material peak load shifting. Energy Build 39:298–305

    Article  Google Scholar 

  • Hashemi HT, Sliepcevich CM (1967) A numerical method for solving two-dimensional problems of heat conduction with change of phase. Chem Eng Prog Symp Ser 63: 34–41

    Google Scholar 

  • Hawes DW, Banu D, Feldman D (1990) Latent heat storage in concrete. Sol Energy Mater 21:61–80

    Google Scholar 

  • Hawes DW, Feldman D (1992) Absorption of phase change materials in concrete. Solar Energy Mat Solar Cells 27(2):91–101

    Google Scholar 

  • Hawlander M, Uddin M, Zhu H (2002) Encapsulated phase change materials for thermal energy storage: experiments and simulation. Int J Energy Res 26(2):159–171

    Article  Google Scholar 

  • Heim D (2010) Isothermal storage of solar energy in building construction. Renew Energy 35:788–96

    Google Scholar 

  • Heim D, Clarke JA (2004) Numerical modeling and thermal simulation of PCM–gypsum composites with ESP-r. Energy Build 36(2004):795–805

    Article  Google Scholar 

  • Hens H (1996) IEA annex 24: heat, air and moisture transfer through new and retrofitted insulated envelope parts. Task 1: modelling. Acco, Leuven, Belgium

    Google Scholar 

  • Hill JM (1987) One-dimensional Stefan problems: an introduction. Longman Scientific Technical, Harlow

    Google Scholar 

  • Hoffmann S (2006) Numerische und experimentelle Untersuchung von Phasenübergangsmaterialien zur Reduktion hoher sommerlicher Raumtemperaturen‖. PhD Thesis. Bauhaus-Universität Weimar, Germany

    Google Scholar 

  • Hu H, Argyropoulos SA (1996) Mathematical modelling of solidification and melting: a review. Model Simul Mat Sci Eng 4:371–96

    Google Scholar 

  • Ibanez M, Lazaro A, Zalba B, Cabeza LF (2005) An approach to the simulation of PCMs in building applications using TRNSYS. Appl Therm Eng 25(2005):1796–1807

    Article  Google Scholar 

  • Idelsohn S, Storti M, Crivelli L (1994) Numerical methods in phase-change problems. Arch Comput Methods Eng 1:49–74

    Google Scholar 

  • IEA Annex 23, Dutil Y, Rousse D, Lassue S, Zalewski L, Joulin A, Virgone J, Kuznik F, Johannes K, Dumas J-P, Bédécarrats J-P, Castell A, Cabeza LF (2011) Modeling phase change materials behaviour in building applications: selected comments. In: Proceedings of world renewable energy congress, Linköping, Sweden, 8–13 May 2011

    Google Scholar 

  • Jayalath A, Mendis P, Aye L, Ngo T (2012) Thermal performance of concrete with PCM. In: Proceedings of 2012 ICSBE—international conference on sustainable built environment, Kandy, Dec 2012

    Google Scholar 

  • Jokisalo J, Lamberg P, Siren K (2000) Thermal simulation of PCM structures with TRNSYS. In: Proceedings of the 8th international conference on thermal energy storage, Stuttgart, Germany

    Google Scholar 

  • Kalyanova O, Heiselberg P, Felsmann C, Poirazis H, Strachan P, Wijsman A (2009) An empirical validation of building simulation software for modeling of double-skin facade. In: Proceedings of IBPSA BS2009, University of Strathclyde, Glasgow, 27–30 July 2009, pp 1107–1114

    Google Scholar 

  • Kalz D, Pfafferott J, Schossig P, Herkel S (2006) Thermally activated building systems using phase-change-materials. In: Proceedings of the EuroSun 2006 conference, international solar energy society—ISES, Glasgow, 27–30 June 2006

    Google Scholar 

  • Kalz D, Pfafferott J, Schossig P, Herkel S (2007) Thermoaktive Bauteilsysteme mit integrierten Phasenwechselmaterialien – eine Simulationsstudie. Bauphysik 29(1):27–32

    Google Scholar 

  • Karagiozis A (1993) Overview of the 2D hygrothermal heat-moisture transport model LATENITE. Institute for Research in Construction, National Research Council, Canada

    Google Scholar 

  • Katsourinis D, Founti M, Romero-Sanchez MD, Lopez-Buendia AM (2010) On the computational modelling of thermal energy storage in natural stone treated with PCMs. In: Proceedings of the 9th IIR conference on phase change materials and slurries for refrigeration and air conditioning, Sofia, Bulgaria, Oct 2010

    Google Scholar 

  • Kedl RJ (1990) Conventional wallboard with latent heat storage for passive solar applications. 25th Intersociety energy conversion engineering conference, Reno, NV, 12–17

    Google Scholar 

  • Kelly NJ (1998) Towards a design environment for building-integrated energy systems: the integration of electrical power flow modelling with building simulation, PhD Thesis, Glasgow:University of Strathclyde, UK

    Google Scholar 

  • Kendrick C, Walliman N (2007) Removing unwanted heat in lightweight buildings using phase change materials in building components: simulation modelling for PCM plasterboard. Archit Sci Rev 50(3):265–273

    Google Scholar 

  • Kissock KJ, Hannig JM, Thomas IW  (1998) Testing and simulation of phase change wallboard for thermal storage in buildings. In: Morehouse, Hogan (eds). Proceedings of 1998 international solar energy conference, June 14–17, Albuquerque, N. M. USA, American Society of Mechanical Engineers, New York

    Google Scholar 

  • Kissock KJ, Limas S (2006) Diurnal load reduction through phase-change building components. ASHRAE Transactions 112(1):509–517

    Google Scholar 

  • Knoll DA, Keyes DE (2004) Jacobian-free Newton–Krylov methods: a survey of approaches and applications. J Comput Phys 193:357–397

    Google Scholar 

  • Klein SA, Beckman WA, Mitchell JW, Duffie JA, Duffie NA, Freeman TL, Mitchell JC, Braun JE, Evans BL, Kummer JP, Urban RE, Fiksel A, Thornton JW, Blair NJ, Williams PM, Bradley DE, McDowell TP, Kummert M, Duffy MJ (2011) TRNSYS 17—A TRaNsient SYstem simulation program, user manual. University of Wisonsin-Madison, USA

    Google Scholar 

  • Korjakins A, Kazjonovs J, Bajāre D, Ozoliņš D, Jakovičs A (2013) Simulation of PCM behaviour in buildings for latvia climate conditions. In: Proceedings of sustainable energy storage in buildings conference: sustainable energy storage in buildings, Ireland, Dublin, 19–21 June 2013. Dublin, Ireland, pp 211–217

    Google Scholar 

  • Koschenz M, Lehmann B (2000) Handbuch Thermoaktive Bauteilsysteme. TABS, EMPA Abteilung Energiesysteme/Haustechnik, CH-8600, Düsseldorf, Germany

    Google Scholar 

  • Kośny J (2008) Field testing of cellulose fiber insulation enhanced with phase change material. Oak Ridge National Laboratory report-ORNL/TM-2007/186, Oak Ridge, Sept 2008

    Google Scholar 

  • Kośny J, Christian JE (1995) Reducing the uncertainties associated with using the ASHRAE ZONE method for R-value calculations of metal frame walls. ASHRAE Trans 101:2

    Google Scholar 

  • Kośny J, Kossecka E (2000) Computer modeling of complex wall assemblies—some accuracy problems. In: Proceedings of the international building physics conference, Eindhoven, The Netherlands

    Google Scholar 

  • Kośny J, Kossecka E (2002) Multidimensional heat transfer through complex building envelope assemblies in energy simulation programs. Energy Build 34:445–454

    Google Scholar 

  • Kośny J, Kossecka E (2013) Understanding a potential for application of phase-change materials (PCMs) in building envelopes. In: Proceedings of the ASHRAE 2013 winter conference, ASHRAE transactions, vol 119. Part 1. DA-13-001, Dallas, TX, 26–30 Jan 2013

    Google Scholar 

  • Kośny J, Kossecka E, Desjarlais AO, Christian JE (1998) Dynamic thermal performance of concrete and masonry walls. In: Proceedings of DOE, ASHRAE, ORNL conference—thermal envelopes VII, Clearwater, Florida, Dec 1998

    Google Scholar 

  • Kośny J, Yarbrough DW, Syed AM (2007a) Performance of thermal insulation containing microencapsulated phase change material. In: ITCC29 and ITES17 conference, Birmingham, 24–27 June 2007

    Google Scholar 

  • Kośny J, Yarbrough DW, Miller W, Childs P, Syed AM (2007b) Thermal performance of PCM-enhanced building envelope systems. In: Proceedings of X conference—thermal performance of the exterior envelopes of buildings, Clearwater, Florida, Dec 2007

    Google Scholar 

  • Kośny J, Yarbrough DW, Miller WA (2008a) Use of PCM-enhanced insulations in the building envelope. J Build Enclosure Des (Summer/Fall)

    Google Scholar 

  • Kośny J, Yarbrough DW, Miller WA (2008b) Experimental analysis of dynamic thermal performance of building shell components containing phase change materials. Building Enclosure Technology and Environment Council (BETEC) of the National Institute of Building Sciences BEST1 Conference, 10 June 2008

    Google Scholar 

  • Kośny J, Stovall TK, Yarbrough DW (2009a) Dynamic heat flow measurements to study the distribution of phase-change material in an insulation matrix. In: Proceedings of the 2009 international thermal conductivity conference (ITCC) and the international thermal expansion symposium (ITES), Pittsburgh, Aug 29–Sept 2 2009

    Google Scholar 

  • Kośny J, Kossecka E, Yarbrough DW (2009b) Use of a heat flow meter to determine active PCM content in an insulation. In: Proceedings of the 2009 international thermal conductivity conference (ITCC) and the international thermal expansion symposium (ITES), Pittsburgh, Aug 29–Sept 2 2009

    Google Scholar 

  • Kośny J, Yarbrough DW, Riazzi T, Leuthold D, Smith JB, Bianchi M (2009c) Development and testing of ignition resistant microencapsulated phase change material. In: Proceedings of the Effstock 2009—the 11th international conference on thermal energy storage, Stockholm, Sweden, 14–17 June 2009

    Google Scholar 

  • Kośny J, Stovall T, Yarbrough DW (2009d) Dynamic heat flow measurements to study the distribution of phase-change material in an insulation matrix. In: Proceedings of the 2009 international thermal conductivity conference (ITCC) and the international thermal expansion symposium (ITES), Pittsburgh, Aug 29–Sept 2 2009

    Google Scholar 

  • Kośny J, Stovall T, Shrestha S, Yarbrough D (2010a) Theoretical and experimental thermal performance analysis of complex thermal storage membrane containing bio-based phase-change material (PCM). In: Proceedings of DOE, ASHRAE, ORNL conference -thermal envelopes XI—thermal performance of the exterior envelopes of buildings, Clearwater, Florida, Dec 2010

    Google Scholar 

  • Kośny J, Miller W, Zaltash A (2010b) Dynamic thermally-disconnected building envelopes—a new paradigm for walls and roofs in low energy buildings. In: Proceedings of DOE, ASHRAE, ORNL conference—thermal envelopes XI—thermal performance of the exterior envelopes of buildings, Clearwater, Florida, Dec 2010

    Google Scholar 

  • Kośny J, Yarbrough D, Miller W, Shrestha S, Kossecka E, Lee E (2010c) Numerical and experimental analysis of building envelopes containing blown fiberglass insulation thermally enhanced with phase change material (PCM). In: Proceedings of the 1st Central European symposium on building physics, Cracow, Poland, Sept 2010

    Google Scholar 

  • Kośny J, Biswas K, Miller WA, Kriner S (2012a) Field thermal performance of naturally ventilated solar roof with PCM heat sink. Solar Energy 86(9):2504–2514

    Google Scholar 

  • Kośny J, Kossecka E, Brzezinski B, Tleoubaev A, Yarbrough D (2012b) Dynamic thermal performance analysis of fiber insulations containing bio-based phase change materials (PCMs). Energy Build 52:122–131

    Google Scholar 

  • Kośny J, Fallahi A, Shukla N (2013) Cost analysis of simple phase change material-enhanced building envelopes in Southern US Climates, DOE building America report, submitted to the US department of energy building technology program, Jan 2013. http://www.eereblogs.energy.gov/buildingenvelope/file.axd?file=2013%2F1%2Fcost_analysis_simplephase_change_material-enhanced_building_envelopes_southernclimates.pdf

  • Kossecka E, Kośny J (1996) Relations between structural and dynamic thermal characteristics of building walls. In: Proceedings of 1996 international symposium of CIB W67 energy and mass flow in the life cycle of buildings, Vienna, 4–10 Aug 1996, pp 627–632

    Google Scholar 

  • Kossecka E, Kośny J (1997) Equivalent wall as a dynamic model of the complex thermal structure. J Therm Insul Build Envelopes 20:249–268

    Google Scholar 

  • Kossecka E, Kośny J (1998) Effect of insulation and mass distribution in exterior walls on the dynamic thermal performance of a whole buildings. In: Proceedings of DOE, ASHRAE, ORNL conference—thermal envelopes VII, Clearwater, Florida, Dec 1998

    Google Scholar 

  • Kossecka E, Kośny J (2001) Modelling three-dimensional heat transfer through composite wall assemblies. In: Proceedings of the VIII conference building physics in theory and practice, Technical University of Lodz, Poland, June 2001, pp 313–320

    Google Scholar 

  • Kossecka E, Kośny J (2008) Hot box testing of building envelope assemblies; a simplified procedure for estimation of minimum time of the test. J Test Eval (JTE) 36(3). ISSN: 0090-3973

    Google Scholar 

  • Kossecka E, Kośny J (2009) Dynamiczna Metoda Pomiaru Zawartosci Materialu Fazowo-Zmiennego w Izolacji (Dynamic method of analyzing PCM content in thermal insulations). In: Proceedings of the XII conference building physics in theory and practice, £ódz, Poland, 23–26 June 2009. ISSN 1734-4891

    Google Scholar 

  • Kossecka E, Kośny J (2010) Thermal balance of a wall with PCM-enhanced thermal insulation. In: Proceedings of the 1st central European symposium on building physics, Cracow, Poland, Sept 2010

    Google Scholar 

  • Künzel H (1994) Simultaneous heat and moisture transport in building components. One- and two-dimensional calculation using simple parameters. Ph.D. Thesis, Fraunhofer institute of building physics, Universität Stuttgart, Germany

    Google Scholar 

  • Kunzel H (1995) Simultaneous heat and moisture transport in building components. Ph.D. thesis. Wiley IRB Verlag, Stuttgart

    Google Scholar 

  • Kuznik F, Virgone J (2009) Experimental investigation of wallboard containing phase change material: data for validation of numerical modeling. Energy Build 41(5):561–570

    Article  Google Scholar 

  • Kuznik F, Virgone J, Noel J (2007) Optimization of a phase change material wallboard for building use. Appl Therm Eng 28:1291–1298

    Article  Google Scholar 

  • Kuznik F, Virgone J, Johannes K (2010) Development and validation of a new TRNSYS type for the simulation of external building walls containing PCM. Energy Build 42(7):1004–1009

    Article  Google Scholar 

  • Lamberg P (2003) Mathematical modeling and experimental investigation of melting and solidification in a finned phase change material storage. Helsinki University of Technology. Department of Mechanical Engineering, Helsinki, Finland

    Google Scholar 

  • Lamberg P, Jokisalo J, Sirén K (2000) The effects on indoor comfort when using phase change material with building concrete products. In: Proceedings of healthy buildings, SIY indoor air information OY, vol 2. pp 751–756

    Google Scholar 

  • Lamberg P, Lehtiniemi R, Henell AM (2004) Numerical and experimental investigation of melting and freezing processes in phase change material storage. Int J Therm Sci 43(Compendex):277–287

    Google Scholar 

  • Lazaro A et al. (2013) Intercomparative tests on phase change materials characterization with differential scanning calorimeter. Appl Energy 109:415–420

    Google Scholar 

  • Lee T, Hawes DW, Banu D, Feldman D (2000) Control aspects of latent heat storage and recovery in concrete. Solar Energy Mater & Solar Cells 62:217–237

    Google Scholar 

  • Lee AS, Hittle DC (2005) Encapsulated paraffin wax in floor tiles for thermal energy storage. In: Proceedings of the clima 2005 conference, Lausanne, Switzerland

    Google Scholar 

  • Lemmon E (1981) Multidimensional integral phase change approximations for finite element conduction codes. In: Lewis RW, Morgan K, Zienkiewicz OC (eds) Numerical methods in heat transfer. Wiley, New York, pp 201–213

    Google Scholar 

  • Liu H, Awbi HB (2008) Performance of phase change material boards under natural convection. Build Environ 44:1788–1793

    Article  Google Scholar 

  • Lomas KJ, Eppel H, Martin CJ, Bloomfield DP (1997) Empirical validation of building energy simulation programs. Energy Build 26(1997):253–275

    Article  Google Scholar 

  • Lunardini VJ (1981) Heat transfer in cold climates. Van Nostrand Reinhold, New York

    Google Scholar 

  • Medina MA, Stewart R (2008) Phase-change frame walls (PCFWs) for peak demand reduction, load shifting, energy conservation and comfort. In: Proceedings of 16th symposium on improving building systems in hot and humid climates, Plano, TX, 16–17 Dec 2008

    Google Scholar 

  • Miller W, Kośny J (2008) Next generation roofs and attics for residential homes. 2008 ACEEE summer study on energy efficiency in buildings, Pacific Grove, California, 17–22 Aug 2008

    Google Scholar 

  • Miller W, Kośny J, Shrestha S, Christian J, Karagiozis A, Kohler C, Dinse D (2010) Advanced residential envelopes for two pair of energy-saver homes. In: Proceedings of 2010 ACEEE summer study on energy efficiency in building, Pacific Grove, California, 15–20 Aug 2010

    Google Scholar 

  • Minkowycz WJ, Sparrow EM, Murthy JY (eds) (2006) Handbook of numerical heat transfer, 2nd edn. Wiley, New York

    Google Scholar 

  • Mitalas GP, Stephenson DG (1971) Calculation of heat conduction transfer functions for multi-layer slabs. National research council of Canada, division of building research, ASHRAE 1971, Atlanta

    Google Scholar 

  • Morgan K, Lewis RW, Zienkiewicz OC (1978) An improved algorithm for heat conduction problems with phase change. Int J Numer Methods Eng 12:1191–1195

    Google Scholar 

  • Muhieddine M, Canot E, March R (2009) Various approaches for solving problems in heat conduction with phase change. Int J Finite 6

    Google Scholar 

  • Noel J, Roux J-J, Schneider PS (2001) CoDyBa, a design tool for buildings performance simulation. In: Proceedings of the 7th international IBPSA conference, Rio de Janeiro, Brazil, 13–15 Aug 2001

    Google Scholar 

  • Ogoh W, Groulx D (2010) Stefan’s problem: validation of a one-dimensional solid-liquid phase change heat transfer process. In: Proceedings of the COMSOL conference, 2010 Boston, USA

    Google Scholar 

  • Ozısık MN (1993) Heat conduction, 2nd edn. Wiley, New York

    Google Scholar 

  • Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere Publishing Corporation, New York

    Google Scholar 

  • Pedersen CR (1990) Combined heat and moisture transfer in building constructions. Ph.D. Thesis, Technical University of Denmark, Report no. 214

    Google Scholar 

  • Pedersen CO (2007) Advanced zone simulation in EnergyPlus: incorporation of variable properties and phase change materials (PCM) capability. In: Proceedings of the 10th international IBPSA conference, Beijing, China, pp. 1341–1345

    Google Scholar 

  • Petrie TW, Childs KW, Childs PW, Christian JE, Shramo DJ (1997) Thermal behavior of mixtures of perlite and phase change material in a simulated climate. In: Graves RS, Zarr RR (eds) Insulation materials: testing and applications: third volume, ASTM STP 1320. ASTM—American Society for Testing and Materials, West Conshohocken, pp 180–194

    Chapter  Google Scholar 

  • Pham QT (1985) A fast, unconditionally stable finite-difference scheme for heat conduction with phase change. Int J Heat Mass Transf 28:2079–2084

    Google Scholar 

  • Pham QT (2006) Modeling heat and mass transfer in frozen foods: a review. Int J Refrig 29:876–888

    Google Scholar 

  • Poirier DJ (1988) On numerical methods used in mathematical modeling of phase change in liquid metals. J Heat Transf 110:562–570

    Google Scholar 

  • Ponechal R (2009) An experimental study and simulations of phase change materials in an office thermal environment. Slovak J Civ Eng 3:24–29

    Google Scholar 

  • Poulad ME, Fung AS, Naylor D (2011) Effects of convective heat transfer coefficient on the ability of PCM to reduce energy demand. In: Proceedings of building simulation 2011: 12th conference of international building performance simulation association, Sydney, 14–16 Nov

    Google Scholar 

  • Regin AF, Solanki SC, Saini JS (2008) Heat transfer characteristics of thermal energy storage system using PCM capsules: a review. Renew Sustain Energy Rev 12:–2438–2458

    Google Scholar 

  • Regin AF, Solanki S, Saini J (2009) An analysis of a packed bed latent heat thermal energy storage system using PCM capsules: numerical investigation. Renew Energy 34(7):1765–1773

    Article  Google Scholar 

  • Riza M (2007) Thermal characteristics of eutectic mixture of capric-lauric acids as phase change material (PCM) in gypsum board. Jurnal Teknologi Proses, Media Publikasi Karya Ilmiah Teknik Kimia 6(1):31–38. ISSN 1412-7814

    Google Scholar 

  • Rode C, Grau K, Sørensen LC, Christoffersen LD (2002) Application of a computer model for integrated hygrothermal building analysis. In: Proceedings of 11th symposium for building physics, Dresden, Germany, Sept 2002

    Google Scholar 

  • Rode C, Salonvaara M, Ojanen T, Simonson C, Grau K (2003) Integrated hygrothermal analysis of ecological buildings. In: Proceedings of the 2nd international building physics conference, Leuven, Belgium, 14–18 Sept 2003

    Google Scholar 

  • Romanowska A, Jablonski M, Klemm P (1998) Kompozyt Ceramiczny o Podwyzszonej Akumulacji Ciepła. In: Proceeding of the IV polish engineering and technological conference Energodom ’98, Krakow, Poland, pp 164–171 (in Polish)

    Google Scholar 

  • Romero-Sánchez MD, Guillem-López C, López-Buendía AM, Stamatiadou M, Mandilaras I, Katsourinis D, Founti M (2012) Treatment of natural stones with phase change materials: experiments and computational approaches. Appl Therm Eng 48:136–143

    Google Scholar 

  • Rose J, Lahme A, Christensen NU, Heiselberg P, Hansen M, Grau K (2009) Numerical method for calculating latent heat storage in constructions containing phase change material. In: Proceedings of the 11th international IBPSA conference, Glasgow, Scotland, pp 400–407

    Google Scholar 

  • Rozanna D, Salmiah A, Chuah TG, Medyan R, Thomas Choong SY, Sa’Ari M (2005) A study on thermal characteristics of phase change material (PCM) in gypsum board for building application. J Oil Palm Res 17:41–46

    Google Scholar 

  • Rubinstein LI (1971) The Stefan problem. Amer Math Soc (Translated from Russian)

    Google Scholar 

  • Sadasivam S, Almeida F, Zhang D, Fung AS (2011) An iterative enthalpy method to overcome the limitations in ESP-r’s PCM solution algorithm. ASHRAE Trans 117:100–107

    Google Scholar 

  • Salyer IO, Sircar AK, Kumar A (1995) Advanced phase change materials technology: evaluation in lightweight solite hollow-core building blocks. In: Proceedings of the 30th intersociety energy conversion engineering conference, Orlando, FL, USA. 217–224

    Google Scholar 

  • Scarpa M, Grau K, Olesen BW (2009) Development and validation of a versatile method for the calculation of heat transfer in water-based radiant systems. In: Proceedings of IBPSA BS2009, University of Strathclyde, Glasgow, 27–30 July 2009, pp 688–695

    Google Scholar 

  • Schossig P, Henning HM, Raicu A, Haussmann T (2003) Mikroverkapselte phasenwechselmaterialien in baustoffen. In: Proceedings of 13th symposium thermische solarenergie OTTI Technologie-Kolleg, Staffelstein, Germany. 489–494

    Google Scholar 

  • Schossig P, Henning HM, Gschwander S, Haussmann T (2005) Micro-encapsulated phase-change materials integrated into construction materials. Sol Energy Mater Sol Cells 89(2–3):297–306

    Article  Google Scholar 

  • Schranzhofer H, Puschnig P, Heinz A, Streicher W (2006) Validation of a TRNSYS simulation model for PCM energy storages and PCM wall construction elements. In: Proceedings of ECOSTOCK 2006—10th international conference on thermal energy storage. Pomona, NJ

    Google Scholar 

  • Shamsundar N, Sparrow EM (1975) Analysis of multidimensional conduction phase change via the enthalpy model. J Heat Transf 97:333–340

    Article  Google Scholar 

  • Sharma A, Sharma SD, Buddhi D, Won LD (2006) Effect of thermo physical properties of heat exchanger material on the performance of latent heat storage system using an enthalpy method. Int J Energy Res 30(2006):191–201

    Article  Google Scholar 

  • Sharma A, Tyagi VV, Chen CR, Buddhi D (2009) Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev 13(2009):318–345

    Article  Google Scholar 

  • Shrestha M (2012) PCM application-effect on energy use and IA temperature. Norwegian university of science and technology, Faculty of architecture and fine arts. M.Sc. thesis—sustainable architecture, 01 July 2012

    Google Scholar 

  • Shukla NC, Fallahi A, Kośny J, Harasim S, Blair C (2012) Aerogel for thermal insulation of interior wall retrofits in cold climates. The building enclosure science and technology (BEST), AIA conference, Atlanta, April 2012

    Google Scholar 

  • Sigalas G (2011) Computational optimization of passive use of phase change materials in lightweight low-energy houses. Graduation project report for the sustainable energy technology master program, Department of the built environment, Eindhoven University of Technology, The Netherlands. Sept 2011

    Google Scholar 

  • Solomon AD (1979) An easily computable solution to a two-phase stefan problem. Sol Energy 23(6):525–528

    Google Scholar 

  • Solomon AD, Wilson DG, Alexiades V (1984) The quasi-stationary approximation for the stefan problem with a convective boundary condition. Int J Math Matm Sci 7(3):549–563

    Google Scholar 

  • Solomon AD, Wilson DG, Alexiades V (1986) An approximate analysis of the formation of a buoyant solid sphere in a supercooled melt, ORNL-6212 Oak Ridge National Laboratory, project report

    Google Scholar 

  • Solomon A, Alexiades V, Wilson DG (1990) The mathematical modeling of melting and freezing processes. Hemisphere Press

    Google Scholar 

  • Spaeh GC (2012) Thermal storage with PCM vs. Thermal insulation in warm and hot climates. In: Proceedings of the 27th RCI international convention and show, Dallas, TX, 15–20 March 2012

    Google Scholar 

  • Stefan J (1889) Uber Einige Probleme der Theorie der Warmeleitung. Sitzungsber Wiener Akad Math Naturwiss Abt 98(1889):473–484

    Google Scholar 

  • Stefanescu DM (2009) Science and engineering of casting solidification, 2nd edn. Springer, Berlin

    Google Scholar 

  • Stetiu C, Feustel HE (1996) Phase change wallboard as an alternative to compressor cooling in California residences. In: Proceedings of the ACEEE 1996 summer study on energy efficiency in buildings, vol 10. Washington, D.C., American Council for an Energy-Efficient Economy, pp 157–163

    Google Scholar 

  • Stetiu C, Feustel HE, Winkelmann FC (1995) Development of a model to simulate the performance of hydronic radiant cooling ceilings. ASHRAE Trans 101(2):730–743

    Google Scholar 

  • Stovall TK, Karagiozis AN (2004) Airflow in the ventilation space behind a rain screen wall. In: Proceedings of IX conference—thermal performance of the exterior envelopes of buildings, Clearwater, Florida, Dec 2004

    Google Scholar 

  • Stovall TK, Tomlinson JJ (1995) What are the potential benefits of including latent storage in common wallboard? J Sol Energy Eng 117

    Google Scholar 

  • Strachan PA (2000) ‘ESP-r: Summary of validation studies. ESRU technical report, University of Strathclyde, Glasgow, UK

    Google Scholar 

  • Stritih U, Butala V (2010) Experimental investigation of energy saving in buildings with PCM cold storage. Int J Refrig 33(8):1676–1683

    Google Scholar 

  • Stritih U, Medved S (1994) Use of phase change materials in the wall with TIM. Strojniski Vestnik/J Mech Eng 40:155–160

    Google Scholar 

  • Stritih U, Novak P (1996) Solar heat storage wall for building ventilation. Renewable Energy 8:268–71

    Google Scholar 

  • Susman G, Dehouche Z, Cheechern T, Craig S (2011) Tests of prototype PCM ‘sails’ for office cooling. Appl Therm Eng 31:717–726

    Article  Google Scholar 

  • Swaminathan CR, Voller VR (1993) On the enthalpy method. Int J Numer Meth Heat Fluid Flow 3(1993):233–244

    Article  Google Scholar 

  • Tabares-Velasco PC (2012) Energy impacts of nonlinear behavior of PCM when applied into building envelope. In: Proceedings of the ASME 2012 6th international conference on energy sustainability and 10th fuel cell science, engineering and technology conference, San Diego, California, 23–26 July 2012

    Google Scholar 

  • Tabares-Velasco PC, Christensen C, Bianchi M (2012) Verification and validation of energyplus phase change material model for opaque wall assemblies. Build Environ 54:186–196. NREL Report No. JA-5500-54019, August 2012

    Google Scholar 

  • Tardieu A, Behzadi S, Chen JJ, Farid M (2011) Computer simulation and experimental measurements for an experimental PCM-impregnated office building. In: Proceedings of the building simulation 2011: 12th conference of international building performance simulation association, vol. 1, pp 56–63

    Google Scholar 

  • Tikhonov AN, Samarskii AA (1963) Equations of mathematical physics. Pergamon Press, UK

    Google Scholar 

  • Tomlinson J, Heberle D (1990) Analysis of wallboard containing a phase change material. In: Proceedings of the 25th intersociety energy conversion engineering conference, Published by IEEE, vol 4. Reno, NV, USA, 12–17 Aug 1990

    Google Scholar 

  • Ubiñas RE, Cronemberger J, Vega Sánchez S, García Santos A (2009) Performance of passive application of PCM in Spain. In: Proceedings of: I Congreso Internacional de Investigación en Edificación, Madrit, Spain, 24–26 June

    Google Scholar 

  • Verma P, Varun P, Singal SK (2008) Review of mathematical modeling on latent heat thermal energy storage systems using phase-change material. Renew Sustain Energy Rev 12:999–1031

    Google Scholar 

  • Virgone J, Noël J, Reisdorf R (2009) Numerical study of the influence of the thickness and melting point on the effectiveness of phase change materials: application to the renovation of a low inertia school. In: Proceedings of the 11th international IBPSA conference. Glasgow, Scotland, 27–30 July 2009

    Google Scholar 

  • Voller VR (1990) Fast implicit finite-difference method for the analysis of phase change problems. Numer Heat Transf Part B Fundam 17:155–169

    Article  Google Scholar 

  • Voller VR (1997) An overview of numerical methods for solving phase change problems. In: Minkowycz WJ, Sparrow EM (eds) Advances in numerical heat transfer. Taylor & Francis, UK, pp 341–380

    Google Scholar 

  • Voller VR, Cross M (1983) Application of control volume enthalpy methods in the solution of Stefan problems. In: Lewis RW, Morgan K, Johnson JA, Smith R, Smith WR (eds) Computational techniques in heat transfer, vol 1. Pineridge Press, Swansea, pp 245–275

    Google Scholar 

  • Voller VR, Swenson JB, Kim W, Paola C (2006) An enthalpy method for moving boundary problems on the earth’s surface. Int J Numer Methods Heat and Fluid Flow 16(6):41–54

    Google Scholar 

  • Ye WB, Zhu DS, Wang N (2011) Numerical simulation on phase-change thermal storage/release in a plate-fin unit. Appl Therm Eng 31:3871–3884

    Article  Google Scholar 

  • Zalba B, Marın JM, Cabeza LF, Mehling H (2003) Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng 23:251–283

    Article  Google Scholar 

  • Zeng X, Faghri A (1994a) Temperature-transforming model for binary solid–liquid phase-change problems. Part I: Mathematical Modeling and Numerical Methodology. Numer Heat Transf Part B Fundam 25:467–80

    Google Scholar 

  • Zeng X, Faghri A (1994b) Temperature-transforming model for binary solid-liquid phase-change problems. Part II: numerical simulation. Numer Heat Transf Part B: Fundam 25:481–500

    Article  Google Scholar 

  • Zhang Y, Jiang Y, Jiang Y (1999) A simple method, the t-history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials. Measur Sci Technol 10:201–205

    Article  Google Scholar 

  • Zhang D, Li Z, Zhou J, Wu K (2004) Development of thermal energy storage concrete. Cem Concr Res 34(Compendex):927–34

    Google Scholar 

  • Zhanhua M, Yuwen Z (2006) Solid velocity correction schemes for a temperature transforming model for convection phase change. Int J Numer Meth Heat Fluid Flow 16:204–225

    Article  Google Scholar 

  • Zhou G, Zhang Y, Wang X, Lin K, Xiao W (2007) An assessment of mixed type PCM-gypsum and shape-stabilized PCM plates in a building for passive solar heating. Sol Energy 81:1351–1360

    Article  Google Scholar 

  • Zhou G, Zhang Y, Kunping L, Xiao V (2008) Thermal analysis of a direct-gain room with shape-stabilized PCM plates. Renew Energy 33:1228–1236

    Article  Google Scholar 

  • Zhuang C-L, Deng A-Z, Chen Y, Li S-B, Zhang H-Y, Fan G-Z (2010) Validation of Veracity on simulating the indoor temperature in PCM light weight building by EnergyPlus. In: Proceedings of the 2010 international conference on life system modeling and intelligent computing, and 2010 international conference on intelligent computing for sustainable energy and environment: part I, LSMS/ICSEE’10. Springer, Berlin, pp 486–496

    Google Scholar 

  • Zöller A, Jung M, Schmidt M, Brenner T, Gatzka B, Schossig P, Haussmann T (2008) Abschlussbericht zum Verbundforschungsvorhaben‚ Aktive Latentspeichersysteme für Gebäude. Fraunhofer ISE, Gemeinsamer Bericht aller Projektteilnehmer in den Teilprojekten 0327370G-K, 0327370S

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kośny .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kośny, J. (2015). Thermal and Energy Modeling of PCM-Enhanced Building Envelopes. In: PCM-Enhanced Building Components. Engineering Materials and Processes. Springer, Cham. https://doi.org/10.1007/978-3-319-14286-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14286-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14285-2

  • Online ISBN: 978-3-319-14286-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics