Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 589))

Abstract

A central topic in Natural Language Processing (NLP) is the design of effective linguistic processors suitable for the target applications. Within this scenario, Convolution Kernels provide a powerful method to directly apply Machine Learning algorithms to complex structures representing linguistic information. The main topic of this work is the definition of the semantically Smoothed Partial Tree Kernel (SPTK), a generalized formulation of one of the most performant Convolution Kernels, i.e. the Tree Kernel (TK), by extending the similarity between tree structures with node similarities. The main characteristic of SPTK is its ability to measure the similarity between syntactic tree structures, which are partially similar and whose nodes can differ but are nevertheless semantically related. One of the most important outcomes is that SPTK allows for embedding external lexical information in the kernel function only through a similarity function among lexical nodes. The SPTK has been evaluated in three complex automatic Semantic Processing tasks: Question Classification in Question Answering, Verb Classification and Semantic Role Labeling. Although these tasks address different problems, state-of-the-art results have been achieved in every evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    It implies that \(n_c(n_{1})=n_c(n_{2})\).

  2. 2.

    http://disi.unitn.it/moschitti/Tree-Kernel.htm.

  3. 3.

    http://cogcomp.cs.illinois.edu/Data/QA/QC/.

  4. 4.

    Note that in [37], higher accuracy values for smoothed STK are shown for different parameters but the best according to a validation set is not highlighted.

  5. 5.

    The average running time of the SK is much higher than the one of PTK. When a tree is composed by only one level PTK collapses to SK.

  6. 6.

    Using one of the 8 processors of an Intel(R) Xeon(R) CPU E5430 @ 2.66 GHz machine, 32 Gb Ram.

References

  1. Baeza-Yates, R.A., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley, Boston (1999)

    Google Scholar 

  2. Kwok, C.C., Etzioni, O., Weld, D.S.: Scaling question answering to the web. In: World Wide Web, pp. 150–161 (2001)

    Google Scholar 

  3. Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found. Trends Inf. Retr. 2(1–2), 1–135 (2008)

    Article  Google Scholar 

  4. Jelinek, F.: Statistical Methods for Speech Recognition. The MIT Press, Cambridge (1998)

    Google Scholar 

  5. Manning, C.D., Schütze, H.: Foundations of Statistical Natural Language Processing. MIT Press, Cambridge (1999)

    MATH  Google Scholar 

  6. Vapnik, V.N.: Statistical Learning Theory. Wiley-Interscience, New York (1998)

    MATH  Google Scholar 

  7. Collins, M., Duffy, N.: Convolution kernels for natural language. In: Proceedings of Neural Information Processing Systems (NIPS’2001), pp. 625–632 (2001)

    Google Scholar 

  8. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press (2004).

    Google Scholar 

  9. Johansson, R., Nugues, P.: The effect of syntactic representation on semantic role labeling. In: Proceedings of COLING, Manchester, 18–22 Aug 2008

    Google Scholar 

  10. Pado, S., Lapata, M.: Dependency-based construction of semantic space models. Comput. Linguist. 33(2), (2007)

    Google Scholar 

  11. Sahlgren, M.: The Word-space model. PhD thesis, Stockholm University (2006)

    Google Scholar 

  12. Schütze, H.: Word space. In: Advances in Neural Information Processing Systems 5, pp. 895–902. Morgan Kaufmann (1993)

    Google Scholar 

  13. Li, X., Roth, D.: Learning question classifiers. In: Proceedings of ACL’02 (2002)

    Google Scholar 

  14. Brown, S.W., Dligach, D., Palmer, M.: Verbnet class assignment as a WSD task. In: Proceedings of the Ninth International Conference on Computational Semantics, IWCS’11, pp. 85–94. Association for Computational Linguistics, Stroudsburg (2011)

    Google Scholar 

  15. Gildea, D., Palmer, M.: The necessity of parsing for predicate argument recognition. In: Proceedings of the 40th Annual Conference of the Association for Computational Linguistics (ACL-02), Philadelphia (2002)

    Google Scholar 

  16. Gildea, D., Jurafsky, D.: Automatic Labeling of Semantic Roles. Comput. Linguist. 28(3), 245–288 (2002)

    Article  Google Scholar 

  17. Fillmore, C.J.: Frames and the semantics of understanding. Quaderni di Semantica 4(2), 222–254 (1985)

    Google Scholar 

  18. Palmer, M., Kingsbury, P., Gildea, D.: The proposition bank: an annotated corpus of semantic roles. Comput. Linguist. 31(1), 71–106 (2005)

    Article  Google Scholar 

  19. Baker, C.F., Fillmore, C.J., Lowe, J.B.: The Berkeley FrameNet project. In: Proceedings of COLING-ACL, Montreal, Canada (1998)

    Google Scholar 

  20. Carreras, X., Màrquez, L.: Introduction to the CoNLL-2005 Shared Task: Semantic Role Labeling. In: Proceedings of CoNLL-2005, Ann Arbor, Michigan, June 2005, pp. 152–164

    Google Scholar 

  21. Pradhan, S., Hacioglu, K., Krugler, V., Ward, W., Martin, J.H.: Support vector learning for semantic argument classification. Mach. Learn. J. 60(1–3), 11–39 (2005)

    Article  Google Scholar 

  22. Coppola, B., Moschitti, A., Riccardi, G.: Shallow semantic parsing for spoken language understanding. In: Proceedings of NAACL’09, pp. 85–88. Morristown, NJ (2009)

    Google Scholar 

  23. Moschitti, A., Pighin, D., Basili, R.: Tree kernels for semantic role labeling. Comput. Linguist. 34(2), 193–224 (2008)

    Article  MathSciNet  Google Scholar 

  24. Firth, J.: A synopsis of linguistic theory 1930–1955. In: Studies in Linguistic Analysis. Philological Society, Oxford (1957) reprinted in Palmer, F. (ed.) Selected Papers of J. R. Firth, Longman, Harlow (1968)

    Google Scholar 

  25. Wittgenstein, L.: Philosophical Investigations. Blackwells, Oxford (1953)

    Google Scholar 

  26. Pantel, P., Bhagat, R., Coppola, B., Chklovski, T., Hovy, E.: ISP: Learning inferential selectional preferences. In: Proceedings of HLT/NAACL (2007)

    Google Scholar 

  27. Turney, P.D., Pantel, P.: From frequency to meaning: Vector space models of semantics. J. Artif. Intell. Res. 37, 141–188 (2010)

    MATH  MathSciNet  Google Scholar 

  28. Landauer, T., Dumais, S.: A solution to plato’s problem: the latent semantic analysis theory of acquisition, induction and representation of knowledge. Psychol. Rev. 104 (1997)

    Google Scholar 

  29. Golub, G., Kahan, W.: Calculating the singular values and pseudo-inverse of a matrix. J. Soc. Ind. Appl. Math.: Ser. B, Numer. Anal. 2(2), 205–224 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  30. Cristianini, N., Shawe-Taylor, J., Lodhi, H.: Latent semantic kernels. In: Brodley, C., Danyluk, A. (eds.) Proceedings of the 18th International Conference on Machine Learning (ICML-01), pp. 66–73. Morgan Kaufmann Publishers, San Francisco, Williams College (2001)

    Google Scholar 

  31. Mitchell, J., Lapata, M.: Composition in distributional models of semantics. Cogn. Sci. 34, 1388–1429 (2010)

    Article  Google Scholar 

  32. Annesi, P., Storch, V., Basili, R.: Space projections as distributional models for semantic composition. In: Proceedings of the 13th International Conference on Computational Linguistics and Intelligent Text Processing, CICLing’12. Springer (2012)

    Google Scholar 

  33. Baroni, M., Lenci, A.: One distributional memory, many semantic spaces. In: Proceedings of the GEMS 2009 Workshop. GEMS’09, pp. 1–8. Stroudsburg (2009)

    Google Scholar 

  34. Clark, S., Pulman, S.: Combining symbolic and distributional models of meaning. In: Proceedings of the AAAI Spring Symposium on Quantum Interaction, pp. 52–55 (2007)

    Google Scholar 

  35. Grefenstette, E., Sadrzadeh, M.: Experimental support for a categorical compositional distributional model of meaning. In: Proceedings of EMNLP 2011, Edinburgh, Scotland, UK (2011)

    Google Scholar 

  36. Zanzotto, F.M., Korkontzelos, I., Fallucchi, F., Manandhar, S.: Estimating linear models for compositional distributional semantics. In: Proceedings of the 23rd International Conference on Computational Linguistics (COLING’10), pp. 1263–1271. Association for Computational Linguistics, Stroudsburg (2010)

    Google Scholar 

  37. Bloehdorn, S., Moschitti, A.: Structure and semantics for expressive text kernels. In: Proceedings of CIKM (2007)

    Google Scholar 

  38. Mehdad, Y., Moschitti, A., Zanzotto, F.M.: Syntactic/semantic structures for textual entailment recognition. In: HLT-NAACL, pp. 1020–1028 (2010)

    Google Scholar 

  39. Moschitti, A.: Efficient convolution kernels for dependency and constituent syntactic trees. In: 17th European Conference on Machine Learning, Proceedings, Machine Learning: ECML 2006, pp. 318–329. ECML, Berlin, Germany, Sept 2006

    Google Scholar 

  40. Cancedda, N., Gaussier, E., Goutte, C., Renders, J.M.: Word sequence kernels. J. Mach. Learn. Res. 3, 1059–1082 (2003)

    MATH  MathSciNet  Google Scholar 

  41. Joachims, T.: Estimating the generalization performance of a SVM efficiently. In: Proceedings of ICML’00 (2000)

    Google Scholar 

  42. Charniak, E.: A maximum-entropy-inspired parser. In: Proceedings of NAACL’00 (2000)

    Google Scholar 

  43. Johansson, R., Nugues, P.: Dependency-based syntactic-semantic analysis with PropBank and NomBank. In: Proceedings of the Twelfth Conference on Natural Language Learning (CoNLL 2008), pp. 183–187. Manchester (2008)

    Google Scholar 

  44. Baroni, M., Bernardini, S., Ferraresi, A., Zanchetta, E.: The wacky wide web: a collection of very large linguistically processed web-crawled corpora. Lang. Res. Eval. 43(3), 209–226 (2009)

    Article  Google Scholar 

  45. Yeh, A.S.: More accurate tests for the statistical significance of result differences. In: COLING, pp. 947–953 (2000)

    Google Scholar 

  46. Padó, S.: User’s guide to sigf: significance testing by approximate randomisation (2006)

    Google Scholar 

  47. Zhang, D., Lee, W.S.: Question classification using support vector machines. In: Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Informaion Retrieval, pp. 26–32. ACM Press (2003)

    Google Scholar 

  48. Schuler, K.K.: VerbNet: A broad-coverage, comprehensive verb lexicon. PhD thesis, University of Pennsylyania (2005)

    Google Scholar 

  49. Loper, E., ting Yi, S., Palmer, M.: Combining lexical resources: mapping between propbank and verbnet. In: Proceedings of the 7th International Workshop on Computational Linguistics (2007)

    Google Scholar 

  50. Rifkin, R., Klautau, A.: In defense of one-vs-all classification. J. Mach. Learn. Res. 5, 101–141 (2004)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danilo Croce .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Croce, D., Basili, R., Moschitti, A. (2015). Semantic Tree Kernels for Statistical Natural Language Learning. In: Basili, R., Bosco, C., Delmonte, R., Moschitti, A., Simi, M. (eds) Harmonization and Development of Resources and Tools for Italian Natural Language Processing within the PARLI Project. Studies in Computational Intelligence, vol 589. Springer, Cham. https://doi.org/10.1007/978-3-319-14206-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14206-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14205-0

  • Online ISBN: 978-3-319-14206-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics