Skip to main content

Visual Features Extraction and Types Classification of Seabed Sediments

  • Conference paper
Intelligent Robotics and Applications (ICIRA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8917))

Included in the following conference series:

  • 3254 Accesses

Abstract

The purpose of this research is to define and extract the visual features of the seabed sediments to improve the autonomous ability of a underwater vehicle while implementing exploring missions. A scheme of seabed image classification is proposed to identify three types of seabed sediments. The texture features of images are stable and robust visual features in underwater environment comparing with general visual features, and which are described by using gray-level co-occurrence matrix and fractal dimension. Subsequently, for purpose of evaluation, a supervised non-parametric statistical learning technique, support vector machines (SVMs), is applied to verify the availability of extracted texture features on seabed sediments classification. The presented results of seabed type recognition justify the proposed features extracted method valid to seabed type recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Niu, J.K.: Research and development of oceanic multi-metal nodule. China’s Manganese Industry 20(2), 20–26 (2002)

    Google Scholar 

  2. Feng, X.S., Li, Y.P., Xu, H.L., et al.: The next generation of unmanned marine vehicles-dedicated to the 50 anniversary of the human world record diving 10912 m. Robot 33(1), 113–118 (2011)

    Article  Google Scholar 

  3. Tang, X.D., Zhu, W., Pang, Y.J., et al.: Target recognition system based on optical vision for AUV. Robot 31(2), 171–178 (2009)

    Google Scholar 

  4. Kia, C., Arshad, M.R.: Robotics Vision-based Heuristic Reasoning for Underwater Target Tracking and Navigation. International Journal of Advanced Robotic Systems 2(3) (2005)

    Google Scholar 

  5. Armstrong, R.A., Singh, H., Torres, J., et al.: Characterizing the deep insular shelf coral reef habitat of the Hind Bank marine conservation district (US Virgin Islands) using the Seabed autonomous underwater vehicle. Continental Shelf Research 26(2), 194–205 (2006)

    Article  Google Scholar 

  6. Singh, H., Armstrong, R., Gilbes, F., et al.: Imaging coral I: imaging coral habitats with the SeaBED AUV. Subsurface Sensing Technologies and Applications 5(1), 25–42 (2004)

    Article  Google Scholar 

  7. Hao, Y.M., Wu, Q.X., Zhou, C., et al.: Technique and implementation of underwater vehicle station keeping based on monocular vision. Robot 28(6), 656–661 (2006)

    Google Scholar 

  8. Gracias, N.R., Van Der Zwaan, S., Bernardino, A., et al.: Mosaic-based navigation for autonomous underwater vehicles. IEEE Journal of Oceanic Engineering 28(4), 609–624 (2003)

    Article  Google Scholar 

  9. Rzhanov, Y., Linnett, L.M., Forbes, R.: Underwater video mosaicing for seabed mapping. IEEE International Conference on Image Processing 1, 224–227 (2000)

    Google Scholar 

  10. Gao, C.C., Hui, X.W.: GLCM-based texture extraction. Computer system & applications 19(6) (2010)

    Google Scholar 

  11. Mandelbrot, B.B.: The Fractal Geometry of Nature. Wh Freeman, New York (1983)

    Google Scholar 

  12. Tricot, C.: Curves and fractal dimension. Springer, Heidelberg (1995)

    Book  MATH  Google Scholar 

  13. Russel, et al.: Dimension of strange attractors. Physical Review Letters 45(14), 1175–1178 (1980)

    Article  MathSciNet  Google Scholar 

  14. Sarkar, N., Chaudhuri, B.B.: An efficient differential box-counting approach to compute fractal dimension of image. IEEE Trans. Syst. Man. Cybern. A 24(1), 115–120 (1994)

    Article  Google Scholar 

  15. Wallraven, C., Caputo, B., Graf, A.: Recognition with local features: the kernel recipe. In: Proc. ICCV, pp. 257–264 (2003)

    Google Scholar 

  16. Wolf, L., Shashua, A.: Kernel principal angles for classification machines with applications to image sequence interpretation. In: Proc. CVPR, pp. 635–640 (2003)

    Google Scholar 

  17. Hearst, M.A., Dumais, S.T., et al.: Support vector machines. Intelligent Systems and their Applications 13(4), 18–28 (1998)

    Article  Google Scholar 

  18. LIBSVM, http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Li, Y., Xia, C., Huang, Y., Ge, L., Tian, Y. (2014). Visual Features Extraction and Types Classification of Seabed Sediments. In: Zhang, X., Liu, H., Chen, Z., Wang, N. (eds) Intelligent Robotics and Applications. ICIRA 2014. Lecture Notes in Computer Science(), vol 8917. Springer, Cham. https://doi.org/10.1007/978-3-319-13966-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13966-1_15

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13965-4

  • Online ISBN: 978-3-319-13966-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics