Skip to main content

MicroRNAs with Impact on Adipose Tissue Inflammation in Obesity

  • Chapter
  • First Online:
MicroRNAs and Other Non-Coding RNAs in Inflammation

Part of the book series: Progress in Inflammation Research ((PIR))

  • 1013 Accesses

Abstract

The past decades have been hallmarked by an unprecedented steady rise in the prevalence of overweight and obesity around the globe. Characterized by excessive expansion of white adipose tissue (WAT), obesity constitutes a major health problem as the primary disease predisposes to a series of follow-up complications including type 2 diabetes mellitus, cardiovascular disease, and certain types of cancer. Interestingly, the majority of obese individuals show signs of low-grade inflammation, and many of the obesity-associated downstream pathologies seem to be amplified—if not even caused—by inflammatory signals emanating from obese WAT. Not only immune cells within WAT but also adipocytes and their precursors actively secrete a wide panel of cytokines—coined “adipokines”—the levels of which frequently change upon weight gain. Their systemic effects and the molecular networks tuning their expression are not completely understood. In this respect, microRNAs, noncoding transcripts that act as negative regulators of protein output, have recently entered the field of adipose tissue physiology. This chapter will provide an overview of inflammatory processes in WAT, as well as their causes and consequences in the obese state. In particular, current knowledge regarding the regulation of adipose tissue microRNAs by inflammatory stimuli will be summarized, as well as the role of microRNAs as mediators of detrimental inflammatory processes in obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The nomenclature for miRNAs has been subject to repeated changes during the last years. As a consequence, names of miRNAs in older publications might not be retrieved in current versions of miRBase, the central database for miRNA sequences (www.mirbase.org). To guarantee for unambiguity, whenever occurring for the first time in the following sections, the name of a particular miRNA as stated in the original publication is followed by the current name (according to miRBase release 20 (June 2013)) in parentheses. If studies have investigated particular miRNAs in mouse and human species, the reader can assume sequence conservation to be existent, unless indicated otherwise.

References

  1. Fletcher I (2014) Defining an epidemic: the body mass index in British and US obesity research 1960–2000. Sociol Health Illn 36:338–353

    Article  PubMed  Google Scholar 

  2. Mokdad AH, Ford ES, Bowman BA et al (2003) Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001. JAMA 289:76–79

    Article  PubMed  Google Scholar 

  3. Agurs-Collins T, Bouchard C (2008) Gene-nutrition and gene-physical activity interactions in the etiology of obesity. Obesity (Silver Spring) 16:S2–S4

    Article  Google Scholar 

  4. Hyde R (2008) Europe battles with obesity. Lancet 371:2160–2161

    Article  PubMed  Google Scholar 

  5. Klein S, Allison DB, Heymsfield SB et al (2007) Waist circumference and cardiometabolic risk: a consensus statement from Shaping America’s Health: Association for Weight Management and Obesity Prevention; NAASO, the Obesity Society; the American Society for Nutrition; and the American Diabetes Association. Obesity (Silver Spring) 15:1061–1067

    Article  Google Scholar 

  6. Calori G, Lattuada G, Piemonti L et al (2011) Prevalence, metabolic features, and prognosis of metabolically healthy obese Italian individuals: the Cremona Study. Diabetes Care 34:210–215

    Article  PubMed Central  PubMed  Google Scholar 

  7. Hamer M, Stamatakis E (2012) Metabolically healthy obesity and risk of all-cause and cardiovascular disease mortality. J Clin Endocrinol Metab 97:2482–2488

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444:860–867

    Article  CAS  PubMed  Google Scholar 

  9. Halaas JL, Gajiwala KS, Maffei M et al (1995) Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269:543–546

    Article  CAS  PubMed  Google Scholar 

  10. Cohen P, Zhao C, Cai X et al (2001) Selective deletion of leptin receptor in neurons leads to obesity. J Clin Invest 108:1113–1121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Wellen KE, Hotamisligil GS (2005) Inflammation, stress, and diabetes. J Clin Invest 115:1111–1119

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Shoelson SE, Lee J, Goldfine AB (2006) Inflammation and insulin resistance. J Clin Invest 116:1793–1801

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Hotamisligil GS, Shargill NS, Spiegelman BM (1993) Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259:87–91

    Article  CAS  PubMed  Google Scholar 

  14. Uysal KT, Wiesbrock SM, Marino MW, Hotamisligil GS (1997) Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature 389:610–614

    Article  CAS  PubMed  Google Scholar 

  15. Miller C, Bartges J, Cornelius L et al (1998) Tumor necrosis factor-alpha levels in adipose tissue of lean and obese cats. J Nutr 128:2751S–2752S

    CAS  PubMed  Google Scholar 

  16. Dandona P, Aljada A, Bandyopadhyay A (2004) Inflammation: the link between insulin resistance, obesity and diabetes. Trends Immunol 25:4–7

    Article  CAS  PubMed  Google Scholar 

  17. Pickup JC (2004) Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care 27:813–823

    Article  PubMed  Google Scholar 

  18. Karelis AD, Faraj M, Bastard J-P et al (2005) The metabolically healthy but obese individual presents a favorable inflammation profile. J Clin Endocrinol Metab 90:4145–4150

    Article  CAS  PubMed  Google Scholar 

  19. Shin M-J, Hyun YJ, Kim OY et al (2006) Weight loss effect on inflammation and LDL oxidation in metabolically healthy but obese (MHO) individuals: low inflammation and LDL oxidation in MHO women. Int J Obes (Lond) 30:1529–1534

    Article  CAS  Google Scholar 

  20. Phillips CM, Perry IJ (2013) Does inflammation determine metabolic health status in obese and nonobese adults? J Clin Endocrinol Metab 98:E1610–E1619

    Article  CAS  PubMed  Google Scholar 

  21. Jernås M, Palming J, Sjöholm K et al (2006) Separation of human adipocytes by size: hypertrophic fat cells display distinct gene expression. FASEB J 20:1540–1542

    Article  PubMed  CAS  Google Scholar 

  22. Virtue S, Vidal-Puig A (2010) Adipose tissue expandability, lipotoxicity and the metabolic syndrome—an allostatic perspective. Biochim Biophys Acta 1801:338–349

    Article  CAS  PubMed  Google Scholar 

  23. Maury E, Brichard SM (2010) Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome. Mol Cell Endocrinol 314:1–16

    Article  CAS  PubMed  Google Scholar 

  24. Trayhurn P (2013) Hypoxia and adipose tissue function and dysfunction in obesity. Physiol Rev 93:1–21

    Article  CAS  PubMed  Google Scholar 

  25. Virtanen KA, Lönnroth P, Parkkola R et al (2002) Glucose uptake and perfusion in subcutaneous and visceral adipose tissue during insulin stimulation in nonobese and obese humans. J Clin Endocrinol Metab 87:3902–3910

    Article  CAS  PubMed  Google Scholar 

  26. Kabon B, Nagele A, Reddy D et al (2004) Obesity decreases perioperative tissue oxygenation. Anesthesiology 100:274–280

    Article  PubMed Central  PubMed  Google Scholar 

  27. Pasarica M, Sereda OR, Redman LM et al (2009) Reduced adipose tissue oxygenation in human obesity: evidence for rarefaction, macrophage chemotaxis, and inflammation without an angiogenic response. Diabetes 58:718–725

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Nishimura S, Manabe I, Nagasaki M et al (2008) In vivo imaging in mice reveals local cell dynamics and inflammation in obese adipose tissue. J Clin Invest 118:710–721

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Ye J (2009) Emerging role of adipose tissue hypoxia in obesity and insulin resistance. Int J Obes (Lond) 33:54–66

    Article  CAS  Google Scholar 

  30. Semenza GL (2000) HIF-1 and human disease: one highly involved factor. Genes Dev 14:1983–1991

    CAS  PubMed  Google Scholar 

  31. Cancello R, Tordjman J, Poitou C et al (2006) Increased infiltration of macrophages in omental adipose tissue is associated with marked hepatic lesions in morbid human obesity. Diabetes 55:1554–1561

    Article  CAS  PubMed  Google Scholar 

  32. Hosogai N, Fukuhara A, Oshima K et al (2007) Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes 56:901–911

    Article  CAS  PubMed  Google Scholar 

  33. Ye J, Gao Z, Yin J, He Q (2007) Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice. Am J Physiol Endocrinol Metab 293:E1118–E1128

    Article  CAS  PubMed  Google Scholar 

  34. Wang B, Wood IS, Trayhurn P (2007) Dysregulation of the expression and secretion of inflammation-related adipokines by hypoxia in human adipocytes. Pflugers Arch 455:479–492

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Schaeffler A, Gross P, Buettner R et al (2009) Fatty acid-induced induction of Toll-like receptor-4/nuclear factor-kappaB pathway in adipocytes links nutritional signalling with innate immunity. Immunology 126:233–245

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Kopp A, Buechler C, Neumeier M et al (2009) Innate immunity and adipocyte function: ligand-specific activation of multiple Toll-like receptors modulates cytokine, adipokine, and chemokine secretion in adipocytes. Obesity (Silver Spring) 17:648–656

    Article  CAS  Google Scholar 

  37. Shi H, Kokoeva MV, Inouye K et al (2006) TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest 116:3015–3025

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Suganami T, Mieda T, Itoh M et al (2007) Attenuation of obesity-induced adipose tissue inflammation in C3H/HeJ mice carrying a Toll-like receptor 4 mutation. Biochem Biophys Res Commun 354:45–49

    Article  CAS  PubMed  Google Scholar 

  39. Davis JE, Gabler NK, Walker-Daniels J, Spurlock ME (2008) Tlr-4 deficiency selectively protects against obesity induced by diets high in saturated fat. Obesity (Silver Spring) 16:1248–1255

    Article  CAS  Google Scholar 

  40. Cani PD, Amar J, Iglesias MA et al (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56:1761–1772

    Article  CAS  PubMed  Google Scholar 

  41. Ge Q, Brichard S, Yi X, Li Q (2014) microRNAs as a new mechanism regulating adipose tissue inflammation in obesity and as a novel therapeutic strategy in the metabolic syndrome. J Immunol Res 2014:987285

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Creely SJ, McTernan PG, Kusminski CM et al (2007) Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am J Physiol Endocrinol Metab 292:E740–E747

    Article  CAS  PubMed  Google Scholar 

  43. Monte SV, Caruana JA, Ghanim H et al (2012) Reduction in endotoxemia, oxidative and inflammatory stress, and insulin resistance after Roux-en-Y gastric bypass surgery in patients with morbid obesity and type 2 diabetes mellitus. Surgery 151:587–593

    Article  PubMed  Google Scholar 

  44. Schäffler A, Schölmerich J (2010) Innate immunity and adipose tissue biology. Trends Immunol 31:228–235

    Article  PubMed  CAS  Google Scholar 

  45. Zhang K, Kaufman RJ (2008) From endoplasmic-reticulum stress to the inflammatory response. Nature 454:455–462

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Hotamisligil GS (2010) Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140:900–917

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Garg AD, Kaczmarek A, Krysko O et al (2012) ER stress-induced inflammation: does it aid or impede disease progression? Trends Mol Med 18:589–598

    Article  CAS  PubMed  Google Scholar 

  48. Mei Y, Thompson MD, Cohen RA, Tong X (2013) Endoplasmic reticulum stress and related pathological processes. J Pharmacol Biomed Anal 1:1000107

    PubMed Central  PubMed  Google Scholar 

  49. Watson JD (2014) Type 2 diabetes as a redox disease. Lancet 383:841–843

    Article  PubMed  Google Scholar 

  50. Kershaw EE, Flier JS (2004) Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 89:2548–2556

    Article  CAS  PubMed  Google Scholar 

  51. Trayhurn P, Wood IS (2005) Signalling role of adipose tissue: adipokines and inflammation in obesity. Biochem Soc Trans 33:1078–1081

    Article  CAS  PubMed  Google Scholar 

  52. Tilg H, Moschen AR (2006) Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol 6:772–783

    Article  CAS  PubMed  Google Scholar 

  53. Blüher M (2014) Adipokines—removing road blocks to obesity and diabetes therapy. Mol Metab 3:230–240

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  54. Catalán V, Gómez-Ambrosi J, Rodríguez A et al (2009) Adipokines in the treatment of diabetes mellitus and obesity. Expert Opin Pharmacother 10:239–254

    Article  PubMed  Google Scholar 

  55. Nakamura K, Fuster JJ, Walsh K (2014) Adipokines: a link between obesity and cardiovascular disease. J Cardiol 63:250–259

    Article  PubMed Central  PubMed  Google Scholar 

  56. Maury E, Noël L, Detry R, Brichard SM (2009) In vitro hyperresponsiveness to tumor necrosis factor-alpha contributes to adipokine dysregulation in omental adipocytes of obese subjects. J Clin Endocrinol Metab 94:1393–1400

    Article  CAS  PubMed  Google Scholar 

  57. Dandona P, Weinstock R, Thusu K et al (1998) Tumor necrosis factor-alpha in sera of obese patients: fall with weight loss. J Clin Endocrinol Metab 83:2907–2910

    CAS  PubMed  Google Scholar 

  58. Wang B, Trayhurn P (2006) Acute and prolonged effects of TNF-alpha on the expression and secretion of inflammation-related adipokines by human adipocytes differentiated in culture. Pflugers Arch 452:418–427

    Article  CAS  PubMed  Google Scholar 

  59. Cawthorn WP, Sethi JK (2008) TNF-alpha and adipocyte biology. FEBS Lett 582:117–131

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Prins JB, Niesler CU, Winterford CM et al (1997) Tumor necrosis factor-alpha induces apoptosis of human adipose cells. Diabetes 46:1939–1944

    Article  CAS  PubMed  Google Scholar 

  61. La Cava A, Matarese G (2004) The weight of leptin in immunity. Nat Rev Immunol 4:371–379

    Article  PubMed  CAS  Google Scholar 

  62. Badman MK, Flier JS (2007) The adipocyte as an active participant in energy balance and metabolism. Gastroenterology 132:2103–2115

    Article  CAS  PubMed  Google Scholar 

  63. Becker DJ, Ongemba LN, Brichard V et al (1995) Diet- and diabetes-induced changes of ob gene expression in rat adipose tissue. FEBS Lett 371:324–328

    Article  CAS  PubMed  Google Scholar 

  64. Kamohara S, Burcelin R, Halaas JL et al (1997) Acute stimulation of glucose metabolism in mice by leptin treatment. Nature 389:374–377

    Article  CAS  PubMed  Google Scholar 

  65. Minokoshi Y, Kim Y-B, Peroni OD et al (2002) Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 415:339–343

    Article  CAS  PubMed  Google Scholar 

  66. Kahn BB, Alquier T, Carling D, Hardie DG (2005) AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 1:15–25

    Article  CAS  PubMed  Google Scholar 

  67. Oral EA, Simha V, Ruiz E et al (2002) Leptin-replacement therapy for lipodystrophy. N Engl J Med 346:570–578

    Article  CAS  PubMed  Google Scholar 

  68. Mohamed-Ali V, Goodrick S, Rawesh A et al (1997) Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo. J Clin Endocrinol Metab 82:4196–4200

    CAS  PubMed  Google Scholar 

  69. Fried SK, Bunkin DA, Greenberg AS (1998) Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid. J Clin Endocrinol Metab 83:847–850

    CAS  PubMed  Google Scholar 

  70. Maachi M, Piéroni L, Bruckert E et al (2004) Systemic low-grade inflammation is related to both circulating and adipose tissue TNFalpha, leptin and IL-6 levels in obese women. Int J Obes Relat Metab Disord 28:993–997

    Article  CAS  PubMed  Google Scholar 

  71. Bastard J-P, Lagathu C, Caron M, Capeau J (2007) Point-counterpoint: Interleukin-6 does/does not have a beneficial role in insulin sensitivity and glucose homeostasis. J Appl Physiol 102:821–822

    PubMed  Google Scholar 

  72. Sabio G, Das M, Mora A et al (2008) A stress signaling pathway in adipose tissue regulates hepatic insulin resistance. Science 322:1539–1543

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Popko K, Gorska E, Stelmaszczyk-Emmel A et al (2010) Proinflammatory cytokines Il-6 and TNF-α and the development of inflammation in obese subjects. Eur J Med Res 15:120–122

    PubMed Central  PubMed  Google Scholar 

  74. Martinovic I, Abegunewardene N, Seul M et al (2005) Elevated monocyte chemoattractant protein-1 serum levels in patients at risk for coronary artery disease. Circ J 69:1484–1489

    Article  CAS  PubMed  Google Scholar 

  75. Kanda H, Tateya S, Tamori Y et al (2006) MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest 116:1494–1505

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Bruun JM, Lihn AS, Pedersen SB, Richelsen B (2005) Monocyte chemoattractant protein-1 release is higher in visceral than subcutaneous human adipose tissue (AT): implication of macrophages resident in the AT. J Clin Endocrinol Metab 90:2282–2289

    Article  CAS  PubMed  Google Scholar 

  77. Meijer K, de Vries M, Al-Lahham S et al (2011) Human primary adipocytes exhibit immune cell function: adipocytes prime inflammation independent of macrophages. PLoS One 6:e17154

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Alessi MC, Bastelica D, Morange P et al (2000) Plasminogen activator inhibitor 1, transforming growth factor-beta1, and BMI are closely associated in human adipose tissue during morbid obesity. Diabetes 49:1374–1380

    Article  CAS  PubMed  Google Scholar 

  79. Estellés A, Dalmau J, Falcó C et al (2001) Plasma PAI-1 levels in obese children—effect of weight loss and influence of PAI-1 promoter 4G/5G genotype. Thromb Haemost 86:647–652

    PubMed  Google Scholar 

  80. Skurk T, Hauner H (2004) Obesity and impaired fibrinolysis: role of adipose production of plasminogen activator inhibitor-1. Int J Obes Relat Metab Disord 28:1357–1364

    Article  CAS  PubMed  Google Scholar 

  81. De Taeye B, Smith LH, Vaughan DE (2005) Plasminogen activator inhibitor-1: a common denominator in obesity, diabetes and cardiovascular disease. Curr Opin Pharmacol 5:149–154

    Article  PubMed  CAS  Google Scholar 

  82. Samad F, Yamamoto K, Loskutoff DJ (1996) Distribution and regulation of plasminogen activator inhibitor-1 in murine adipose tissue in vivo. Induction by tumor necrosis factor-alpha and lipopolysaccharide. J Clin Invest 97:37–46

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Steppan CM, Bailey ST, Bhat S et al (2001) The hormone resistin links obesity to diabetes. Nature 409:307–312

    Article  CAS  PubMed  Google Scholar 

  84. Steppan CM, Lazar MA (2002) Resistin and obesity-associated insulin resistance. Trends Endocrinol Metab 13:18–23

    Article  CAS  PubMed  Google Scholar 

  85. Rajala MW, Qi Y, Patel HR et al (2004) Regulation of resistin expression and circulating levels in obesity, diabetes, and fasting. Diabetes 53:1671–1679

    Article  CAS  PubMed  Google Scholar 

  86. Ohashi K, Shibata R, Murohara T, Ouchi N (2014) Role of anti-inflammatory adipokines in obesity-related diseases. Trends Endocrinol Metab. doi:10.1016/j.tem.2014.03.009

    PubMed  Google Scholar 

  87. Scherer PE, Williams S, Fogliano M et al (1995) A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem 270:26746–26749

    Article  CAS  PubMed  Google Scholar 

  88. Maeda K, Okubo K, Shimomura I et al (1996) cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose Most abundant Gene transcript 1). Biochem Biophys Res Commun 221:286–289

    Article  CAS  PubMed  Google Scholar 

  89. Arita Y, Kihara S, Ouchi N et al (1999) Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun 257:79–83

    Article  CAS  PubMed  Google Scholar 

  90. Brichard SM, Delporte ML, Lambert M (2003) Adipocytokines in anorexia nervosa: a review focusing on leptin and adiponectin. Horm Metab Res 35:337–342

    Article  CAS  PubMed  Google Scholar 

  91. Ouchi N, Walsh K (2007) Adiponectin as an anti-inflammatory factor. Clin Chim Acta 380:24–30

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Lindsay RS, Funahashi T, Hanson RL et al (2002) Adiponectin and development of type 2 diabetes in the Pima Indian population. Lancet 360:57–58

    Article  CAS  PubMed  Google Scholar 

  93. Spranger J, Kroke A, Möhlig M et al (2003) Adiponectin and protection against type 2 diabetes mellitus. Lancet 361:226–228

    Article  CAS  PubMed  Google Scholar 

  94. Kadowaki T, Yamauchi T, Kubota N et al (2006) Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest 116:1784–1792

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Lara-Castro C, Luo N, Wallace P et al (2006) Adiponectin multimeric complexes and the metabolic syndrome trait cluster. Diabetes 55:249–259

    Article  CAS  PubMed  Google Scholar 

  96. Heidemann C, Sun Q, van Dam RM et al (2008) Total and high-molecular-weight adiponectin and resistin in relation to the risk for type 2 diabetes in women. Ann Intern Med 149:307–316

    Article  PubMed Central  PubMed  Google Scholar 

  97. Taft RJ, Pheasant M, Mattick JS (2007) The relationship between non-protein-coding DNA and eukaryotic complexity. Bioessays 29:288–299

    Article  CAS  PubMed  Google Scholar 

  98. Kampa D, Cheng J, Kapranov P et al (2004) Novel RNAs identified from an in-depth analysis of the transcriptome of human chromosomes 21 and 22. Genome Res 14:331–342

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Mattick JS, Makunin IV (2005) Small regulatory RNAs in mammals. Hum Mol Genet 14:R121–R132

    Article  CAS  PubMed  Google Scholar 

  100. Brosius J (2005) Waste not, want not—transcript excess in multicellular eukaryotes. Trends Genet 21:287–288

    Article  CAS  PubMed  Google Scholar 

  101. Hüttenhofer A, Schattner P, Polacek N (2005) Non-coding RNAs: hope or hype? Trends Genet 21:289–297

    Article  PubMed  CAS  Google Scholar 

  102. Cheng J, Kapranov P, Drenkow J et al (2005) Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science 308:1149–1154

    Article  CAS  PubMed  Google Scholar 

  103. Carninci P, Kasukawa T, Katayama S et al (2005) The transcriptional landscape of the mammalian genome. Science 309:1559–1563

    Article  CAS  PubMed  Google Scholar 

  104. Mattick JS, Makunin IV (2006) Non-coding RNA. Hum Mol Genet 15(Spec No 1):R17–R29

    Article  CAS  PubMed  Google Scholar 

  105. Willingham AT, Gingeras TR (2006) TUF love for “junk” DNA. Cell 125:1215–1220

    Article  CAS  PubMed  Google Scholar 

  106. Birney E, Stamatoyannopoulos JA, Dutta A et al (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447:799–816

    Article  CAS  PubMed  Google Scholar 

  107. Djebali S, Davis CA, Merkel A et al (2012) Landscape of transcription in human cells. Nature 489:101–108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  108. Khurana JS, Theurkauf W (2010) piRNAs, transposon silencing, and Drosophila germline development. J Cell Biol 191:905–913

    Article  PubMed Central  PubMed  Google Scholar 

  109. Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat Rev Genet 10:94–108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  110. Taft RJ, Kaplan CD, Simons C, Mattick JS (2009) Evolution, biogenesis and function of promoter-associated RNAs. Cell Cycle 8:2332–2338

    Article  CAS  PubMed  Google Scholar 

  111. Wilusz JE, Sunwoo H, Spector DL (2009) Long noncoding RNAs: functional surprises from the RNA world. Genes Dev 23:1494–1504

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  112. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  CAS  PubMed  Google Scholar 

  113. Pasquinelli AE, Reinhart BJ, Slack F et al (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408:86–89

    Article  CAS  PubMed  Google Scholar 

  114. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858

    Article  CAS  PubMed  Google Scholar 

  115. Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294:858–862

    Article  CAS  PubMed  Google Scholar 

  116. Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294:862–864

    Article  CAS  PubMed  Google Scholar 

  117. Baek D, Villén J, Shin C et al (2008) The impact of microRNAs on protein output. Nature 455:64–71

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  118. Selbach M, Schwanhäusser B, Thierfelder N et al (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455:58–63

    Article  CAS  PubMed  Google Scholar 

  119. Friedman RC, Farh KK-H, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  120. Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102–114

    Article  CAS  PubMed  Google Scholar 

  121. Mudhasani R, Puri V, Hoover K et al (2011) Dicer is required for the formation of white but not brown adipose tissue. J Cell Physiol 226:1399–1406

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  122. Karbiener M, Fischer C, Nowitsch S et al (2009) microRNA miR-27b impairs human adipocyte differentiation and targets PPARgamma. Biochem Biophys Res Commun 390:247–251

    Article  CAS  PubMed  Google Scholar 

  123. Karbiener M, Neuhold C, Opriessnig P et al (2011) MicroRNA-30c promotes human adipocyte differentiation and co-represses PAI-1 and ALK2. RNA Biol 8:850–860

    Article  CAS  PubMed  Google Scholar 

  124. Hilton C, Neville MJ, Karpe F (2013) MicroRNAs in adipose tissue: their role in adipogenesis and obesity. Int J Obes (Lond) 37:325–332

    Article  CAS  Google Scholar 

  125. Peng Y, Yu S, Li H et al (2014) MicroRNAs: emerging roles in adipogenesis and obesity. Cell Signal. doi:10.1016/j.cellsig.2014.05.006

    Google Scholar 

  126. Karbiener M, Pisani DF, Frontini A et al (2014) MicroRNA-26 family is required for human adipogenesis and drives characteristics of brown adipocytes. Stem Cells 32:1578–1590

    Article  CAS  PubMed  Google Scholar 

  127. Xie H, Sun L, Lodish HF (2009) Targeting microRNAs in obesity. Expert Opin Ther Targets 13:1227–1238

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  128. Fernández-Hernando C, Suárez Y, Rayner KJ, Moore KJ (2011) MicroRNAs in lipid metabolism. Curr Opin Lipidol 22:86–92

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  129. Gilad S, Meiri E, Yogev Y et al (2008) Serum microRNAs are promising novel biomarkers. PLoS One 3:e3148

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  130. Mitchell PS, Parkin RK, Kroh EM et al (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 105:10513–10518

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  131. Ogawa R, Tanaka C, Sato M et al (2010) Adipocyte-derived microvesicles contain RNA that is transported into macrophages and might be secreted into blood circulation. Biochem Biophys Res Commun. doi:10.1016/j.bbrc.2010.07.008

    Google Scholar 

  132. Ortega FJ, Mercader JM, Catalán V et al (2013) Targeting the circulating microRNA signature of obesity. Clin Chem. doi:10.1373/clinchem.2012.195776

    PubMed  Google Scholar 

  133. Prats-Puig A, Ortega FJ, Mercader JM et al (2013) Changes in circulating microRNAs are associated with childhood obesity. J Clin Endocrinol Metab 98:E1655–E1660

    Article  CAS  PubMed  Google Scholar 

  134. Wahid F, Khan T, Kim YY (2014) MicroRNA and diseases: therapeutic potential as new generation of drugs. Biochimie. doi:10.1016/j.biochi.2014.05.004

    PubMed  Google Scholar 

  135. Xie H, Lim B, Lodish HF (2009) MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes 58:1050–1057

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  136. Chartoumpekis DV, Zaravinos A, Ziros PG et al (2012) Differential expression of microRNAs in adipose tissue after long-term high-fat diet-induced obesity in mice. PLoS One 7:e34872

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  137. Klöting N, Berthold S, Kovacs P et al (2009) MicroRNA expression in human omental and subcutaneous adipose tissue. PLoS One 4:e4699

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  138. Heneghan HM, Miller N, McAnena OJ et al (2011) Differential miRNA expression in omental adipose tissue and in the circulation of obese patients identifies novel metabolic biomarkers. J Clin Endocrinol Metab 96:E846–E850

    Article  CAS  PubMed  Google Scholar 

  139. Ortega FJ, Moreno-Navarrete JM, Pardo G et al (2010) MiRNA expression profile of human subcutaneous adipose and during adipocyte differentiation. PLoS One 5:e9022

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  140. Arner E, Mejhert N, Kulyté A et al (2012) Adipose tissue microRNAs as regulators of CCL2 production in human obesity. Diabetes 61:1986–1993

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  141. Esau C, Kang X, Peralta E et al (2004) MicroRNA-143 regulates adipocyte differentiation. J Biol Chem 279:52361–52365

    Article  CAS  PubMed  Google Scholar 

  142. Wang Q, Li YC, Wang J et al (2008) miR-17-92 cluster accelerates adipocyte differentiation by negatively regulating tumor-suppressor Rb2/p130. Proc Natl Acad Sci USA 105:2889–2894

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  143. Sun T, Fu M, Bookout AL et al (2009) MicroRNA let-7 regulates 3T3-L1 adipogenesis. Mol Endocrinol 23:925–931

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  144. Sun L, Xie H, Mori MA et al (2011) Mir193b-365 is essential for brown fat differentiation. Nat Cell Biol 13:958–965

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  145. Poliseno L, Tuccoli A, Mariani L et al (2006) MicroRNAs modulate the angiogenic properties of HUVECs. Blood 108:3068–3071

    Article  CAS  PubMed  Google Scholar 

  146. Trayhurn P (2014) Hypoxia and adipocyte physiology: implications for adipose tissue dysfunction in obesity. Annu Rev Nutr. doi:10.1146/annurev-nutr-071812-161156

    PubMed  Google Scholar 

  147. Meerson A, Traurig M, Ossowski V et al (2013) Human adipose microRNA-221 is upregulated in obesity and affects fat metabolism downstream of leptin and TNF-α. Diabetologia 56:1971–1979

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  148. Lin J, Puigserver P, Donovan J et al (2002) Peroxisome proliferator-activated receptor gamma coactivator 1beta (PGC-1beta), a novel PGC-1-related transcription coactivator associated with host cell factor. J Biol Chem 277:1645–1648

    Article  CAS  PubMed  Google Scholar 

  149. Meirhaeghe A, Crowley V, Lenaghan C et al (2003) Characterization of the human, mouse and rat PGC1 beta (peroxisome-proliferator-activated receptor-gamma co-activator 1 beta) gene in vitro and in vivo. Biochem J 373:155–165

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  150. Yu J, Kong X, Liu J et al (2014) Expression profiling of PPARγ-regulated microRNAs in human subcutaneous and visceral adipogenesis in both genders. Endocrinology 155:2155–2165

    Article  PubMed  CAS  Google Scholar 

  151. Xu L-L, Shi C-M, Xu G-F et al (2014) TNF-α, IL-6, and leptin increase the expression of miR-378, an adipogenesis-related microRNA in human adipocytes. Cell Biochem Biophys. doi:10.1007/s12013-014-9980-x

    Google Scholar 

  152. Jiang X, Xue M, Fu Z et al (2014) Insight into the effects of adipose tissue inflammation factors on miR-378 expression and the underlying mechanism. Cell Physiol Biochem 33:1778–1788

    Article  CAS  PubMed  Google Scholar 

  153. Carrer M, Liu N, Grueter CE et al (2012) Control of mitochondrial metabolism and systemic energy homeostasis by microRNAs 378 and 378. Proc Natl Acad Sci USA 109:15330–15335

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  154. Nakanishi N, Nakagawa Y, Tokushige N et al (2009) The up-regulation of microRNA-335 is associated with lipid metabolism in liver and white adipose tissue of genetically obese mice. Biochem Biophys Res Commun 385:492–496

    Article  CAS  PubMed  Google Scholar 

  155. Zhu L, Chen L, Shi C-M et al (2014) MiR-335, an adipogenesis-related microRNA, is involved in adipose tissue inflammation. Cell Biochem Biophys 68:283–290

    Article  CAS  PubMed  Google Scholar 

  156. Tomé M, López-Romero P, Albo C et al (2011) miR-335 orchestrates cell proliferation, migration and differentiation in human mesenchymal stem cells. Cell Death Differ 18:985–995

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  157. Xu G, Ji C, Shi C et al (2013) Modulation of hsa-miR-26b levels following adipokine stimulation. Mol Biol Rep 40:3577–3582

    Article  CAS  PubMed  Google Scholar 

  158. Xu G, Shi C, Ji C et al (2014) Expression of microRNA-26b, an obesity-related microRNA, is regulated by free fatty acids, glucose, dexamethasone and growth hormone in human adipocytes. Mol Med Rep 10:223–228

    CAS  PubMed  Google Scholar 

  159. Song G, Xu G, Ji C et al (2014) The role of microRNA-26b in human adipocyte differentiation and proliferation. Gene 533:481–487

    Article  CAS  PubMed  Google Scholar 

  160. Ge Q, Gérard J, Noël L et al (2012) MicroRNAs regulated by adiponectin as novel targets for controlling adipose tissue inflammation. Endocrinology 153:5285–5296

    Article  CAS  PubMed  Google Scholar 

  161. Strum JC, Johnson JH, Ward J et al (2009) MicroRNA 132 regulates nutritional stress-induced chemokine production through repression of SirT1. Mol Endocrinol 23:1876–1884

    Article  CAS  PubMed  Google Scholar 

  162. Straczkowski M, Dzienis-Straczkowska S, Stêpieñ A et al (2002) Plasma interleukin-8 concentrations are increased in obese subjects and related to fat mass and tumor necrosis factor-alpha system. J Clin Endocrinol Metab 87:4602–4606

    Article  CAS  PubMed  Google Scholar 

  163. Bruun JM, Verdich C, Toubro S et al (2003) Association between measures of insulin sensitivity and circulating levels of interleukin-8, interleukin-6 and tumor necrosis factor-alpha. Effect of weight loss in obese men. Eur J Endocrinol 148:535–542

    Article  CAS  PubMed  Google Scholar 

  164. Chang C-L, Au L-C, Huang S-W et al (2011) Insulin up-regulates heme oxygenase-1 expression in 3T3-L1 adipocytes via PI3-kinase- and PKC-dependent pathways and heme oxygenase-1-associated microRNA downregulation. Endocrinology 152:384–393

    Article  CAS  PubMed  Google Scholar 

  165. Ryter SW, Alam J, Choi AMK (2006) Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev 86:583–650

    Article  CAS  PubMed  Google Scholar 

  166. Morse D, Pischke SE, Zhou Z et al (2003) Suppression of inflammatory cytokine production by carbon monoxide involves the JNK pathway and AP-1. J Biol Chem 278:36993–36998

    Article  CAS  PubMed  Google Scholar 

  167. Li M, Kim DH, Tsenovoy PL et al (2008) Treatment of obese diabetic mice with a heme oxygenase inducer reduces visceral and subcutaneous adiposity, increases adiponectin levels, and improves insulin sensitivity and glucose tolerance. Diabetes 57:1526–1535

    Article  CAS  PubMed  Google Scholar 

  168. Kim DH, Burgess AP, Li M et al (2008) Heme oxygenase-mediated increases in adiponectin decrease fat content and inflammatory cytokines tumor necrosis factor-alpha and interleukin-6 in Zucker rats and reduce adipogenesis in human mesenchymal stem cells. J Pharmacol Exp Ther 325:833–840

    Article  CAS  PubMed  Google Scholar 

  169. Patel N, Tahara SM, Malik P, Kalra VK (2010) Involvement of miR-30c and miR-301a in immediate induction of plasminogen activator inhibitor-1 by placenta growth factor in human pulmonary endothelial cells. Biochem J. doi:10.1042/BJ20101585

    PubMed Central  Google Scholar 

  170. Marchand A, Proust C, Morange P-E et al (2012) miR-421 and miR-30c inhibit SERPINE 1 gene expression in human endothelial cells. PLoS One 7:e44532

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  171. Kulyté A, Belarbi Y, Lorente-Cebrián S et al (2014) Additive effects of microRNAs and transcription factors on CCL2 production in human white adipose tissue. Diabetes 63:1248–1258

    Article  PubMed  CAS  Google Scholar 

  172. Kim YJ, Hwang SJ, Bae YC, Jung JS (2009) miR-21 Regulates adipogenic differentiation through the modulation of TGF-beta signaling in mesenchymal stem cells derived from human adipose tissue. Stem Cells. doi:10.1002/stem.235

    Google Scholar 

  173. Kang M, Yan L-M, Zhang W-Y et al (2013) Role of microRNA-21 in regulating 3T3-L1 adipocyte differentiation and adiponectin expression. Mol Biol Rep 40:5027–5034

    Article  CAS  PubMed  Google Scholar 

  174. Li H, Chen X, Guan L et al (2013) MiRNA-181a regulates adipogenesis by targeting tumor necrosis factor-α (TNF-α) in the porcine model. PLoS One 8:e71568

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  175. Zhang L, Dong L-Y, Li Y-J et al (2012) The microRNA miR-181c controls microglia-mediated neuronal apoptosis by suppressing tumor necrosis factor. J Neuroinflammation 9:211

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  176. Liu M, Wang Z, Yang S et al (2011) TNF-α is a novel target of miR-19a. Int J Oncol 38:1013–1022

    CAS  PubMed  Google Scholar 

  177. Anderson KP, Fox MC, Brown-Driver V et al (1996) Inhibition of human cytomegalovirus immediate-early gene expression by an antisense oligonucleotide complementary to immediate-early RNA. Antimicrob Agents Chemother 40:2004–2011

    PubMed Central  CAS  PubMed  Google Scholar 

  178. Gragoudas ES, Adamis AP, Cunningham ET et al (2004) Pegaptanib for neovascular age-related macular degeneration. N Engl J Med 351:2805–2816

    Article  CAS  PubMed  Google Scholar 

  179. Ng EWM, Shima DT, Calias P et al (2006) Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov 5:123–132

    Article  CAS  PubMed  Google Scholar 

  180. Lipinski CA (2000) Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods 44:235–249

    Article  CAS  PubMed  Google Scholar 

  181. Waldmann TA (2003) Immunotherapy: past, present and future. Nat Med 9:269–277

    Article  CAS  PubMed  Google Scholar 

  182. Burnett JC, Rossi JJ (2012) RNA-based therapeutics: current progress and future prospects. Chem Biol 19:60–71

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  183. Kole R, Krainer AR, Altman S (2012) RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov 11:125–140

    CAS  PubMed  Google Scholar 

  184. Bader AG (2012) miR-34—a microRNA replacement therapy is headed to the clinic. Front Genet 3:120

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Scheideler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Karbiener, M., Scheideler, M. (2015). MicroRNAs with Impact on Adipose Tissue Inflammation in Obesity. In: Greene, C. (eds) MicroRNAs and Other Non-Coding RNAs in Inflammation. Progress in Inflammation Research. Springer, Cham. https://doi.org/10.1007/978-3-319-13689-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13689-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13688-2

  • Online ISBN: 978-3-319-13689-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics