Skip to main content

Wound Inflammation: Emerging Role of miRNA

  • Chapter
  • First Online:
MicroRNAs and Other Non-Coding RNAs in Inflammation

Part of the book series: Progress in Inflammation Research ((PIR))

  • 1029 Accesses

Abstract

Wound inflammation occurs in response to injury. It is a coordinated process involving tissues, cells, and an array of soluble, cell-associated, and intracellular factors. The role of certain microRNAs in wound healing and inflammation, in particular (a key process underpinning wound healing), has emerged in recent years. Here, mechanisms involving inflammatory cells, secreted molecules, and miRNAs that can affect wound healing are reviewed. Of interest miR-155, miR-146a, and miR-21, among others, have been shown to have a number of specialized roles in the inflammatory process, Toll-like receptor signaling, and efferocytosis. Other important miRNAs that regulate inflammation are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferrero-Miliani L, Nielsen OH, Andersen PS, Girardin SE (2007) Chronic inflammation: importance of NOD2 and NALP3 in interleukin-1beta generation. Clin Exp Immunol 147:227–235

    PubMed Central  CAS  PubMed  Google Scholar 

  2. http://www.medicalnewstoday.com/articles/248423.php

  3. http://en.wikipedia.org/wiki/Inflammation

  4. Celsus (1935) De medicina. Heinemann, London

    Google Scholar 

  5. Roy S (2010) Resolution of inflammation in wound healing: significance of dead cell clearance. Mary Ann Liebert, New Rochelle, NY

    Google Scholar 

  6. Tedgui A (2011) Focus on inflammation. Arterioscler Thromb Vasc Biol 31:958–959

    Article  CAS  PubMed  Google Scholar 

  7. Nathan C (2002) Points of control in inflammation. Nature 420:846–852

    Article  CAS  PubMed  Google Scholar 

  8. Abbas AB, Lichtman AH (2009) Innate immunity. In: Abbas AB, Lichtman AH (eds) Basic immunology, functions and disorders of the immune system, Chap. 2, vol 3. Elsevier Saunders, Philadelphia

    Google Scholar 

  9. http://courses.washington.edu/hubio520/inflammation/Prelab/inflammation.html

  10. http://lpi.oregonstate.edu/ss07/inflammation.html

  11. Roy S, Sen CK (2012) miRNA in wound inflammation and angiogenesis. Microcirculation 19:224–232

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Martin P (1997) Wound healing—aiming for perfect skin regeneration. Science 276:75–81

    Article  CAS  PubMed  Google Scholar 

  13. Menke NB, Ward KR, Witten TM, Bonchev DG, Diegelmann RF (2007) Impaired wound healing. Clin Dermatol 25:19–25

    Article  PubMed  Google Scholar 

  14. Shilo S, Roy S, Khanna S, Sen CK (2007) MicroRNA in cutaneous wound healing: a new paradigm. DNA Cell Biol 26:227–237

    Article  CAS  PubMed  Google Scholar 

  15. Singer AJ, Clark RA (1999) Cutaneous wound healing. N Engl J Med 341:738–746

    Article  CAS  PubMed  Google Scholar 

  16. Broughton G 2nd, Janis JE, Attinger CE (2006) Wound healing: an overview. Plast Reconstr Surg 117:1e-S–32e-S

    Article  Google Scholar 

  17. Roy S, Khanna S, Nallu K, Hunt TK, Sen CK (2006) Dermal wound healing is subject to redox control. Mol Ther 13:211–220

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Gronert K (2008) Lipid autacoids in inflammation and injury responses: a matter of privilege. Mol Interv 8:28–35

    Article  CAS  PubMed  Google Scholar 

  19. Tonnesen MG, Feng X, Clark RA (2000) Angiogenesis in wound healing. J Investig Dermatol Symp Proc 5:40–46

    Article  CAS  PubMed  Google Scholar 

  20. Roy S, Das A (2012) In: Roy S, Bagchi D, Raychaudhuri SP (eds) Resolution of inflammation in chronic inflammation: molecular pathophysiology, nutritional and therapeutic interventions. CRC, Boca Raton, FL, pp 119–128

    Chapter  Google Scholar 

  21. Eming SA, Krieg T, Davidson JM (2007) Inflammation in wound repair: molecular and cellular mechanisms. J Invest Dermatol 127:514–525

    Article  CAS  PubMed  Google Scholar 

  22. Dovi JV, Szpaderska AM, DiPietro LA (2004) Neutrophil function in the healing wound: adding insult to injury? Thromb Haemost 92:275–280

    CAS  PubMed  Google Scholar 

  23. Weiss SJ (1989) Tissue destruction by neutrophils. N Engl J Med 320:365–376

    Article  CAS  PubMed  Google Scholar 

  24. Roy S (2010) Resolution of wound inflammation: significance of apoptotic cell phagocytosis. In: Sen KD (ed) Advances in wound care, vol 2. Mary Ann Liebert, New Rochelle, NY, pp 76–81

    Google Scholar 

  25. Rajan VM, Murray RZ (2008) The duplicitous nature of inflammation in wound repair. Wound Pract Res 16:122–129

    Google Scholar 

  26. Ganesh K, Das A, Dickerson R, Khanna S, Parinandi NL, Gordillo GM, Sen CK, Roy S (2012) Prostaglandin E(2) induces oncostatin M expression in human chronic wound macrophages through Axl receptor tyrosine kinase pathway. J Immunol 189:2563–2573

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. http://www.worldwidewounds.com/2005/august/Schultz/Extrace-Matric-Acute-Chronic-Wounds.html

  28. Das A, Ganesh K, Khanna S, Sen CK, Roy S (2014) Engulfment of apoptotic cells by macrophages: a role of microRNA-21 in the resolution of wound inflammation. J Immunol 192:1120–1129

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. deCathelineau AM, Henson PM (2003) The final step in programmed cell death: phagocytes carry apoptotic cells to the grave. Essays Biochem 39:105–117

    Article  CAS  PubMed  Google Scholar 

  30. Gardai SJ, Bratton DL, Ogden CA, Henson PM (2006) Recognition ligands on apoptotic cells: a perspective. J Leukoc Biol 79:896–903

    Article  CAS  PubMed  Google Scholar 

  31. Vandivier RW, Henson PM, Douglas IS (2006) Burying the dead: the impact of failed apoptotic cell removal (efferocytosis) on chronic inflammatory lung disease. Chest 129:1673–1682

    Article  PubMed  Google Scholar 

  32. Khanna S, Biswas S, Shang Y, Collard E, Azad A, Kauh C, Bhasker V, Gordillo GM, Sen CK, Roy S (2010) Macrophage dysfunction impairs resolution of inflammation in the wounds of diabetic mice. PLoS One 5:e9539

    Article  PubMed Central  PubMed  Google Scholar 

  33. Tibrewal N, Wu Y, D’Mello V, Akakura R, George TC, Varnum B, Birge RB (2008) Autophosphorylation docking site Tyr-867 in Mer receptor tyrosine kinase allows for dissociation of multiple signaling pathways for phagocytosis of apoptotic cells and down-modulation of lipopolysaccharide-inducible NF-kappaB transcriptional activation. J Biol Chem 283:3618–3627

    Article  CAS  PubMed  Google Scholar 

  34. Martinez FO, Helming L, Gordon S (2009) Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 27:451–483

    Article  CAS  PubMed  Google Scholar 

  35. Porcheray F, Viaud S, Rimaniol AC, Leone C, Samah B, Dereuddre-Bosquet N, Dormont D, Gras G (2005) Macrophage activation switching: an asset for the resolution of inflammation. Clin Exp Immunol 142:481–489

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Martin P, Leibovich SJ (2005) Inflammatory cells during wound repair: the good, the bad and the ugly. Trends Cell Biol 15:599–607

    Article  CAS  PubMed  Google Scholar 

  37. Almeida JS, Benvegnu DM, Boufleur N, Reckziegel P, Barcelos RC, Coradini K, de Carvalho LM, Burger ME, Beck RC (2012) Hydrogels containing rutin intended for cutaneous administration: efficacy in wound healing in rats. Drug Dev Ind Pharm 38:792–799

    Article  CAS  PubMed  Google Scholar 

  38. Sonkoly E, Pivarcsi A (2009) Advances in microRNAs: implications for immunity and inflammatory diseases. J Cell Mol Med 13:24–38

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Raisch J, Darfeuille-Michaud A, Nguyen HT (2013) Role of microRNAs in the immune system, inflammation and cancer. World J Gastroenterol 19:2985–2996

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Winter J, Jung S, Keller S, Gregory RI, Diederichs S (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11:228–234

    Article  CAS  PubMed  Google Scholar 

  41. Gurtan AM, Sharp PA (2013) The role of miRNAs in regulating gene expression networks. J Mol Biol 425:3582–3600

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Penn JW, Grobbelaar AO, Rolfe KJ (2012) The role of the TGF-beta family in wound healing, burns and scarring: a review. Int J Burns Trauma 2:18–28

    PubMed Central  CAS  PubMed  Google Scholar 

  43. Roy S, Sen CK (2011) MiRNA in innate immune responses: novel players in wound inflammation. Physiol Genomics 43:557–565

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Graff JW, Dickson AM, Clay G, McCaffrey AP, Wilson ME (2012) Identifying functional microRNAs in macrophages with polarized phenotypes. J Biol Chem 287:21816–21825

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Sabroe I, Parker LC, Dower SK, Whyte MK (2008) The role of TLR activation in inflammation. J Pathol 214:126–135

    Article  CAS  PubMed  Google Scholar 

  46. Takeda K, Akira S (2004) TLR signaling pathways. Semin Immunol 16:3–9

    Article  CAS  PubMed  Google Scholar 

  47. Rovin BH, Dickerson JA, Tan LC, Hebert CA (1995) Activation of nuclear factor-kappa B correlates with MCP-1 expression by human mesangial cells. Kidney Int 48:1263–1271

    Article  CAS  PubMed  Google Scholar 

  48. Viedt C, Dechend R, Fei J, Hansch GM, Kreuzer J, Orth SR (2002) MCP-1 induces inflammatory activation of human tubular epithelial cells: involvement of the transcription factors, nuclear factor-kappaB and activating protein-1. J Am Soc Nephrol 13:1534–1547

    Article  CAS  PubMed  Google Scholar 

  49. Chensue SW, Warmington KS, Ruth JH, Sanghi PS, Lincoln P, Kunkel SL (1996) Role of monocyte chemoattractant protein-1 (MCP-1) in Th1 (mycobacterial) and Th2 (schistosomal) antigen-induced granuloma formation: relationship to local inflammation, Th cell expression, and IL-12 production. J Immunol 157:4602–4608

    CAS  PubMed  Google Scholar 

  50. van Zoelen MA, Verstege MI, Draing C, de Beer R, van’t Veer C, Florquin S, Bresser P, van der Zee JS, te Velde AA, von Aulock S, van der Poll T (2011) Endogenous MCP-1 promotes lung inflammation induced by LPS and LTA. Mol Immunol 48:1468–1476

    Article  PubMed  Google Scholar 

  51. Morris MC, Gilliam EA, Button J, Li L (2014) Dynamic modulation of innate immune response by varying dosages of lipopolysaccharide (LPS) in human monocytic cells. J Biol Chem 289:21584–21590

    Article  PubMed Central  PubMed  Google Scholar 

  52. Tili E, Croce CM, Michaille JJ (2009) miR-155: on the crosstalk between inflammation and cancer. Int Rev Immunol 28:264–284

    Article  CAS  PubMed  Google Scholar 

  53. Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140:883–899

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Wu T, Xie M, Wang X, Jiang X, Li J, Huang H (2012) miR-155 modulates TNF-alpha-inhibited osteogenic differentiation by targeting SOCS1 expression. Bone 51:498–505

    Article  CAS  PubMed  Google Scholar 

  55. Faraoni I, Antonetti FR, Cardone J, Bonmassar E (2009) miR-155 gene: a typical multifunctional microRNA. Biochim Biophys Acta 1792:497–505

    Article  CAS  PubMed  Google Scholar 

  56. Lindsay MA (2008) microRNAs and the immune response. Trends Immunol 29:343–351

    Article  CAS  PubMed  Google Scholar 

  57. Trotta R, Chen L, Costinean S, Josyula S, Mundy-Bosse BL, Ciarlariello D, Mao C, Briercheck EL, McConnell KK, Mishra A, Yu L, Croce CM, Caligiuri MA (2013) Overexpression of miR-155 causes expansion, arrest in terminal differentiation and functional activation of mouse natural killer cells. Blood 121:3126–3134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Du F, Yu F, Wang Y, Hui Y, Carnevale K, Fu M, Lu H, Fan D (2014) MicroRNA-155 deficiency results in decreased macrophage inflammation and attenuated atherogenesis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 34:759–767

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Babar IA, Cheng CJ, Booth CJ, Liang X, Weidhaas JB, Saltzman WM, Slack FJ (2012) Nanoparticle-based therapy in an in vivo microRNA-155 (miR-155)-dependent mouse model of lymphoma. Proc Natl Acad Sci U S A 109:E1695–E1704

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Ma X, Ma C, Zheng X (2013) MicroRNA-155 in the pathogenesis of atherosclerosis: a conflicting role? Heart Lung Circ 22:811–818

    Article  PubMed  Google Scholar 

  61. Li J, Wan Y, Guo Q, Zou L, Zhang J, Fang Y, Zhang J, Zhang J, Fu X, Liu H, Lu L, Wu Y (2010) Altered microRNA expression profile with miR-146a upregulation in CD4+ T cells from patients with rheumatoid arthritis. Arthritis Res Ther 12:R81

    Article  PubMed Central  PubMed  Google Scholar 

  62. Xu N, Zhang L, Meisgen F, Harada M, Heilborn J, Homey B, Grander D, Stahle M, Sonkoly E, Pivarcsi A (2012) MicroRNA-125b down-regulates matrix metallopeptidase 13 and inhibits cutaneous squamous cell carcinoma cell proliferation, migration, and invasion. J Biol Chem 287:29899–29908

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Rusca N, Monticelli S (2011) MiR-146a in immunity and disease. Mol Biol Int 2011:437301

    Article  PubMed Central  PubMed  Google Scholar 

  64. Boldin MP, Taganov KD, Rao DS, Yang L, Zhao JL, Kalwani M, Garcia-Flores Y, Luong M, Devrekanli A, Xu J, Sun G, Tay J, Linsley PS, Baltimore D (2011) miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. J Exp Med 208:1189–1201

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Bhaumik D, Scott GK, Schokrpur S, Patil CK, Orjalo AV, Rodier F, Lithgow GJ, Campisi J (2009) MicroRNAs miR-146a/b negatively modulate the senescence-associated inflammatory mediators IL-6 and IL-8. Aging (Albany NY) 1:402–411

    CAS  Google Scholar 

  66. Sen CK, Roy S (2012) MicroRNA 21 in tissue injury and inflammation. Cardiovasc Res 96:230–233

    Article  PubMed Central  CAS  Google Scholar 

  67. Lu TX, Munitz A, Rothenberg ME (2009) MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression. J Immunol 182:4994–5002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Kumarswamy R, Volkmann I, Thum T (2011) Regulation and function of miRNA-21 in health and disease. RNA Biol 8:706–713

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Iliopoulos D, Jaeger SA, Hirsch HA, Bulyk ML, Struhl K (2010) STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Mol Cell 39:493–506

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Sicard F, Gayral M, Lulka H, Buscail L, Cordelier P (2013) Targeting miR-21 for the therapy of pancreatic cancer. Mol Ther 21:986–994

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Roy SG, De P (2014) pH responsive polymers with amino acids in the side chains and their potential applications. J Appl Polym Sci 131:41084

    Google Scholar 

  72. Kooistra SM, Norgaard LC, Lees MJ, Steinhauer C, Johansen JV, Helin K (2014) A screen identifies the oncogenic micro-RNA miR-378a-5p as a negative regulator of oncogene-induced senescence. PLoS One 9:e91034

    Article  PubMed Central  PubMed  Google Scholar 

  73. Sun X, He S, Wara AK, Icli B, Shvartz E, Tesmenitsky Y, Belkin N, Li D, Blackwell TS, Sukhova GK, Croce K, Feinberg MW (2014) Systemic delivery of microRNA-181b inhibits nuclear factor-kappaB activation, vascular inflammation, and atherosclerosis in apolipoprotein E-deficient mice. Circ Res 114:32–40

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Sun X, Icli B, Wara AK, Belkin N, He S, Kobzik L, Hunninghake GM, Vera MP, Registry M, Blackwell TS, Baron RM, Feinberg MW (2012) MicroRNA-181b regulates NF-kappaB-mediated vascular inflammation. J Clin Invest 122:1973–1990

    PubMed Central  CAS  PubMed  Google Scholar 

  75. Wang S, Liu Z, Wang L, Zhang X (2009) NF-kappaB signaling pathway, inflammation and colorectal cancer. Cell Mol Immunol 6:327–334

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Xie W, Li M, Xu N, Lv Q, Huang N, He J, Zhang Y (2013) MiR-181a regulates inflammation responses in monocytes and macrophages. PLoS One 8:e58639

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Sun YM, Lin KY, Chen YQ (2013) Diverse functions of miR-125 family in different cell contexts. J Hematol Oncol 6:6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Tili E, Michaille JJ, Cimino A, Costinean S, Dumitru CD, Adair B, Fabbri M, Alder H, Liu CG, Calin GA, Croce CM (2007) Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol 179:5082–5089

    Article  CAS  PubMed  Google Scholar 

  79. Kim SW, Ramasamy K, Bouamar H, Lin AP, Jiang D, Aguiar RC (2012) MicroRNAs miR-125a and miR-125b constitutively activate the NF-kappaB pathway by targeting the tumor necrosis factor alpha-induced protein 3 (TNFAIP3, A20). Proc Natl Acad Sci U S A 109:7865–7870

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Chaudhuri AA, So AY, Sinha N, Gibson WS, Taganov KD, O’Connell RM, Baltimore D (2011) MicroRNA-125b potentiates macrophage activation. J Immunol 187:5062–5068

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Chen CZ, Li L, Lodish HF, Bartel DP (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303:83–86

    Article  CAS  PubMed  Google Scholar 

  82. Johnnidis JB, Harris MH, Wheeler RT, Stehling-Sun S, Lam MH, Kirak O, Brummelkamp TR, Fleming MD, Camargo FD (2008) Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 451:1125–1129

    Article  CAS  PubMed  Google Scholar 

  83. Baltimore D, Boldin MP, O’Connell RM, Rao DS, Taganov KD (2008) MicroRNAs: new regulators of immune cell development and function. Nat Immunol 9:839–845

    Article  CAS  PubMed  Google Scholar 

  84. Xiao C, Srinivasan L, Calado DP, Patterson HC, Zhang B, Wang J, Henderson JM, Kutok JL, Rajewsky K (2008) Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat Immunol 9:405–414

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Lanford RE, Hildebrandt-Eriksen ES, Petri A, Persson R, Lindow M, Munk ME, Kauppinen S, Orum H (2010) Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 327:198–201

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H, Patrawala L, Yan H, Jeter C, Honorio S, Wiggins JF, Bader AG, Fagin R, Brown D, Tang DG (2011) The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 17:211–215

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Obad S, dos Santos CO, Petri A, Heidenblad M, Broom O, Ruse C, Fu C, Lindow M, Stenvang J, Straarup EM, Hansen HF, Koch T, Pappin D, Hannon GJ, Kauppinen S (2011) Silencing of microRNA families by seed-targeting tiny LNAs. Nat Genet 43:371–378

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Supported by NIH grant GM077185, GM069589, NR013898 to CKS and NIH DK076566 to SR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sashwati Roy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Das, A., Chaffee, S., Sen, C.K., Roy, S. (2015). Wound Inflammation: Emerging Role of miRNA. In: Greene, C. (eds) MicroRNAs and Other Non-Coding RNAs in Inflammation. Progress in Inflammation Research. Springer, Cham. https://doi.org/10.1007/978-3-319-13689-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13689-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13688-2

  • Online ISBN: 978-3-319-13689-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics