Skip to main content

Endogenous Control of Dendritic Cell Activation by miRNA

  • Chapter
  • First Online:
MicroRNAs and Other Non-Coding RNAs in Inflammation

Part of the book series: Progress in Inflammation Research ((PIR))

  • 1016 Accesses

Abstract

Dendritic cells are professional antigen-presenting cells and determine adaptive immune responses. Numerous factors which modulate pro- or anti-inflammatory functional properties of dendritic cells have been discovered. Recently, researchers are beginning to understand the regulatory function of microRNAs (miRNAs) in dendritic cells. miRNAs are small noncoding RNAs that regulate the expression of target genes in a posttranscriptional manner. Expression of miRNAs is tightly regulated in a cell type-dependent and a developmental stage-specific manner, and disease-related miRNA signatures have been observed. In this chapter, we briefly introduce the biogenesis of miRNAs and their expression pattern and regulatory function in dendritic cells. We also summarize the miRNA signature in systemic lupus erythematosus. Because miRNA are key regulators in dendritic cells, which are known to modulate immune homeostasis, they are potential therapeutic targets. miRNA research in dendritic cells should be expanded with this goal in mind.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Steinman RM, Cohn ZA (1973) Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med 137:1142–1162

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. West AP, Koblansky AA, Ghosh S (2006) Recognition and signaling by toll-like receptors. Annu Rev Cell Dev Biol 22:409–437

    Article  CAS  PubMed  Google Scholar 

  3. Bartel DP, Chen CZ (2004) Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genet 5:396–400

    Article  CAS  PubMed  Google Scholar 

  4. Kwek KY, Murphy S, Furger A, Thomas B, O’Gorman W, Kimura H, Proudfoot NJ, Akoulitchev A (2002) U1 snRNA associates with TFIIH and regulates transcriptional initiation. Nat Struct Biol 9:800–805

    CAS  PubMed  Google Scholar 

  5. Bernstein E, Allis CD (2005) RNA meets chromatin. Genes Dev 19:1635–1655

    Article  CAS  PubMed  Google Scholar 

  6. Meier UT (2005) The many facets of H/ACA ribonucleoproteins. Chromosoma 114:1–14

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Vulliamy T, Marrone A, Goldman F, Dearlove A, Bessler M, Mason PJ, Dokal I (2001) The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita. Nature 413:432–435

    Article  CAS  PubMed  Google Scholar 

  8. Schwarz DS, Hutvagner G, Du T, Xu Z, Aronin N, Zamore PD (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115:199–208

    Article  CAS  PubMed  Google Scholar 

  9. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    Article  CAS  PubMed  Google Scholar 

  10. Farh KK, Grimson A, Jan C, Lewis BP, Johnston WK, Lim LP, Burge CB, Bartel DP (2005) The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science 310:1817–1821

    Article  CAS  PubMed  Google Scholar 

  11. Zeng Y (2006) Principles of micro-RNA production and maturation. Oncogene 25:6156–6162

    Article  CAS  PubMed  Google Scholar 

  12. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415–419

    Article  CAS  PubMed  Google Scholar 

  13. Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ (2004) Processing of primary microRNAs by the Microprocessor complex. Nature 432:231–235

    Article  CAS  PubMed  Google Scholar 

  14. Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, Shiekhattar R (2004) The Microprocessor complex mediates the genesis of microRNAs. Nature 432:235–240

    Article  CAS  PubMed  Google Scholar 

  15. Yi R, Qin Y, Macara IG, Cullen BR (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17:3011–3016

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11:597–610

    CAS  PubMed  Google Scholar 

  17. Chen CZ, Li L, Lodish HF, Bartel DP (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303:83–86

    Article  CAS  PubMed  Google Scholar 

  18. O’Connell RM, Rao DS, Chaudhuri AA, Baltimore D (2010) Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol 10:111–122

    Article  PubMed  Google Scholar 

  19. Hill DA, Ivanovich J, Priest JR, Gurnett CA, Dehner LP, Desruisseau D, Jarzembowski JA, Wikenheiser-Brokamp KA, Suarez BK, Whelan AJ, Williams G, Bracamontes D, Messinger Y, Goodfellow PJ (2009) DICER1 mutations in familial pleuropulmonary blastoma. Science 325:965

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Rio Frio T, Bahubeshi A, Kanellopoulou C, Hamel N, Niedziela M, Sabbaghian N, Pouchet C, Gilbert L, O’Brien PK, Serfas K, Broderick P, Houlston RS, Lesueur F, Bonora E, Muljo S, Schimke RN, Bouron-Dal Soglio D, Arseneau J, Schultz KA, Priest JR, Nguyen VH, Harach HR, Livingston DM, Foulkes WD, Tischkowitz M (2011) DICER1 mutations in familial multinodular goiter with and without ovarian Sertoli-Leydig cell tumors. JAMA 305:68–77

    Article  CAS  PubMed  Google Scholar 

  21. Cobb BS, Nesterova TB, Thompson E, Hertweck A, O’Connor E, Godwin J, Wilson CB, Brockdorff N, Fisher AG, Smale ST, Merkenschlager M (2005) T cell lineage choice and differentiation in the absence of the RNase III enzyme Dicer. J Exp Med 201:1367–1373

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Zhou X, Jeker LT, Fife BT, Zhu S, Anderson MS, McManus MT, Bluestone JA (2008) Selective miRNA disruption in T reg cells leads to uncontrolled autoimmunity. J Exp Med 205:1983–1991

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Koralov SB, Muljo SA, Galler GR, Krek A, Chakraborty T, Kanellopoulou C, Jensen K, Cobb BS, Merkenschlager M, Rajewsky N, Rajewsky K (2008) Dicer ablation affects antibody diversity and cell survival in the B lymphocyte lineage. Cell 132:860–874

    Article  CAS  PubMed  Google Scholar 

  24. Bezman NA, Cedars E, Steiner DF, Blelloch R, Hesslein DG, Lanier LL (2010) Distinct requirements of microRNAs in NK cell activation, survival, and function. J Immunol 185:3835–3846

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Kuipers H, Schnorfeil FM, Fehling HJ, Bartels H, Brocker T (2010) Dicer-dependent microRNAs control maturation, function, and maintenance of Langerhans cells in vivo. J Immunol 185:400–409

    Article  CAS  PubMed  Google Scholar 

  26. Shortman K, Heath WR (2010) The CD8+ dendritic cell subset. Immunol Rev 234:18–31

    Article  CAS  PubMed  Google Scholar 

  27. Abb J, Abb H, Deinhardt F (1983) Phenotype of human alpha-interferon producing leucocytes identified by monoclonal antibodies. Clin Exp Immunol 52:179–184

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Colonna M, Trinchieri G, Liu YJ (2004) Plasmacytoid dendritic cells in immunity. Nat Immunol 5:1219–1226

    Article  CAS  PubMed  Google Scholar 

  29. Randolph GJ, Ochando J, Partida-Sanchez S (2008) Migration of dendritic cell subsets and their precursors. Annu Rev Immunol 26:293–316

    Article  CAS  PubMed  Google Scholar 

  30. Merad M, Ginhoux F, Collin M (2008) Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nat Rev Immunol 8:935–947

    Article  CAS  PubMed  Google Scholar 

  31. Ginhoux F, Merad M (2010) Ontogeny and homeostasis of Langerhans cells. Immunol Cell Biol 88:387–392

    Article  PubMed  Google Scholar 

  32. Li HS, Greeley N, Sugimoto N, Liu YJ, Watowich SS (2012) miR-22 controls Irf8 mRNA abundance and murine dendritic cell development. PLoS One 7:e52341

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Riepsaame J, van Oudenaren A, den Broeder BJ, van Ijcken WF, Pothof J, Leenen PJ (2013) MicroRNA-mediated down-regulation of M-CSF receptor contributes to maturation of mouse monocyte-derived dendritic cells. Front Immunol 4:353

    Article  PubMed Central  PubMed  Google Scholar 

  34. Aliberti J, Schulz O, Pennington DJ, Tsujimura H, Reis e Sousa C, Ozato K, Sher A (2003) Essential role for ICSBP in the in vivo development of murine CD8alpha + dendritic cells. Blood 101:305–310

    Article  CAS  PubMed  Google Scholar 

  35. Esashi E, Wang YH, Perng O, Qin XF, Liu YJ, Watowich SS (2008) The signal transducer STAT5 inhibits plasmacytoid dendritic cell development by suppressing transcription factor IRF8. Immunity 28:509–520

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Fancke B, Suter M, Hochrein H, O’Keeffe M (2008) M-CSF: a novel plasmacytoid and conventional dendritic cell poietin. Blood 111:150–159

    Article  CAS  PubMed  Google Scholar 

  37. Hashimi ST, Fulcher JA, Chang MH, Gov L, Wang S, Lee B (2009) MicroRNA profiling identifies miR-34a and miR-21 and their target genes JAG1 and WNT1 in the coordinate regulation of dendritic cell differentiation. Blood 114:404–414

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Cheng P, Nefedova Y, Miele L, Osborne BA, Gabrilovich D (2003) Notch signaling is necessary but not sufficient for differentiation of dendritic cells. Blood 102:3980–3988

    Article  CAS  PubMed  Google Scholar 

  39. Cheng P, Zhou J, Gabrilovich D (2010) Regulation of dendritic cell differentiation and function by Notch and Wnt pathways. Immunol Rev 234:105–119

    Article  CAS  PubMed  Google Scholar 

  40. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21-nucleotide Let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906

    Article  CAS  PubMed  Google Scholar 

  41. Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, Hayward DC, Ball EE, Degnan B, Muller P, Spring J, Srinivasan A, Fishman M, Finnerty J, Corbo J, Levine M, Leahy P, Davidson E, Ruvkun G (2000) Conservation of the sequence and temporal expression of Let-7 heterochronic regulatory RNA. Nature 408:86–89

    Article  CAS  PubMed  Google Scholar 

  42. Zhang M, Liu F, Jia H, Zhang Q, Yin L, Liu W, Li H, Yu B, Wu J (2011) Inhibition of microRNA Let-7i depresses maturation and functional state of dendritic cells in response to lipopolysaccharide stimulation via targeting suppressor of cytokine signaling 1. J Immunol 187:1674–1683

    Article  CAS  PubMed  Google Scholar 

  43. Kim SJ, Gregersen PK, Diamond B (2013) Regulation of dendritic cell activation by microRNA Let-7c and BLIMP1. J Clin Invest 123:823–833

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Taganov KD, Boldin MP, Chang KJ, Baltimore D (2006) NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A 103:12481–12486

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Jurkin J, Schichl YM, Koeffel R, Bauer T, Richter S, Konradi S, Gesslbauer B, Strobl H (2010) miR-146a is differentially expressed by myeloid dendritic cell subsets and desensitizes cells to TLR2-dependent activation. J Immunol 184:4955–4965

    Article  CAS  PubMed  Google Scholar 

  46. Chen T, Li Z, Jing T, Zhu W, Ge J, Zheng X, Pan X, Yan H, Zhu J (2011) MicroRNA-146a regulates the maturation process and pro-inflammatory cytokine secretion by targeting CD40L in oxLDL-stimulated dendritic cells. FEBS Lett 585:567–573

    Article  CAS  PubMed  Google Scholar 

  47. Bai Y, Qian C, Qian L, Ma F, Hou J, Chen Y, Wang Q, Cao X (2012) Integrin CD11b negatively regulates TLR9-triggered dendritic cell cross-priming by upregulating microRNA-146a. J Immunol 188:5293–5302

    Article  CAS  PubMed  Google Scholar 

  48. Lu C, Huang X, Zhang X, Roensch K, Cao Q, Nakayama KI, Blazar BR, Zeng Y, Zhou X (2011) miR-221 and miR-155 regulate human dendritic cell development, apoptosis, and IL-12 production through targeting of p27kip1, KPC1, and SOCS-1. Blood 117:4293–4303

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Dunand-Sauthier I, Santiago-Raber ML, Capponi L, Vejnar CE, Schaad O, Irla M, Seguin-Estevez Q, Descombes P, Zdobnov EM, Acha-Orbea H, Reith W (2011) Silencing of c-Fos expression by microRNA-155 is critical for dendritic cell maturation and function. Blood 117:4490–4500

    Article  CAS  PubMed  Google Scholar 

  50. Zhou H, Huang X, Cui H, Luo X, Tang Y, Chen S, Wu L, Shen N (2010) miR-155 and its star-form partner miR-155* cooperatively regulate type I interferon production by human plasmacytoid dendritic cells. Blood 116:5885–5894

    Article  CAS  PubMed  Google Scholar 

  51. Ceppi M, Pereira PM, Dunand-Sauthier I, Barras E, Reith W, Santos MA, Pierre P (2009) MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells. Proc Natl Acad Sci U S A 106:2735–2740

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Schauvliege R, Janssens S, Beyaert R (2006) Pellino proteins are more than scaffold proteins in TLR/IL-1R signalling: a role as novel RING E3-ubiquitin-ligases. FEBS Lett 580:4697–4702

    Article  CAS  PubMed  Google Scholar 

  53. Takaesu G, Kishida S, Hiyama A, Yamaguchi K, Shibuya H, Irie K, Ninomiya-Tsuji J, Matsumoto K (2000) TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway. Mol Cell 5:649–658

    Article  CAS  PubMed  Google Scholar 

  54. Martinez-Nunez RT, Louafi F, Friedmann PS, Sanchez-Elsner T (2009) MicroRNA-155 modulates the pathogen binding ability of dendritic cells (DCs) by down-regulation of DC-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN). J Biol Chem 284:16334–16342

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Kriehuber E, Bauer W, Charbonnier AS, Winter D, Amatschek S, Tamandl D, Schweifer N, Stingl G, Maurer D (2005) Balance between NF-kappaB and JNK/AP-1 activity controls dendritic cell life and death. Blood 106:175–183

    Article  CAS  PubMed  Google Scholar 

  56. Okamura K, Phillips MD, Tyler DM, Duan H, Chou YT, Lai EC (2008) The regulatory activity of microRNA* species has substantial influence on microRNA and 3′ UTR evolution. Nat Struct Mol Biol 15:354–363

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. O’Toole AS, Miller S, Haines N, Zink MC, Serra MJ (2006) Comprehensive thermodynamic analysis of 3′ double-nucleotide overhangs neighboring Watson-Crick terminal base pairs. Nucleic Acids Res 34:3338–3344

    Article  PubMed Central  PubMed  Google Scholar 

  58. Grimson A, Srivastava M, Fahey B, Woodcroft BJ, Chiang HR, King N, Degnan BM, Rokhsar DS, Bartel DP (2008) Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature 455:1193–1197

    Article  CAS  PubMed  Google Scholar 

  59. Kobayashi K, Hernandez LD, Galan JE, Janeway CA Jr, Medzhitov R, Flavell RA (2002) IRAK-M is a negative regulator of Toll-like receptor signaling. Cell 110:191–202

    Article  CAS  PubMed  Google Scholar 

  60. Liu X, Zhan Z, Xu L, Ma F, Li D, Guo Z, Li N, Cao X (2010) MicroRNA-148/152 impair innate response and antigen presentation of TLR-triggered dendritic cells by targeting CaMKIIalpha. J Immunol 185:7244–7251

    Article  CAS  PubMed  Google Scholar 

  61. Lu TX, Munitz A, Rothenberg ME (2009) MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression. J Immunol 182:4994–5002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Sheedy FJ, Palsson-McDermott E, Hennessy EJ, Martin C, O’Leary JJ, Ruan Q, Johnson DS, Chen Y, O’Neill LA (2010) Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat Immunol 11:141–147

    Article  CAS  PubMed  Google Scholar 

  63. Brain O, Owens BM, Pichulik T, Allan P, Khatamzas E, Leslie A, Steevels T, Sharma S, Mayer A, Catuneanu AM, Morton V, Sun MY, Jewell D, Coccia M, Harrison O, Maloy K, Schonefeldt S, Bornschein S, Liston A, Simmons A (2013) The intracellular sensor NOD2 induces microRNA-29 expression in human dendritic cells to limit IL-23 release. Immunity 39:521–536

    Article  CAS  PubMed  Google Scholar 

  64. Al-Salleeh F, Petro TM (2008) Promoter analysis reveals critical roles for SMAD-3 and ATF-2 in expression of IL-23 p19 in macrophages. J Immunol 181:4523–4533

    Article  CAS  PubMed  Google Scholar 

  65. Hochberg MC (1985) The incidence of systemic lupus erythematosus in Baltimore, Maryland, 1970-1977. Arthritis Rheum 28:80–86

    Article  CAS  PubMed  Google Scholar 

  66. Serdula MK, Rhoads GG (1979) Frequency of systemic lupus erythematosus in different ethnic groups in Hawaii. Arthritis Rheum 22:328–333

    Article  CAS  PubMed  Google Scholar 

  67. Symmons DP (1995) Frequency of lupus in people of African origin. Lupus 4:176–178

    Article  CAS  PubMed  Google Scholar 

  68. Whitacre CC, Reingold SC, O’Looney PA (1999) A gender gap in autoimmunity. Science 283:1277–1278

    Article  CAS  PubMed  Google Scholar 

  69. Chakravarty EF, Bush TM, Manzi S, Clarke AE, Ward MM (2007) Prevalence of adult systemic lupus erythematosus in California and Pennsylvania in 2000: estimates obtained using hospitalization data. Arthritis Rheum 56:2092–2094

    Article  PubMed Central  PubMed  Google Scholar 

  70. Lahita RG (1999) The role of sex hormones in systemic lupus erythematosus. Curr Opin Rheumatol 11:352–356

    Article  CAS  PubMed  Google Scholar 

  71. Dai Y, Huang YS, Tang M, Lv TY, Hu CX, Tan YH, Xu ZM, Yin YB (2007) Microarray analysis of microRNA expression in peripheral blood cells of systemic lupus erythematosus patients. Lupus 16:939–946

    Article  CAS  PubMed  Google Scholar 

  72. Te JL, Dozmorov IM, Guthridge JM, Nguyen KL, Cavett JW, Kelly JA, Bruner GR, Harley JB, Ojwang JO (2010) Identification of unique microRNA signature associated with lupus nephritis. PLoS One 5:e10344

    Article  PubMed Central  PubMed  Google Scholar 

  73. Dai Y, Sui W, Lan H, Yan Q, Huang H, Huang Y (2009) Comprehensive analysis of microRNA expression patterns in renal biopsies of lupus nephritis patients. Rheumatol Int 29:749–754

    Article  CAS  PubMed  Google Scholar 

  74. Carlsen AL, Schetter AJ, Nielsen CT, Lood C, Knudsen S, Voss A, Harris CC, Hellmark T, Segelmark M, Jacobsen S, Bengtsson AA, Heegaard NH (2013) Circulating microRNA expression profiles associated with systemic lupus erythematosus. Arthritis Rheum 65:1324–1334

    Article  CAS  PubMed  Google Scholar 

  75. Wang G, Tam LS, Li EK, Kwan BC, Chow KM, Luk CC, Li PK, Szeto CC (2011) Serum and urinary free microRNA level in patients with systemic lupus erythematosus. Lupus 20:493–500

    Article  CAS  PubMed  Google Scholar 

  76. Tang Y, Luo X, Cui H, Ni X, Yuan M, Guo Y, Huang X, Zhou H, de Vries N, Tak PP, Chen S, Shen N (2009) MicroRNA-146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis Rheum 60:1065–1075

    Article  CAS  PubMed  Google Scholar 

  77. Stagakis E, Bertsias G, Verginis P, Nakou M, Hatziapostolou M, Kritikos H, Iliopoulos D, Boumpas DT (2011) Identification of novel microRNA signatures linked to human lupus disease activity and pathogenesis: miR-21 regulates aberrant T cell responses through regulation of PDCD4 expression. Ann Rheum Dis 70:1496–1506

    Article  CAS  PubMed  Google Scholar 

  78. Pan W, Zhu S, Yuan M, Cui H, Wang L, Luo X, Li J, Zhou H, Tang Y, Shen N (2010) MicroRNA-21 and microRNA-148a contribute to DNA hypomethylation in lupus CD4+ T cells by directly and indirectly targeting DNA methyltransferase 1. J Immunol 184:6773–6781

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun Jung Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kim, S.J., Diamond, B. (2015). Endogenous Control of Dendritic Cell Activation by miRNA. In: Greene, C. (eds) MicroRNAs and Other Non-Coding RNAs in Inflammation. Progress in Inflammation Research. Springer, Cham. https://doi.org/10.1007/978-3-319-13689-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13689-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13688-2

  • Online ISBN: 978-3-319-13689-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics