Skip to main content

The Relationship Between miR-29, NOD2 and Crohn’s Disease

  • Chapter
  • First Online:
MicroRNAs and Other Non-Coding RNAs in Inflammation

Part of the book series: Progress in Inflammation Research ((PIR))

  • 1035 Accesses

Abstract

Crohn’s disease (CD) is a chronic inflammatory bowel disease with a complex aetiology that includes genetic susceptibility and the gastrointestinal microbiome and results in an aberrant Th17 inflammatory response. NOD2 is an intracellular sensor that responds to bacterial cell wall peptidoglycan and contributes to immune defense. Polymorphisms in the NOD2 gene predispose to Crohn’s disease, with the largest effect of any of the known genetic risk factors. We have found that wild-type NOD2 controls the expression of miR-29 in human dendritic cells (DCs). miR-29 regulates the expression of a number of immune mediators including the IL-23 cytokine subunits IL-12p40 and IL-23p19. CD patient DCs expressing NOD2 polymorphisms fail to induce miR-29 and show enhanced IL-12p40 release on exposure to adherent invasive E. coli. Moreover in a murine model deficient in miR-29, a more severe Th17-driven colitis is established after DSS administration. Therefore, we suggest that the loss of miR-29-mediated immunoregulation in CD-variant NOD2 DCs contributes to elevated IL-23 and aberrant Th17 response in this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AIEC:

Adherent-invasive Escherichia coli

APC:

Antigen presenting cell

ATG16L1:

Autophagy related 16-like 1

CARD15:

Caspase recruitment domain family member 15

CD:

Crohn’s disease

Chr:

Chromosome

CLR:

C-type lectin receptors

DAMP:

Damage-associated molecular pattern

DC:

Dendritic cell

DSS:

Dextran sodium sulphate

F. prau :

Faecalibacterium prausnitzii

Foxp3:

Forkhead box P3

GI:

Gastrointestinal

GWAS:

Genome-wide association study

HD:

Human defensin

IBD:

Inflammatory bowel disease

IFN:

Interferon

IL:

Interleukin

IL-12B:

Interleukin 12B/IL-12p40

IL-23R:

Interleukin-23 receptor

IRGM:

Immunity-related GTPase family, M

JAK2:

Janus kinase 2

KO:

Knock-out

LPS:

Lipopolysaccharide

LRR:

Leucine-rich repeat

MDDC:

Monocyte-derived dendritic cell

MDP:

Muramyl dipeptide

miR:

microRNA

MyD88:

Myeloid differentiation primary response gene 88

NFκB:

Nuclear factor kappa B

NK:

Natural killer

NLR:

NOD-like receptor

NOD2:

Nucleotide-binding oligomerisation domain containing 2

Pam3CSK4 :

Synthetic triacylated lipoprotein—TLR1/2 ligand

PAMP:

Pathogen-associated molecular pattern

PCR:

Polymerase chain reaction

PGN:

Peptidoglycan

PRR:

Pattern recognition receptor

qPCR:

Quantitative polymerase chain reaction

RIPK-2:

Receptor-interacting protein kinase 2

RORγt:

RAR-related orphan receptor gamma

STAT3:

Signal transducer and activator of transcription 3

T-bet:

T-box transcription factor

Th1/17:

T helper 1/17

TLR:

Toll-like receptor

TNF:

Tumour necrosis factor

Wnt:

Wingless

WT:

Wild-type

References

  1. Ng SC (2014) Epidemiology of inflammatory bowel disease: focus on Asia [Review]. Best Pract Res Clin Gastroenterol 28(3):363–372

    Article  PubMed  Google Scholar 

  2. Hanauer SB, Feagan BG, Lichtenstein GR, Mayer LF, Schreiber S, Colombel JF et al (2002) Maintenance infliximab for Crohn’s disease: the ACCENT I randomised trial. Lancet 359(9317):1541–1549

    Article  CAS  PubMed  Google Scholar 

  3. Goldberg PA, Wright JP, Gerber M, Claassen R (1993) Incidence of surgical resection for Crohn’s disease. Dis Colon Rectum 36(8):736–739

    Article  CAS  PubMed  Google Scholar 

  4. Higgens CS, Allan RN (1980) Crohn’s disease of the distal ileum. Gut 21(11):933–940

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Crohn G (1932) Regional ileitis: a pathologic and clinical entity. JAMA 99:1323–1329

    Article  Google Scholar 

  6. Halme L, Paavola-Sakki P, Turunen U, Lappalainen M, Farkkila M, Kontula K (2006) Family and twin studies in inflammatory bowel disease. World J Gastroenterol 12(23):3668–3672

    PubMed Central  PubMed  Google Scholar 

  7. Monsen U, Bernell O, Johansson C, Hellers G (1991) Prevalence of inflammatory bowel disease among relatives of patients with Crohn’s disease. Scand J Gastroenterol 26(3):302–306

    Article  CAS  PubMed  Google Scholar 

  8. Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY et al (2012) Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491(7422):119–124

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP, Belaiche J et al (2001) Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 411(6837):599–603

    Article  CAS  PubMed  Google Scholar 

  10. Girardin SE, Boneca IG, Viala J, Chamaillard M, Labigne A, Thomas G et al (2003) Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem 278(11):8869–8872

    Article  CAS  PubMed  Google Scholar 

  11. Inohara N, Ogura Y, Fontalba A, Gutierrez O, Pons F, Crespo J et al (2003) Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn’s disease. J Biol Chem 278(8):5509–5512

    Article  CAS  PubMed  Google Scholar 

  12. Hooper LV, Gordon JI (2001) Commensal host-bacterial relationships in the gut. Science 292(5519):1115–1118

    Article  CAS  PubMed  Google Scholar 

  13. Zoetendal EG, von Wright A, Vilpponen-Salmela T, Ben-Amor K, Akkermans AD, de Vos WM (2002) Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces. Appl Environ Biol 68:3401–3407

    Article  CAS  Google Scholar 

  14. Stewart JA, Chadwick VS, Murray A (2005) Investigations into the influence of host genetics on the predominant eubacteria in the faecal microflora of children. J Med Microbiol 54(Pt 12):1239–1242

    Article  CAS  PubMed  Google Scholar 

  15. Muegge BD, Kuczynski J, Knights D, Clemente JC, Gonzalez A, Fontana L et al (2011) Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332(6032):970–974

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Tiihonen K, Ouwehand AC, Rautonen N (2010) Human intestinal microbiota and healthy ageing [Review]. Ageing Res Rev 9(2):107–116

    Article  PubMed  Google Scholar 

  17. Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermudez-Humaran LG, Gratadoux JJ et al (2008) Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA 105(43):16731–16736

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Sokol H, Seksik P, Furet JP, Firmesse O, Nion-Larmurier I, Beaugerie L et al (2009) Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm Bowel Dis 15(8):1183–1189

    Article  CAS  PubMed  Google Scholar 

  19. Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y et al (2011) Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331(6015):337–341

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Baumgart M, Dogan B, Rishniw M, Weitzman G, Bosworth B, Yantiss R et al (2007) Culture independent analysis of ileal mucosa reveals a selective increase in invasive Escherichia coli of novel phylogeny relative to depletion of Clostridiales in Crohn’s disease involving the ileum. ISME J 1(5):403–418

    Article  CAS  PubMed  Google Scholar 

  21. Darfeuille-Michaud A, Boudeau J, Bulois P, Neut C, Glasser AL, Barnich N et al (2004) High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn’s disease. Gastroenterology 127(2):412–421

    Article  PubMed  Google Scholar 

  22. Martin HM, Campbell BJ, Hart CA, Mpofu C, Nayar M, Singh R et al (2004) Enhanced Escherichia coli adherence and invasion in Crohn’s disease and colon cancer. Gastroenterology 127(1):80–93

    Article  CAS  PubMed  Google Scholar 

  23. Feller M, Huwiler K, Schoepfer A, Shang A, Furrer H, Egger M (2010) Long-term antibiotic treatment for Crohn’s disease: systematic review and meta-analysis of placebo-controlled trials. Clin Infect Dis 50(4):473–480

    Article  CAS  PubMed  Google Scholar 

  24. Harper PH, Truelove SC, Lee EC, Kettlewell MG, Jewell DP (1983) Split ileostomy and ileocolostomy for Crohn’s disease of the colon and ulcerative colitis: a 20 year survey. Gut 24(2):106–113

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Rutgeerts P, Goboes K, Peeters M, Hiele M, Penninckx F, Aerts R et al (1991) Effect of faecal stream diversion on recurrence of Crohn’s disease in the neoterminal ileum. Lancet 338(8770):771–774

    Article  CAS  PubMed  Google Scholar 

  26. Duchmann R, May E, Heike M, Knolle P, Neurath M, Meyer zum Buschenfelde KH (1999) T cell specificity and cross reactivity towards enterobacteria, bacteroides, bifidobacterium, and antigens from resident intestinal flora in humans. Gut 44(6):812–818

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Garrett WS, Lord GM, Punit S, Lugo-Villarino G, Mazmanian SK, Ito S et al (2007) Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell 131(1):33–45

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Ott SJ, Musfeldt M, Wenderoth DF, Hampe J, Brant O, Folsch UR et al (2004) Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut 53(5):685–693

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA 104(34):13780–13785

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Franke A, McGovern DP, Barrett JC, Wang K, Radford-Smith GL, Ahmad T et al (2010) Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet 42(12):1118–1125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Buonocore S, Ahern PP, Uhlig HH, Ivanov II, Littman DR, Maloy KJ et al (2010) Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature 464(7293):1371–1375

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Ahern PP, Schiering C, Buonocore S, McGeachy MJ, Cua DJ, Maloy KJ et al (2010) Interleukin-23 drives intestinal inflammation through direct activity on T cells. Immunity 33(2):279–288

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Liu Z, Yadav PK, Xu X, Su J, Chen C, Tang M et al (2011) The increased expression of IL-23 in inflammatory bowel disease promotes intraepithelial and lamina propria lymphocyte inflammatory responses and cytotoxicity. J Leukoc Biol 89(4):597–606

    Article  CAS  PubMed  Google Scholar 

  34. Ogura Y, Lala S, Xin W, Smith E, Dowds TA, Chen FF et al (2003) Expression of NOD2 in Paneth cells: a possible link to Crohn’s ileitis. Gut 52(11):1591–1597

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Gutierrez O, Pipaon C, Inohara N, Fontalba A, Ogura Y, Prosper F et al (2002) Induction of Nod2 in myelomonocytic and intestinal epithelial cells via nuclear factor-kappa B activation. J Biol Chem 277(44):41701–41705

    Article  CAS  PubMed  Google Scholar 

  36. Ogura Y, Inohara N, Benito A, Chen FF, Yamaoka S, Nunez G (2001) Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-kappaB. J Biol Chem 276(7):4812–4818

    Article  CAS  PubMed  Google Scholar 

  37. Lesage S, Zouali H, Cezard JP, Colombel JF, Belaiche J, Almer S et al (2002) CARD15/NOD2 mutational analysis and genotype-phenotype correlation in 612 patients with inflammatory bowel disease. Am J Hum Genet 70(4):845–857

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Cuthbert AP, Fisher SA, Mirza MM, King K, Hampe J, Croucher PJ et al (2002) The contribution of NOD2 gene mutations to the risk and site of disease in inflammatory bowel disease. Gastroenterology 122(4):867–874

    Article  CAS  PubMed  Google Scholar 

  39. Ahmad T, Armuzzi A, Bunce M, Mulcahy-Hawes K, Marshall SE, Orchard TR et al (2002) The molecular classification of the clinical manifestations of Crohn’s disease. Gastroenterology 122(4):854–866

    Article  CAS  PubMed  Google Scholar 

  40. Seiderer J, Brand S, Herrmann KA, Schnitzler F, Hatz R, Crispin A et al (2006) Predictive value of the CARD15 variant 1007fs for the diagnosis of intestinal stenoses and the need for surgery in Crohn’s disease in clinical practice: results of a prospective study. Inflamm Bowel Dis 12(12):1114–1121

    Article  PubMed  Google Scholar 

  41. Hu Y, Ding L, Spencer DM, Nunez G (1998) WD-40 repeat region regulates Apaf-1 self-association and procaspase-9 activation. J Biol Chem 273(50):33489–33494

    Article  CAS  PubMed  Google Scholar 

  42. Srinivasula SM, Ahmad M, Fernandes-Alnemri T, Alnemri ES (1998) Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization. Mol Cell 1(7):949–957

    Article  CAS  PubMed  Google Scholar 

  43. Kobayashi K, Inohara N, Hernandez LD, Galan JE, Nunez G, Janeway CA et al (2002) RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and adaptive immune systems. Nature 416(6877):194–199

    Article  CAS  PubMed  Google Scholar 

  44. Cooney R, Baker J, Brain O, Danis B, Pichulik T, Allan P et al (2010) NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat Med 16(1):90–97

    Article  CAS  PubMed  Google Scholar 

  45. Travassos LH, Carneiro LA, Ramjeet M, Hussey S, Kim YG, Magalhaes JG et al (2010) Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat Immunol 11(1):55–62

    Article  CAS  PubMed  Google Scholar 

  46. Feng Y, He D, Yao Z, Klionsky DJ (2014) The machinery of macroautophagy. Cell Res 24(1):24–41

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Gomes LC, Dikic I (2014) Autophagy in antimicrobial immunity. Mol Cell 54(2):224–233

    Article  CAS  PubMed  Google Scholar 

  48. MacVicar T (2013) Mitophagy [Review]. Essays Biochem 55:93–104

    Article  CAS  PubMed  Google Scholar 

  49. Lala S, Ogura Y, Osborne C, Hor SY, Bromfield A, Davies S et al (2003) Crohn’s disease and the NOD2 gene: a role for paneth cells. Gastroenterology 125(1):47–57

    Article  CAS  PubMed  Google Scholar 

  50. Porter EM, Bevins CL, Ghosh D, Ganz T (2002) The multifaceted Paneth cell. Cell Mol Life Sci 59(1):156–170

    Article  CAS  PubMed  Google Scholar 

  51. Elphick D, Liddell S, Mahida YR (2008) Impaired luminal processing of human defensin-5 in Crohn’s disease: persistence in a complex with chymotrypsinogen and trypsin. Am J Pathol 172(3):702–713

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Wehkamp J, Salzman NH, Porter E, Nuding S, Weichenthal M, Petras RE et al (2005) Reduced Paneth cell alpha-defensins in ileal Crohn’s disease. Proc Natl Acad Sci USA 102(50):18129–18134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Simms LA, Doecke JD, Walsh MD, Huang N, Fowler EV, Radford-Smith GL (2008) Reduced alpha-defensin expression is associated with inflammation and not NOD2 mutation status in ileal Crohn’s disease. Gut 57(7):903–910

    Article  CAS  PubMed  Google Scholar 

  54. Bevins CL, Stange EF, Wehkamp J (2009) Decreased Paneth cell defensin expression in ileal Crohn’s disease is independent of inflammation, but linked to the NOD2 1007fs genotype. Gut 58(6):882–883, discussion 883–884

    CAS  PubMed  Google Scholar 

  55. Perminow G, Beisner J, Koslowski M, Lyckander LG, Stange E, Vatn MH et al (2010) Defective paneth cell-mediated host defense in pediatric ileal Crohn’s disease. Am J Gastroenterol 105(2):452–459

    Article  PubMed  Google Scholar 

  56. Wehkamp J, Wang G, Kubler I, Nuding S, Gregorieff A, Schnabel A et al (2007) The Paneth cell alpha-defensin deficiency of ileal Crohn’s disease is linked to Wnt/Tcf-4. J Immunol 179(5):3109–3118

    Article  CAS  PubMed  Google Scholar 

  57. Uehara A, Yang S, Fujimoto Y, Fukase K, Kusumoto S, Shibata K et al (2005) Muramyldipeptide and diaminopimelic acid-containing desmuramylpeptides in combination with chemically synthesized Toll-like receptor agonists synergistically induced production of interleukin-8 in a NOD2- and NOD1-dependent manner, respectively, in human monocytic cells in culture. Cell Microbiol 7(1):53–61

    Article  CAS  PubMed  Google Scholar 

  58. van Heel DA, Ghosh S, Hunt KA, Mathew CG, Forbes A, Jewell DP et al (2005) Synergy between TLR9 and NOD2 innate immune responses is lost in genetic Crohn’s disease. Gut 54(11):1553–1557

    Article  PubMed Central  PubMed  Google Scholar 

  59. Yang S, Tamai R, Akashi S, Takeuchi O, Akira S, Sugawara S et al (2001) Synergistic effect of muramyldipeptide with lipopolysaccharide or lipoteichoic acid to induce inflammatory cytokines in human monocytic cells in culture. Infect Immun 69(4):2045–2053

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Kobayashi KS, Chamaillard M, Ogura Y, Henegariu O, Inohara N, Nunez G et al (2005) Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307(5710):731–734

    Article  CAS  PubMed  Google Scholar 

  61. van Beelen AJ, Zelinkova Z, Taanman-Kueter EW, Muller FJ, Hommes DW, Zaat SA et al (2007) Stimulation of the intracellular bacterial sensor NOD2 programs dendritic cells to promote interleukin-17 production in human memory T cells. Immunity 27(4):660–669

    Article  PubMed  Google Scholar 

  62. Bazzoni F, Rossato M, Fabbri M, Gaudiosi D, Mirolo M, Mori L et al (2009) Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals. Proc Natl Acad Sci USA 106(13):5282–5287

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Ceppi M, Pereira PM, Dunand-Sauthier I, Barras E, Reith W, Santos MA et al (2009) MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells. Proc Natl Acad Sci USA 106(8):2735–2740

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Sheedy FJ, Palsson-McDermott E, Hennessy EJ, Martin C, O’Leary JJ, Ruan Q et al (2010) Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat Immunol 11(2):141–147

    Article  CAS  PubMed  Google Scholar 

  65. Taganov KD, Boldin MP, Chang KJ, Baltimore D (2006) NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA 103(33):12481–12486

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Tili E, Michaille JJ, Cimino A, Costinean S, Dumitru CD, Adair B et al (2007) Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol 179(8):5082–5089

    Article  CAS  PubMed  Google Scholar 

  67. Brain O, Owens BM, Pichulik T, Allan P, Khatamzas E, Leslie A et al (2013) The intracellular sensor NOD2 induces microRNA-29 expression in human dendritic cells to limit IL-23 release. Immunity 39(3):521–536

    Article  CAS  PubMed  Google Scholar 

  68. Ma F, Xu S, Liu X, Zhang Q, Xu X, Liu M et al (2011) The microRNA miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting interferon-gamma. Nat Immunol 12(9):861–869

    Article  CAS  PubMed  Google Scholar 

  69. Steiner DF, Thomas MF, Hu JK, Yang Z, Babiarz JE, Allen CD et al (2011) MicroRNA-29 regulates T-box transcription factors and interferon-gamma production in helper T cells. Immunity 35(2):169–181

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Becker C, Wirtz S, Blessing M, Pirhonen J, Strand D, Bechthold O et al (2003) Constitutive p40 promoter activation and IL-23 production in the terminal ileum mediated by dendritic cells. J Clin Invest 112(5):693–706

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Wehkamp J, Harder J, Weichenthal M, Schwab M, Schaffeler E, Schlee M et al (2004) NOD2 (CARD15) mutations in Crohn’s disease are associated with diminished mucosal alpha-defensin expression. Gut 53(11):1658–1664

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Brain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Brain, O., Simmons, A. (2015). The Relationship Between miR-29, NOD2 and Crohn’s Disease. In: Greene, C. (eds) MicroRNAs and Other Non-Coding RNAs in Inflammation. Progress in Inflammation Research. Springer, Cham. https://doi.org/10.1007/978-3-319-13689-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13689-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13688-2

  • Online ISBN: 978-3-319-13689-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics