Skip to main content

Holographic Metal Ion Sensors

  • Chapter
  • First Online:
Holographic Sensors

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The quantification of metal ions has applications in medical diagnostics, veterinary screening and environmental monitoring. This chapter describes the development of a holographic metal ion sensor through photopolymerisation. In contrast to the nanoparticles (NPs) in silver halide chemistry, porphyrin molecules were chosen for the construction of metal NP-free holographic sensors. A porphyrin derivative with acrylate groups was synthesised to crosslink 2-hydroxyethyl methacrylate monomers. The porphyrin derivative also served as the light-absorbing material and cation chelating agent. A single pulse of a Nd:YAG laser (λ = 532 nm, 6 ns, 350 mJ) in Denisyuk reflection holography mode allowed formation of Bragg diffraction gratings within the porphyrin cross-linked polymer matrix. Holographic sensors had a reversible narrow-band tuneability within the visible spectrum to report on organic solvents in water as a proof of concept, and concentrations of metal cations such as Cu2+ and Fe2+ in aqueous media. The quantification of Cu2+ ions has a potential application in the diagnosis of Wilson’s disease, a genetic disorder in which copper accumulates in the tissues. Similarly, the measurement of Fe2+ ions may help the diagnosis of hemochromatosis, hemolytic anemia, paroxysmal nocturnal hemoglobinemia, and impaired biliary clearance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yetisen AK, Qasim MM, Nosheen S, Wilkinson TD, Lowe CR (2014) Pulsed laser writing of holographic nanosensors. J Mater Chem C 2(18):3569–3576. doi:10.1039/C3tc32507e

    Article  CAS  Google Scholar 

  2. Ala A, Walker AP, Ashkan K, Dooley JS, Schilsky ML (2007) Wilson’s disease. Lancet 369(9559):397–408. doi:10.1016/S0140-6736(07)60196-2

    Article  CAS  Google Scholar 

  3. Test ID: FEU, Iron, 24 Hour, Urine. Mayo Clinic. http://www.mayomedicallaboratories.com. Accessed 27 Oct 2014

  4. Holtz JH, Asher SA (1997) Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 389(6653):829–832. doi:10.1038/39834

    Article  CAS  Google Scholar 

  5. Asher SA, Sharma AC, Goponenko AV, Ward MM (2003) Photonic crystal aqueous metal cation sensing materials. Anal Chem 75(7):1676–1683. doi:10.1021/ac026328n

    Article  CAS  Google Scholar 

  6. Baca JT, Finegold DN, Asher SA (2008) Progress in developing polymerized crystalline colloidal array sensors for point-of-care detection of myocardial ischemia. Analyst 133(3):385–390. doi:10.1039/B712482a

    Article  CAS  Google Scholar 

  7. Mayes AG, Blyth J, Millington RB, Lowe CR (2002) Metal ion-sensitive holographic sensors. Anal Chem 74(15):3649–3657. doi:10.1021/ac020131d

    Article  CAS  Google Scholar 

  8. Kraiskii AV, Postnikov VA, Sultanov TT, Khamidulin AV (2010) Holographic sensors for diagnostics of solution components. IEEE J Quantum Electron 40(2):178–182. doi:10.1070/Qe2010v040n02abeh014169

    Article  CAS  Google Scholar 

  9. Gonzalez BM, Christie G, Davidson CAB, Blyth J, Lowe CR (2005) Divalent metal ion-sensitive holographic sensors. Anal Chim Acta 528(2):219–228. doi:10.1016/j.aca.2004.03.029

    Article  Google Scholar 

  10. Tonezzer M, Maggioni G, Dalcanale E (2012) Production of novel microporous porphyrin materials with superior sensing capabilities. J Mater Chem 22(12):5647–5655. doi:10.1039/C2jm15008e

    Article  CAS  Google Scholar 

  11. Wöhrle D, Meissner D (1991) Organic solar cells. Adv Mater 3(3):129–138. doi:10.1002/adma.19910030303

    Article  Google Scholar 

  12. Rao DVGLN, Aranda FJ, Roach JF, Remy DE (1991) Third-order, nonlinear optical interactions of some benzporphyrins. Appl Phys Lett 58(12):1241–1243. doi:10.1063/1.104323

    Article  CAS  Google Scholar 

  13. Collman JP, Halbert TR, Suslick KS (1980) Oxygen binding to heme proteins and their synthetic analogs. Met Ions Biol 2:1–72

    CAS  Google Scholar 

  14. Rakow NA, Suslick KS (2000) A colorimetric sensor array for odour visualization. Nature 406(6797):710–713. doi:10.1038/35021028

    Article  CAS  Google Scholar 

  15. Twyman LJ, Ellis A, Gittins PJ (2011) Synthesis of multiporphyrin containing hyperbranched polymers. Macromolecules 44(16):6365–6369. doi:10.1021/Ma200863u

    Article  CAS  Google Scholar 

  16. Saxby G (2004) Practical holography, 3rd edn. Institute of Physics Publishing, London

    Google Scholar 

  17. Benton SA, Bove VM (2007) In-line “Denisyuk” reflection holography. In: Holographic imaging. Wiley, USA. doi:10.1002/9780470224137.ch16

  18. Mayes AG, Blyth J, Kyrolainen-Reay M, Millington RB, Lowe CR (1999) A holographic alcohol sensor. Anal Chem 71(16):3390–3396. doi:10.1021/Ac990045m

    Article  CAS  Google Scholar 

  19. Neuberger A, Scott JJ (1952) The basicities of the nitrogen atoms in the porphyrin nucleus; their dependence on some substituents of the tetrapyrrolic ring. Philos Trans R Soc A 213(1114):307–326. doi:10.1098/rspa.1952.0128

    CAS  Google Scholar 

  20. Biesaga M, Pyrzyńska K, Trojanowicz M (2000) Porphyrins in analytical chemistry. A review. Talanta 51(2):209–224. doi:10.1016/S0039-9140(99)00291-X

    Article  CAS  Google Scholar 

  21. Bhushan B (2009) Biomimetics: lessons from nature—an overview. Philos Trans R Soc A 367(1893):1445–1486. doi:10.1098/rsta.2009.0011

    Article  CAS  Google Scholar 

  22. Schwarzenbach G (1952) Der Chelateffekt. Helv Chim Acta 35(7):2344–2359. doi:10.1002/hlca.19520350721

    Article  CAS  Google Scholar 

  23. Cabbiness DK, Margerum DW (1969) Macrocyclic effect on the stability of copper(II) tetramine complexes. J Am Chem Soc 91(23):6540–6541. doi:10.1021/ja01051a091

    Article  CAS  Google Scholar 

  24. Lundeen M, Hugus ZZ (1992) A calorimetric study of some metal ion complexing equilibria. Thermochim Acta 196(1):93–103. doi:10.1016/0040-6031(92)85009-K

    Article  CAS  Google Scholar 

  25. Ahrland S, Chatt J, Davies NR (1958) The relative affinities of ligand atoms for acceptor molecules and ions. Q Rev Chem Soc 12(3):265–276. doi:10.1039/QR9581200265

    Article  CAS  Google Scholar 

  26. Irving H, Williams RJP (1953) 637. The stability of transition-metal complexes. J Chem Soc:3192–3210. doi:10.1039/JR9530003192

  27. Waldron KJ, Rutherford JC, Ford D, Robinson NJ (2009) Metalloproteins and metal sensing. Nature 460(7257):823–830. doi:10.1038/nature08300

    Article  CAS  Google Scholar 

  28. Aragay G, Pons J, Merkoci A (2011) Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection. Chem Rev 111(5):3433–3458. doi:10.1021/cr100383r

    Article  CAS  Google Scholar 

  29. Jung JH, Lee JH, Shinkai S (2011) Functionalized magnetic nanoparticles as chemosensors and adsorbents for toxic metal ions in environmental and biological fields. Chem Soc Rev 40(9):4464–4474. doi:10.1039/C1cs15051k

    Article  CAS  Google Scholar 

  30. Kim HN, Ren WX, Kim JS, Yoon J (2012) Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions. Chem Soc Rev 41(8):3210–3244. doi:10.1039/C1cs15245a

    Article  CAS  Google Scholar 

  31. Albelda MT, Frias JC, Garcia-Espana E, Schneider HJ (2012) Supramolecular complexation for environmental control. Chem Soc Rev 41(10):3859–3877. doi:10.1039/c2cs35008d

    Article  Google Scholar 

  32. Dudev T, Lim C (2014) Competition among metal ions for protein binding sites: determinants of metal ion selectivity in proteins. Chem Rev 114(1):538–556. doi:10.1021/Cr4004665

    Article  CAS  Google Scholar 

  33. Bings NH, Bogaerts A, Broekaert JA (2010) Atomic spectroscopy: a review. Anal Chem 82(12):4653–4681. doi:10.1021/ac1010469

    Article  CAS  Google Scholar 

  34. Profrock D, Prange A (2012) Inductively coupled plasma-mass spectrometry (ICP-MS) for quantitative analysis in environmental and life sciences: a review of challenges, solutions, and trends. Appl Spectrosc 66(8):843–868. doi:10.1366/12-06681

    Article  Google Scholar 

  35. Liu R, Wu P, Yang L, Hou X, Lv Y (2013) Inductively coupled plasma mass spectrometry-based immunoassay: a review. Mass Spectrom Rev 9999:1–21. doi:10.1002/mas.21391

    Google Scholar 

  36. Lodeiro C, Capelo JL, Mejuto JC, Oliveira E, Santos HM, Pedras B, Nunez C (2010) Light and colour as analytical detection tools: a journey into the periodic table using polyamines to bio-inspired systems as chemosensors. Chem Soc Rev 39(8):2948–2976. doi:10.1039/B819787n

    Article  CAS  Google Scholar 

  37. Zhao Q, Li F, Huang C (2010) Phosphorescent chemosensors based on heavy-metal complexes. Chem Soc Rev 39(8):3007–3030. doi:10.1039/b915340c

    Article  CAS  Google Scholar 

  38. Bobacka J, Ivaska A, Lewenstam A (2008) Potentiometric ion sensors. Chem Rev 108(2):329–351. doi:10.1021/cr068100w

    Article  CAS  Google Scholar 

  39. Dimeski G, Badrick T, St John A (2010) Ion selective electrodes (ISEs) and interferences-A review. Clinica Chimica Acta 411(5−6):309−317. doi:10.1016/j.cca.2009.12.005

  40. Volpatti LR, Yetisen AK (2014) Commercialization of microfluidic devices. Trends Biotechnol 32(7):347–350. doi:10.1016/j.tibtech.2014.04.010

    Article  CAS  Google Scholar 

  41. Wegner SV, Okesli A, Chen P, He C (2007) Design of an emission ratiometric biosensor from MerR family proteins: a sensitive and selective sensor for Hg2+. J Am Chem Soc 129(12):3474–3475. doi:10.1021/ja068342d

    Article  CAS  Google Scholar 

  42. Huang CC, Yang Z, Lee KH, Chang HT (2007) Synthesis of highly fluorescent gold nanoparticles for sensing mercury(II). Angew Chem 46(36):6824–6828. doi:10.1002/anie.200700803

    Article  CAS  Google Scholar 

  43. Nolan EM, Lippard SJ (2007) Turn-on and ratiometric mercury sensing in water with a red-emitting probe. J Am Chem Soc 129(18):5910–5918. doi:10.1021/ja068879r

    Article  CAS  Google Scholar 

  44. Zhang XA, Lovejoy KS, Jasanoff A, Lippard SJ (2007) Water-soluble porphyrins as a dual-function molecular imaging platform for MRI and fluorescence zinc sensing. Proc Natl Acad Sci USA 104(26):10780–10785. doi:10.1073/pnas.0702393104

    Article  CAS  Google Scholar 

  45. Cheng T, Xu Y, Zhang S, Zhu W, Qian X, Duan L (2008) A highly sensitive and selective OFF-ON fluorescent sensor for cadmium in aqueous solution and living cell. J Am Chem Soc 130(48):16160–16161. doi:10.1021/ja806928n

    Article  CAS  Google Scholar 

  46. Taki M, Desaki M, Ojida A, Iyoshi S, Hirayama T, Hamachi I, Yamamoto Y (2008) Fluorescence imaging of intracellular cadmium using a dual-excitation ratiometric chemosensor. J Am Chem Soc 130(38):12564–12565. doi:10.1021/Ja803429z

    Article  CAS  Google Scholar 

  47. Zhang XA, Hayes D, Smith SJ, Friedle S, Lippard SJ (2008) New strategy for quantifying biological zinc by a modified zinpyr fluorescence sensor. J Am Chem Soc 130(47):15788–15789. doi:10.1021/ja807156b

    Article  CAS  Google Scholar 

  48. Ye BC, Yin BC (2008) Highly sensitive detection of mercury(II) ions by fluorescence polarization enhanced by gold nanoparticles. Angew Chem 47(44):8386–8389. doi:10.1002/anie.200803069

    Article  CAS  Google Scholar 

  49. Tomat E, Nolan EM, Jaworski J, Lippard SJ (2008) Organelle-specific zinc detection using zinpyr-labeled fusion proteins in live cells. J Am Chem Soc 130(47):15776–15777. doi:10.1021/Ja806634e

    Article  CAS  Google Scholar 

  50. Chatterjee A, Santra M, Won N, Kim S, Kim JK, Kim SB, Ahn KH (2009) Selective fluorogenic and chromogenic probe for detection of silver ions and silver nanoparticles in aqueous media. J Am Chem Soc 131(6):2040–2041. doi:10.1021/ja807230c

    Article  CAS  Google Scholar 

  51. Marbella L, Serli-Mitasev B, Basu P (2009) Development of a fluorescent Pb2+ sensor. Angew Chem Int Ed 48(22):3996–3998. doi:10.1002/anie.200806297

    Article  CAS  Google Scholar 

  52. Huang L, Hou FP, Xi P, Bai D, Xu M, Li Z, Xie G, Shi Y, Liu H, Zeng Z (2011) A rhodamine-based “turn-on” fluorescent chemodosimeter for Cu2+ and its application in living cell imaging. J Inorg Biochem 105(6):800–805. doi:10.1016/j.jinorgbio.2011.02.012

    Article  CAS  Google Scholar 

  53. Lee JS, Han MS, Mirkin CA (2007) Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angew Chem 46(22):4093–4096. doi:10.1002/anie.200700269

    Article  CAS  Google Scholar 

  54. Li T, Dong SJ, Wang E (2009) Label-free colorimetric detection of aqueous mercury ion (Hg2+) using Hg2+ -Modulated G-Quadruplex-Based DNAzymes. Anal Chem 81(6):2144–2149. doi:10.1021/Ac900188y

    Article  CAS  Google Scholar 

  55. Wang H, Kim Y, Liu H, Zhu Z, Bamrungsap S, Tan W (2009) Engineering a unimolecular DNA-catalytic probe for single lead ion monitoring. J Am Chem Soc 131(23):8221–8226. doi:10.1021/ja901132y

    Article  CAS  Google Scholar 

  56. Xiang Y, Tong A, Lu Y (2009) Abasic site-containing DNAzyme and aptamer for label-free fluorescent detection of Pb(2+) and adenosine with high sensitivity, selectivity, and tunable dynamic range. J Am Chem Soc 131(42):15352–15357. doi:10.1021/ja905854a

    Article  CAS  Google Scholar 

  57. Yin BC, Ye BC, Tan W, Wang H, Xie CC (2009) An allosteric dual-DNAzyme unimolecular probe for colorimetric detection of copper(II). J Am Chem Soc 131(41):14624–14625. doi:10.1021/ja9062426

    Article  CAS  Google Scholar 

  58. Li T, Dong S, Wang E (2010) A lead(II)-driven DNA molecular device for turn-on fluorescence detection of lead(II) ion with high selectivity and sensitivity. J Am Chem Soc 132(38):13156–13157. doi:10.1021/ja105849m

    Article  CAS  Google Scholar 

  59. Mor-Piperberg G, Tel-Vered R, Elbaz J, Willner I (2010) Nanoengineered electrically contacted enzymes on DNA scaffolds: functional assemblies for the selective analysis of Hg2+ ions. J Am Chem Soc 132(20):6878–6879. doi:10.1021/ja1006355

    Article  CAS  Google Scholar 

  60. Dave N, Chan MY, Huang PJJ, Smith BD, Liu JW (2010) Regenerable DNA-functionalized hydrogels for ultrasensitive, instrument-free mercury(II) detection and removal in water. J Am Chem Soc 132(36):12668–12673. doi:10.1021/Ja106098j

    Article  CAS  Google Scholar 

  61. Nie Z, Nijhuis CA, Gong J, Chen X, Kumachev A, Martinez AW, Narovlyansky M, Whitesides GM (2010) Electrochemical sensing in paper-based microfluidic devices. Lab Chip 10(4):477–483. doi:10.1039/b917150a

    Article  CAS  Google Scholar 

  62. Lee SJ, Lee JE, Seo J, Jeong IY, Lee SS, Jung JH (2007) Optical sensor based on nanomaterial for the selective detection of toxic metal ions. Adv Funct Mater 17(17):3441–3446. doi:10.1002/adfm.200601202

    Article  CAS  Google Scholar 

  63. Balaji T, El-Safty SA, Matsunaga H, Hanaoka T, Mizukami F (2006) Optical sensors based on nanostructured cage materials for the detection of toxic metal ions. Angew Chem 45(43):7202–7208. doi:10.1002/anie.200602453

    Article  CAS  Google Scholar 

  64. El-Safty SA, Prabhakaran D, Ismail AA, Matsunaga H, Mizukami F (2007) Nanosensor design packages: a smart and compact development for metal ions sensing responses. Adv Funct Mater 17(18):3731–3745. doi:10.1002/adfm.200700447

    Article  CAS  Google Scholar 

  65. El-Safty SA, Ismail AA, Matsunaga H, Hanaoka T, Mizukami F (2008) Optical nanoscale pool-on-surface design for control sensing recognition of multiple cations. Adv Funct Mater 18(11):1608–1608, 1485. doi:10.1002/adfm.200701059

  66. Zhang J-T, Wang L, Luo J, Tikhonov A, Kornienko N, Asher SA (2011) 2-D Array photonic crystal sensing motif. J Am Chem Soc 133(24):9152–9155. doi:10.1021/ja201015c

    Article  CAS  Google Scholar 

  67. Choi Y, Park Y, Kang T, Lee LP (2009) Selective and sensitive detection of metal ions by plasmonic resonance energy transfer-based nanospectroscopy. Nat Nanotechnol 4(11):742–746. doi:10.1038/Nnano.2009.258

    Article  CAS  Google Scholar 

  68. Wu C-S, Khaing Oo MK, Fan X (2010) Highly sensitive multiplexed heavy metal detection using quantum-dot-labeled DNAzymes. ACS Nano 4(10):5897–5904. doi:10.1021/nn1021988

    Article  CAS  Google Scholar 

  69. Lee J, Jun H, Kim J (2009) Polydiacetylene-liposome microarrays for selective and sensitive mercury(ii) detection. Adv Mater 21(36):3674–3677. doi:10.1002/adma.200900639

    Article  CAS  Google Scholar 

  70. Kagan D, Calvo-Marzal P, Balasubramanian S, Sattayasamitsathit S, Manesh KM, Flechsig G-U, Wang J (2009) Chemical sensing based on catalytic nanomotors: motion-based detection of trace silver. J Am Chem Soc 131(34):12082–12083. doi:10.1021/ja905142q

    Article  CAS  Google Scholar 

  71. Zhou Y, Wang S, Zhang K, Jiang X (2008) Visual detection of copper(II) by azide- and alkyne-functionalized gold nanoparticles using click chemistry. Angew Chem 47(39):7454–7456. doi:10.1002/anie.200802317

    Article  CAS  Google Scholar 

  72. Zhang T, Cheng Z, Wang Y, Li Z, Wang C, Li Y, Fang Y (2010) Self-assembled 1-octadecanethiol monolayers on graphene for mercury detection. Nano Lett 10(11):4738–4741. doi:10.1021/nl1032556

    Article  CAS  Google Scholar 

  73. Sudibya HG, He Q, Zhang H, Chen P (2011) Electrical detection of metal ions using field-effect transistors based on micropatterned reduced graphene oxide films. ACS Nano 5(3):1990–1994. doi:10.1021/nn103043v

    Article  CAS  Google Scholar 

  74. Liu Y, Dong X, Chen P (2012) Biological and chemical sensors based on graphene materials. Chem Soc Rev 41(6):2283–2307. doi:10.1039/c1cs15270j

    Article  CAS  Google Scholar 

  75. Kang Y, Walish JJ, Gorishnyy T, Thomas EL (2007) Broad-wavelength-range chemically tunable block-copolymer photonic gels. Nat Mater 6(12):957–960. doi:10.1038/nmat2032

    Article  CAS  Google Scholar 

  76. Aguirre CI, Reguera E, Stein A (2010) Tunable colors in opals and inverse opal photonic crystals. Adv Funct Mater 20(16):2565–2578. doi:10.1002/adfm.201000143

    Article  CAS  Google Scholar 

  77. Galisteo-Lopez JF, Ibisate M, Sapienza R, Froufe-Perez LS, Blanco A, Lopez C (2011) Self-assembled photonic structures. Adv Mater 23(1):30–69. doi:10.1002/adma.201000356

    Article  CAS  Google Scholar 

  78. von Freymann G, Kitaev V, Lotsch BV, Ozin GA (2013) Bottom-up assembly of photonic crystals. Chem Soc Rev 42(7):2528–2554. doi:10.1039/c2cs35309a

    Article  Google Scholar 

  79. Deng S, Yetisen AK, Jiang K, Butt H (2014) Computational modelling of a graphene Fresnel lens on different substrates. RSC Adv 4(57):30050–30058. doi:10.1039/C4ra03991b

    Article  CAS  Google Scholar 

  80. Kong X-T, Butt H, Yetisen AK, Kangwanwatana C, Montelongo Y, Deng S, Da Cruz Vasconcellos F, Qasim MM, Wilkinson TD, Dai Q (2014) Enhanced reflection from inverse tapered nanocone arrays. Appl Phys Lett 105(5):053108. doi:10.1063/1.4892580

    Article  Google Scholar 

  81. Martinez-Hurtado JL, Davidson CA, Blyth J, Lowe CR (2010) Holographic detection of hydrocarbon gases and other volatile organic compounds. Langmuir 26(19):15694–15699. doi:10.1021/la102693m

    Article  CAS  Google Scholar 

  82. Naydenova I, Jallapuram R, Toal V, Martin S (2008) A visual indication of environmental humidity using a color changing hologram recorded in a self-developing photopolymer. Appl Phys Lett 92(3):031109. doi:10.1063/1.2837454

    Article  Google Scholar 

  83. Vasconcellos FD, Yetisen AK, Montelongo Y, Butt H, Grigore A, Davidson CAB, Blyth J, Monteiro MJ, Wilkinson TD, Lowe CR (2014) Printable surface holograms via laser ablation. ACS Photonics 1(6):489–495. doi:10.1021/Ph400149m

    Article  CAS  Google Scholar 

  84. Yetisen AK, Jiang L, Cooper JR, Qin Y, Palanivelu R, Zohar Y (2011) A microsystem-based assay for studying pollen tube guidance in plant reproduction. J Micromech Microeng 21(5):054018. doi:10.1088/0960-1317/21/5/054018

    Article  Google Scholar 

  85. Yetisen AK, Naydenova I, Vasconcellos FC, Blyth J, Lowe CR (2014) Holographic sensors: three-dimensional analyte-sensitive nanostructures and their applications. Chem Rev 114(20):10654–10696. doi:10.1021/cr500116a

    Article  CAS  Google Scholar 

  86. Yetisen AK, Butt H, da Cruz Vasconcellos F, Montelongo Y, Davidson CAB, Blyth J, Chan L, Carmody JB, Vignolini S, Steiner U, Baumberg JJ, Wilkinson TD, Lowe CR (2014) light-directed writing of chemically tunable narrow-band holographic sensors. Adv Opt Mater 2(3):250–254. doi:10.1002/adom.201300375

    Article  Google Scholar 

  87. Yetisen AK, Montelongo Y, da Cruz Vasconcellos F, Martinez-Hurtado JL, Neupane S, Butt H, Qasim MM, Blyth J, Burling K, Carmody JB, Evans M, Wilkinson TD, Kubota LT, Monteiro MJ, Lowe CR (2014) Reusable, robust, and accurate laser-generated photonic nanosensor. Nano Lett 14(6):3587–3593. doi:10.1021/nl5012504

    Article  CAS  Google Scholar 

  88. Tsangarides CP, Yetisen AK, da Cruz Vasconcellos F, Montelongo Y, Qasim MM, Wilkinson TD, Lowe CR, Butt H (2014) Computational modelling and characterisation of nanoparticle-based tuneable photonic crystal sensors. RSC Adv 4(21):10454–10461. doi:10.1039/C3RA47984F

    Article  CAS  Google Scholar 

  89. Yetisen AK, Montelongo Y, Qasim MM, Butt H, Wilkinson TD, Monteiro MJ, Lowe CR, Yun SH (2014) Nanocrystal bragg grating sensor for colorimetric detection of metal ions. (under review)

    Google Scholar 

  90. Akram MS, Daly R, Vasconcellos FC, Yetisen AK, Hutchings I, Hall EAH (2015) Applications of paper-based diagnostics. In: Castillo-Leon J, Svendsen WE (eds) Lab-on-a-chip devices and micro-total analysis systems. Springer, New york

    Google Scholar 

  91. Yetisen AK, Akram MS, Lowe CR (2013) Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 13(12):2210–2251. doi:10.1039/c3lc50169h

    Article  CAS  Google Scholar 

  92. Yetisen AK, Volpatti LR (2014) Patent protection and licensing in microfluidics. Lab Chip 14(13):2217–2225. doi:10.1039/c4lc00399c

    Article  CAS  Google Scholar 

  93. Farandos NM, Yetisen AK, Monteiro MJ, Lowe CR, Yun SH (2014) Contact lens sensors in ocular diagnostics. Adv Healthc Mater. doi:10.1002/adhm.201400504

    Google Scholar 

  94. Yetisen AK, Martinez-Hurtado JL, Garcia-Melendrez A, Vasconcellos FC, Lowe CR (2014) A smartphone algorithm with inter-phone repeatability for the analysis of colorimetric tests. Sens Actuators, B 196:156–160. doi:10.1016/j.snb.2014.01.077

    Article  CAS  Google Scholar 

  95. Yetisen AK, Martinez-Hurtado JL, da Cruz Vasconcellos F, Simsekler MC, Akram, Lowe CR (2014) The regulation of mobile medical applications. Lab Chip 14(5):833–840. doi:10.1039/c3lc51235e

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Kemal Yetisen .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yetisen, A.K. (2015). Holographic Metal Ion Sensors. In: Holographic Sensors. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-13584-7_4

Download citation

Publish with us

Policies and ethics