Skip to main content

Excitable Dynamics in Autonomous Boolean Networks

  • Chapter
  • First Online:
Dynamics of Complex Autonomous Boolean Networks

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In this chapter, I use autonomous Boolean networks to realize experimental excitable systems that I refer to as Boolean neurons. I couple Boolean neurons into meta-networks that I call Boolean neural networks. After an introduction to excitability in Sect. 8.1, I design and test the Boolean neuron in Sect. 8.2 and couple two Boolean neurons in a small Boolean neural network in Sect. 8.3. (Results of this chapter are published in reference Rosin et al. Europhys. Lett. 100:30003, 2012; I have published previous work on this subject for neuronal and optoelectronic oscillators in references Panchu et al. Int. J. Bif. Chaos 23:1330039, 2013 and Rosin et al. Europhys. Lett. 96:34001, 2011) that helped me with the analysis of the results in this chapter.) The main contributions of this chapter are:

  • designing an autonomous Boolean network with excitable dynamics, which constitutes an accelerated-time artificial neuron termed Boolean neuron;

  • modeling of the Boolean neuron;

  • confirming experimentally theoretical results for the dynamics of neural network motifs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The content of this section is published in Ref. [2].

References

  1. D.P. Rosin, D. Rontani, D.J. Gauthier, E. Schöll, Excitability in autonomous Boolean networks. Europhys. Lett. 100, 30003 (2012)

    Article  ADS  Google Scholar 

  2. A. Panchuk, D.P. Rosin, P. Hövel, E. Schöll, Synchronization of coupled neural oscillators with heterogeneous delays. Int. J. Bif. Chaos 23, 1330039 (2013)

    Article  Google Scholar 

  3. D.P. Rosin, K.E. Callan, D.J. Gauthier, E. Schöll, Pulse-train solutions and excitability in an optoelectronic oscillator. Europhys. Lett. 96, 34001 (2011)

    Article  ADS  Google Scholar 

  4. B. Lindner, J. García-Ojalvo, A.B. Neiman, L. Schimansky-Geier, Effects of noise in excitable systems. Phys. Rep. 392, 321 (2004)

    Article  ADS  Google Scholar 

  5. E.M. Izhikevich, Dynamical Systems in Neuroscience (MIT Press, Cambridge, 2007)

    Google Scholar 

  6. W.J. Adelman, D.E. Goldman, The Biophysical Approach to Excitable Systems (Springer, New York, 1981)

    Book  Google Scholar 

  7. R. Plonsey, R.C. Barr, Bioelectricity A Quantitative Approach (Kluwer Academic, New York, 2000)

    Book  Google Scholar 

  8. M.C. Wijffels, C.J. Kirchhof, R. Dorland, M.A. Allessie, Atrial fibrillation begets atrial fibrillation a study in awake chronically instrumented goats. Circulation 92, 1954 (1995)

    Article  Google Scholar 

  9. M.P. Nash, A.V. Panfilov, Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias. Prog. Biophys. Mol. Biol. 85, 501 (2004)

    Article  Google Scholar 

  10. J.M. Davidenko, A.V. Pertsov, R. Salomonsz, W. Baxter, J. Jalife, Stationary and drifting spiral waves of excitation in isolated cardiac muscle. Nature 355, 349 (1992)

    Article  ADS  Google Scholar 

  11. B.P. Belousov, A periodic reaction and its mechanism. Compil. Abs. Radiat. Med. 147 (1959)

    Google Scholar 

  12. V. Petrov, V. Gaspar, J. Masere, K. Showalter, Controlling chaos in the Belousov-Zhabotinsky reaction. Nature 361, 240 (1993)

    Article  ADS  Google Scholar 

  13. O. Steinbock, V. Zykov, S.C. Müller, Control of spiral-wave dynamics in active media by periodic modulation of excitability. Nature 366, 322 (1993)

    Article  ADS  Google Scholar 

  14. A.L. Hodgkin, A.F. Huxley, A Quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500 (1952)

    Article  Google Scholar 

  15. P. Dayan, L. Abbott, Theoretical neuroscience: computational and mathematical modeling of neural systems. J. Cogn. Neurosci. 15, 154 (2003)

    Article  Google Scholar 

  16. T. Erneux, Applied Delay Differential Equations, vol. 3 (Springer, New York, 2009)

    MATH  Google Scholar 

  17. I. Farkas, D. Helbing, T. Vicsek, Social behaviour: mexican waves in an excitable medium. Nature 419, 131 (2002)

    Article  ADS  Google Scholar 

  18. I.B. Levitan, L.K. Kaczmarek, The Neuron: Cell and Molecular Biology: Cell and Molecular Biology (Oxford University Press, New York, 2001)

    Google Scholar 

  19. A.L. Hodgkin, The local electric changes associated with repetitive action in a medullated axon. J. Physiol. 107, 165 (1948)

    Article  Google Scholar 

  20. J.R. Clay, Excitability of the squid giant axon revisited. J. Neurophysiol. 80, 903 (1998)

    Google Scholar 

  21. J.R. Clay, D. Paydarfar, D.B. Forger, A simple modification of the Hodgkin and Huxley equations explains type 3 excitability in squid giant axons. J. Roy. Soc. Interface 5, 1421 (2008)

    Article  Google Scholar 

  22. J. Rinzel , G.B. Ermentrout, Analysis of neural excitability and oscillations. in Methods in Neuronal Modeling, ed. by C. Koch, I. Segrev, vol. 2 (MIT press, Cambridge, 1998), pp. 251–292

    Google Scholar 

  23. I.A. Kuznetsov, Elements of Applied Bifurcation Theory, vol. 112 (Springer, New York, 1998)

    MATH  Google Scholar 

  24. J.M. Greenberg, S. Hastings, Spatial patterns for discrete models of diffusion in excitable media. SIAM J. Appl. Math. 34, 515 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  25. R. Fisch, J. Gravner, D. Griffeath, Metastability in the Greenberg-Hastings model. Ann. Appl. Prob. 3, 935–967 (1993)

    Google Scholar 

  26. R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, U. Alon, Network motifs: simple building blocks of complex networks. Science 298, 824 (2002)

    Article  ADS  Google Scholar 

  27. L. Weicker, T. Erneux, L. Keuninckx, J. Danckaert, Analytical and experimental study of two delay-coupled excitable units. Phys. Rev. E 89, 012908 (2014)

    Article  ADS  Google Scholar 

  28. B. Hauschildt, N.B. Janson, A.G. Balanov, E. Schöll, Noise-induced cooperative dynamics and its control in coupled neuron models. Phys. Rev. E 74, 051906 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  29. C.U. Choe, V. Flunkert, P. Hövel, H. Benner, E. Schöll, Conversion of stability in systems close to a hopf bifurcation by time-delayed coupling. Phys. Rev. E 75, 046206 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  30. O. D’Huys, R. Vicente, T. Erneux, J. Danckaert, I. Fischer, Synchronization properties of network motifs: influence of coupling delay and symmetry. Chaos 18, 037116 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  31. P. Hövel, M.A. Dahlem, E. Schöll, Control of synchronization in coupled neural systems by time-delayed feedback. Int. J. Bifur. Chaos 20, 813 (2010)

    Article  MATH  Google Scholar 

  32. B. Fiedler, V. Flunkert, P. Hövel, E. Schöll, Delay stabilization of periodic orbits in coupled oscillator systems. Philos. Trans. R. Soc. A 368, 319 (2010)

    Article  ADS  MATH  Google Scholar 

  33. V. Flunkert, O. D’Huys, J. Danckaert, I. Fischer, E. Schöll, Bubbling in delay-coupled lasers. Phys. Rev. E 79, 065201(R) (2009)

    Google Scholar 

  34. S.A. Brandstetter, M.A. Dahlem, E. Schöll, Interplay of time-delayed feedback control and temporally correlated noise in excitable systems. Philos. Trans. R. Soc. A 368, 391 (2010)

    Article  ADS  MATH  Google Scholar 

  35. O. D’Huys, I. Fischer, J. Danckaert, R. Vicente, Role of delay for the symmetry in the dynamics of networks. Phys. Rev. E 83, 046223 (2011)

    Article  ADS  Google Scholar 

  36. K. Hicke, O. D’Huys, V. Flunkert, E. Schöll, J. Danckaert, I. Fischer, Mismatch and synchronization: Influence of asymmetries in systems of two delay-coupled lasers. Phys. Rev. E 83, 056211 (2011)

    Article  ADS  Google Scholar 

  37. Y.N. Kyrychko, K.B. Blyuss, E. Schöll, Amplitude death in systems of coupled oscillators with distributed-delay coupling. Eur. Phys. J. B 84, 307 (2011)

    Article  ADS  Google Scholar 

  38. B.M. Adhikari, A. Prasad, M. Dhamala, Time-delay-induced phase-transition to synchrony in coupled bursting neurons. Chaos 21, 023116 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  39. P. Hövel, Control of Complex Nonlinear Systems with Delay, Springer Theses (Springer, Heidelberg, 2010)

    Google Scholar 

  40. M.A. Dahlem, G. Hiller, A. Panchuk, E. Schöll, Dynamics of delay-coupled excitable neural systems. Int. J. Bifur. Chaos 19, 745 (2009)

    Article  MATH  Google Scholar 

  41. E. Schöll, G. Hiller, P. Hövel, M.A. Dahlem, Time-delayed feedback in neurosystems. Philos. Trans. R. Soc. A 367, 1079 (2009)

    Article  ADS  MATH  Google Scholar 

  42. R. Vicente, L.L. Gollo, C.R. Mirasso, I. Fischer, P. Gordon, Dynamical relaying can yield zero time lag neuronal synchrony despite long conduction delays. Proc. Natl. Acad. Sci. USA. 105, 17157 (2008)

    Article  ADS  Google Scholar 

  43. A. Keane, T. Dahms, J. Lehnert, S.A. Suryanarayana, P. Hövel, E. Schöll, Synchronisation in networks of delay-coupled type-I excitable systems. Eur. Phys. J. B 85, 407 (2012)

    Article  ADS  Google Scholar 

  44. J. Lehnert, T. Dahms, P. Hövel, E. Schöll, Loss of synchronization in complex neural networks with delay. Europhys. Lett. 96, 60013 (2011)

    Article  ADS  Google Scholar 

  45. R. FitzHugh, Mathematical models of threshold phenomena in the nerve membrane. Bull. Math. Biol. 17, 257 (1955)

    Google Scholar 

  46. R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445 (1961)

    Article  ADS  Google Scholar 

  47. J. Nagumo, S. Arimoto, S. Yoshizawa, An active pulse transmission line simulating nerve axon. Proc. IRE 50, 2061 (1962)

    Google Scholar 

  48. E.M. Izhikevich, R. FitzHugh, FitzHugh-Nagumo model. Scholarpedia 1, 1349 (2006) (revision 123664)

    Google Scholar 

  49. G. Indiveri, B. Linares-Barranco, T.J. Hamilton, A. van Schaik, R. Etienne-Cummings, T. Delbruck, S.C. Liu, P. Dudek, P. Häfliger, S. Renaud, J. Schemmel, G. Cauwenberghs, J. Arthur, K. Hynna, F. Folowosele, S. Saighi, T. Serrano-Gotarredona, J. Wijekoon, Y. Wang, K. Boahen, Neuromorphic silicon neuron circuits. Front. Neurosci. 5, 73 (2011)

    Google Scholar 

  50. J. Arthur, K. Boahen, Learning in Silicon: Timing is Everything. in Advances in Neural Information Processing Systems, ed. by Y. Weiss, B. Schölkopf, J. Platt, vol. 18 (MIT Press, Cambridge, MA, 2006) pp. 75–82

    Google Scholar 

  51. K. Boahen, Neurogrid: Emulating a Million Neurons in the Cortex. in IEEE International Conference of the Engineering in Medicine and Biology Society (2006)

    Google Scholar 

  52. B. Schrauwen, M. D’Haene, D. Verstraeten, J.V. Campenhout, Compact hardware liquid state machines on FPGA for real-time speech recognition. Neural Netw. 21, 511 (2008)

    Article  Google Scholar 

  53. H. Jaeger, H. Haas, Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 304, 78 (2004)

    Article  ADS  Google Scholar 

  54. W. Maass, T. Natschläger, H. Markram, Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Comput. 14, 2531 (2002)

    Article  MATH  Google Scholar 

  55. L. Appeltant, M.C. Soriano, G. Van der Sande, J. Danckaert, S. Massar, J. Dambre, B. Schrauwen, C.R. Mirasso, I. Fischer, Information processing using a single dynamical node as complex system. Nat. Commun. 2, 468 (2011)

    Article  ADS  Google Scholar 

  56. W.S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biol. 5, 115 (1943)

    MathSciNet  MATH  Google Scholar 

  57. Y. Jeong, S. Jung, J. Liu, A CMOS impulse generator for UWB wireless communication systems. Int. Symp. Circuits Syst. 4, 129–132 (2004)

    Google Scholar 

  58. A.N. Burkitt, A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input Bio. Cybern. 95, 1 (2006)

    MathSciNet  MATH  Google Scholar 

  59. H.L.D.d.S. Cavalcante, D.J. Gauthier, J.E.S. Socolar, R. Zhang, On the origin of chaos in autonomous Boolean networks. Philos. Trans. R. Soc. A 368, 495 (2010)

    Google Scholar 

  60. M.J. Bellido-Diaz, J. Juan-Chico, A.J. Acosta, M. Valencia, J.L. Huertas, Logical modelling of delay degradation effect in static CMOS gates. IEE Proc. Circuits Dev. Syst. 147, 107 (2000)

    Google Scholar 

  61. J. Foss, A. Longtin, B. Mensour, J. Milton, Multistability and delayed recurrent loops. Phys. Rev. Lett. 76, 708 (1996)

    Article  ADS  Google Scholar 

  62. J.P. Keener, J. Sneyd, Mathematical Physiology: Cellular Physiology, vol. 1 (Springer Verlag, New York, 2009)

    Google Scholar 

  63. M. Ghil, A. Mullhaupt, Boolean delay equations. II. Periodic and aperiodic solutions. J. Stat. Phys. 41, 125 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. T. Mestl, R.J. Bagley, L. Glass, Common chaos in arbitrarily complex feedback networks. Phys. Rev. Lett. 79, 653 (1997)

    Article  ADS  Google Scholar 

  65. L. Glass, C. Hill, Ordered and disordered dynamics in random networks. Europhys. Lett. 41, 599 (1998)

    Article  ADS  Google Scholar 

  66. R. Edwards, L. Glass, Combinatorial explosion in model gene networks. Chaos 10, 691 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David P. Rosin .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rosin, D.P. (2015). Excitable Dynamics in Autonomous Boolean Networks. In: Dynamics of Complex Autonomous Boolean Networks. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-13578-6_8

Download citation

Publish with us

Policies and ethics