Skip to main content

Remineralizing Nanomaterials for Minimally Invasive Dentistry

  • Chapter
  • First Online:
Nanotechnology in Endodontics

Abstract

Modern dentistry advocates early prevention of tooth decay and minimally invasive management of dental caries (minimally invasive dentistry, MID). Remineralization is an important therapeutic method in MID. At the moment, traditional remineralizing agents and methods are not adapted to the requirements of MID. Recent studies indicate that the development of nanomaterials, especially biomimetic ones, as remineralizing agents, provides novel remineralizing strategies for MID. Here, we review the progress of the development of remineralizing nanomaterials for different applications in MID. Some nanomaterials, including calcium fluoride, hydroxyapatite, and amorphous calcium phosphate in nanoscales, are incorporated into restorative materials such as composite resins, glass ionomers, and adhesive systems. These dental materials play a remineralizing role through releasing fluoride calcium and phosphate ions. Other nanomaterials composed of stabilizers and amorphous calcium phosphates (ACP), such as nanocomplexes of casein phosphopeptides (CPP) and ACP, polyacrylic acid (PAA)-ACP, polyaspartic acid (PASP)-ACP, and phosphorylated chitosan (Pchi)-ACP, provide a biomimetic remineralizing strategy by mimicking biomineralization processes, which could de novo form dental hard tissues through nonclassical crystallization pathways. However, it is unpractical to restore small clinically visible cavities with nanomaterials reviewed in this chapter at present. Most of the research covered in this chapter focuses primarily on laboratory tests. Future comprehensive research with respect to clinical applicability is required before employing remineralizing nanomaterials routinely in clinical practices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ACP:

Amorphous calcium phosphates

CaF2 :

Calcium fluoride

CMC:

Carboxymethyl chitosan

CPP:

Casein phosphopeptides

DMP1:

Dentin matrix protein

DPP:

Dentin phosphoprotein also known as DMP2 or phosphophoryn

EDX:

Energy-dispersive X-ray spectroscopy

F:

Fluoride

FAP:

Fluorapatite Ca10(PO4)6F2

fβ-TCP:

Funcionalized β-TCP

GTR:

Guided tissue remineralization

HAP:

Hydroxyapatite

IP :

Ionic activity product

K sp :

The solubility product

MID:

Minimally invasive dentistry

NaF:

Sodium fluoride

nano-CaF2 :

CaF2 nanoparticle

NCPs:

Noncollagenous proteins

n-FHA:

Nanofluorohydroxyapatite

n-HAP:

Nano-sized HAP

OCP:

Octacalcium phosphate

PAA:

Polyacrylic acid

PASP:

Polyaspartic acid

Pchi:

Phosphorylated chitosan

PEO:

Ethylene oxide

PILP:

Polymer-induced liquid-precursor

PVPA:

Polyvinylphosphonic acid

R :

Gas constant 8.314 J · K−1 mol−1

S :

Supersaturation

SAED:

Selected area electron diffraction

SEM:

Scanning electron microscopy

STMP:

Sodium trimetaphosphate

T :

Absolute temperature

TEM:

Transmission electron microscope

TPP:

Sodium tripolyphosphate

β-TCP:

Beta tricalcium phosphate Ca3(PO4)2

References

  1. Featherstone JDB. The science and practice of caries prevention. J Am Dent Assoc. 2000;131:887–99.

    PubMed  Google Scholar 

  2. Osborne JW, Summitt JB. Extension for prevention: is it relevant today? Am J Dent. 1998;11(4):189–96.

    PubMed  Google Scholar 

  3. Christensen GJ. The advantages of minimally invasive dentistry. J Am Dent Assoc. 2005;136(11):1563–5.

    PubMed  Google Scholar 

  4. White JM, Eakle WS. Rationale and treatment approach in minimally invasive dentistry. J Am Dent Assoc. 2000;131(9):1250–2.

    Google Scholar 

  5. Rainey JT. Understanding the applications of microdentistry. Compend Contin Educ Dent. 2001;2(11A):1018–25.

    Google Scholar 

  6. Ettinger RL. Restoring the ageing dentition: repair or replacement? Int Dent J. 1990;40(5):275–82.

    PubMed  Google Scholar 

  7. Hewlett ER, Mount GJ. Glass ionomers in contemporary restorative dentistry – a clinical update. J Calif Dent Assoc. 2003;31(6):483–92.

    PubMed  Google Scholar 

  8. Mount GJ, Ngo H. Minimal intervention: a new concept for operative dentistry. Quintessence Int. 2000;31(8):527–33.

    PubMed  Google Scholar 

  9. Mount GJ, Hume WR. A new cavity classification. Aust Dent J. 1998;43(3):153–9.

    PubMed  Google Scholar 

  10. Pitts NB. Are we ready to move from operative to non-operative/preventive treatment of dental caries in clinical practice? Caries Res. 2004;38(3):294–304.

    PubMed  Google Scholar 

  11. Tyas MJ, Anusavice KJ, Frencken JE, Mount GJ. Minimal intervention dentistry – a review. FDI Commission Project 1–97. Int Dent J. 2000;50(1):1–12.

    PubMed  Google Scholar 

  12. Levine RS, Rowles SL. Further studies on the remineralization of human carious in vitro. Arch Oral Biol. 1973;18:1351–6.

    Google Scholar 

  13. Daculsi G, Kerebel B, Le Cabellec MT, Kerebel LM. Qualitative and quantitative data on arrested caries in dentine. Caries Res. 1979;13:190–202.

    PubMed  Google Scholar 

  14. Anne G, Arthur V. Phosphorylated proteins and control over apatite nucleation, crystal growth and inhibition. Chem Rev. 2008;108(11):4670–93.

    Google Scholar 

  15. Kawasaki K, Ruben J, Stokroos I, Takagi O, Arends J. The remineralization of EDTA-treated human dentine. Caries Res. 1999;33:275–80.

    PubMed  Google Scholar 

  16. Zhang HL, Liu JS, Yao ZW, Yang J, Pan LZ, Chen ZQ. Biomimetic mineralization of electrospun poly(lactic-co-glycolic acid)/multi-walled carbon nanotubes composite scaffolds in vitro. Mater Lett. 2009;63:2313–6.

    Google Scholar 

  17. Cross KJ, Huq NL, Reynolds EC. Casein phosphopeptides in oral health-chemistry and clinical applications. Curr pharm des. 2007;13(8):793–800.

    PubMed  Google Scholar 

  18. Tay FR, Pashley DH. Guided tissue remineralisation of partially demineralised human dentine. Biomaterials. 2008;29(8):1127–37.

    PubMed  Google Scholar 

  19. Jones FH. Teeth and bones: applications of surface science to dental materials and related biomaterials. Surf Sci Rep. 2001;42:75–205.

    Google Scholar 

  20. Hermann E, Petros GK, Konstantinos DD, Oleg SP. Principles of demineralization: Modern strategies for the isolation of organic Frameworks Part II. Decalcification. Micron. 2009;40:169–93.

    Google Scholar 

  21. Simmelink JW. Histology of enamel. In: Avery JK, editor. Oral development and histology. New York: Thieme Medical Publishers Inc.; 1994.

    Google Scholar 

  22. Habelitz S, Marshall SJ, Marshall GW, Balooch M. Mechanical properties of human dental enamel on the nanometer scale. Arch Oral Biol. 2001;46:173–83.

    PubMed  Google Scholar 

  23. Hansma P, Turner P, Drake B, Yurtsev E, Proctor A, Mathews P, Lulejian J, Randall C, Adams J, Jungmann R, Garza-de-Leon F, Fantner G, Mkrtchyan H, Pontin M, Weaver A, Brown MB, Sahar N, Rossello R, Kohn D. The bone diagnostic instrument II: indentation distance increase. Rev Sci Instrum. 2008;79:064303.

    PubMed Central  PubMed  Google Scholar 

  24. Weiner S, Traub W. Bone structure: from angstroms to microns. FASEB J. 1992;6:879–85.

    PubMed  Google Scholar 

  25. Moradian-Oldak J. Amelogenins: assembly, processing and control of crystal morphology. Matrix Biol. 2001;20(5):293–305.

    PubMed  Google Scholar 

  26. Uskoković V, Bertassoni LE. Nanotechnology in dental sciences: moving towards a finer way of doing dentistry. Materials. 2010;3(3):1674–91.

    Google Scholar 

  27. Piesco NP. Histology of dentine. In: Avery JK, editor. Oral development and histology. New York: Thieme Medical Publishers Inc.; 1994.

    Google Scholar 

  28. Steve W, Arthur V, Elia B, Talmon A, Jerry WD, Boris S, Farida S. Peritubular dentin formation: crystal organization and the macromolecular constitutes in human teeth. J Struct Biol. 1999;126:27–41.

    Google Scholar 

  29. Johanssen E. Microstructure of enamel and dentine. J Dent Res. 1964;43:1007–9.

    Google Scholar 

  30. Veis A. A window on biomineralization. Science. 2005;37:1419–20.

    Google Scholar 

  31. Arsenault AL. Crystal-collagen relationships in calcified turkey leg tendons visualized by selected-area dark field electron microscopy. Calcif Tissue Int. 1988;43:202–12.

    PubMed  Google Scholar 

  32. Traub W, Arad T, Weiner S. Threedimensional ordered distribution of crystals in turkey tendon collagen fibers. Proc Natl Acad Sci U S A. 1989;86:9822–6.

    PubMed Central  PubMed  Google Scholar 

  33. Landis WJ, Hodgens KJ, Arena J, Song MJ, McEwen BF. Structural relations between collagen and mineral in bone as determined by high voltage electron microscopic tomography. Microsc Res Tech. 1996;33:192–202.

    PubMed  Google Scholar 

  34. Selvig KA. Ultrastructural changes in human dentine exposed to a weak acid. Archiv Oral Biol. 1968;13:719–34.

    Google Scholar 

  35. Tveit AB, Selvig KA. In vitro recalcification of dentine demineralized by citric acid. Scand J Dent Res. 1981;89:38–42.

    PubMed  Google Scholar 

  36. Jäger I, Fratzl P. Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles. Biophys J. 2000;79:1737–46.

    PubMed Central  PubMed  Google Scholar 

  37. Murdoch-Kinch CA, McLean ME. Minimally invasive dentistry. J Am Dent Assoc. 2003;134(1):87–95.

    PubMed  Google Scholar 

  38. ten Cate JM. Remineralization of caries lesions extend into dentine. J Dent Res. 2001;80:1407–11.

    PubMed  Google Scholar 

  39. Sakoolnamarka R, Burrow MF, Kubo S, Tyas MJ. Morphological study of demineralized dentine after caries removal using two different methods. Aust Dent J. 2002;47(2):116–22.

    PubMed  Google Scholar 

  40. Arnold WH, Konopka S, Kriwalsky MS, Gaengler P. Morphological analysis and chemical content of natural dentin carious lesion zones. Ann Anat. 2003;185:419–24.

    PubMed  Google Scholar 

  41. Clarkson BH, Feagin FF, McCurdy SP, Sheetz JH, Speirs R. Effects of phosphoprotein moieties on the remineralization of human root caries. Caries Res. 1991;25:166–73.

    PubMed  Google Scholar 

  42. McIntyre JM, Featherstone JD, Fu J. Studies of dental root surface caries. 1: comparison of natural and artificial root caries lesions. Aust Dent J. 2000;45:24–30.

    PubMed  Google Scholar 

  43. Nyvad B, Rejerskov O. Active root surface caries converted into inactive caries as a response to oral hygiene. Scand J Dent Res. 1986;94:281–4.

    PubMed  Google Scholar 

  44. ten Cate JM. Remineralization of deep enamel dentine caries lesions. Aust Dent J. 2008;53:281–5.

    PubMed  Google Scholar 

  45. Alauddin SS, Greenspan D, Anusavice KJ, Mecholsky J. In vitro human enamel remineralization using bioactive glass containing dentifrice. J Dent Res. 2005;84:2546.

    Google Scholar 

  46. Cheng L, Weir MD, Xu HHK, Kraigsley AM, Lin NJ, Lin-Gibson S, Zhou X. Antibacterial and physical properties of calcium–phosphate and calcium–fluoride nanocomposites with chlorhexidine. Dent Mater. 2012;28(5):573–83.

    PubMed Central  PubMed  Google Scholar 

  47. Wefel JS. Effects of fluoride on caries development and progression using intra-oral models. J Dent Res. 1990;69:626.

    PubMed  Google Scholar 

  48. Ten Cate JM, Featherstone JDB. Mechanistic aspects of the interactions between fluoride and dental enamel. Crit Rev Oral Biol Med. 1991;2(3):283–96.

    PubMed  Google Scholar 

  49. Stoodley P, Wefel J, Gieseke A, von Ohle C. Biofilm plaque and hydrodynamic effects on mass transfer, fluoride delivery and caries. J Am Dent Assoc. 2008;139(9):1182–90.

    PubMed  Google Scholar 

  50. Kirsten GA, Takahashi MK, Rached RN, Giannini M, Souza EM. Microhardness of dentin underneath fluoride-releasing adhesive systems subjected to cariogenic challenge and fluoride therapy. J Dent. 2010;38(6):460–8.

    PubMed  Google Scholar 

  51. Cenci MS, Tenuta LMA, Pereira-Cenci T, Del Bel Cury AA, Ten Cate JM, Cury JA. Effect of microleakage and fluoride on enamel-dentine demineralization around restorations. Caries Res. 2008;42(5):369–79.

    PubMed  Google Scholar 

  52. Mousavinasab SM, Meyers I. Fluoride release and uptake by glass ionomer cements, compomers and giomers. Res J Biol Sci. 2009;4(5):609–16.

    Google Scholar 

  53. Xu HHK, Moreau JL, Sun L, Chow LC. Strength and fluoride release characteristics of a calcium fluoride based dental nanocomposite. Biomaterials. 2008;29(32):4261–7.

    PubMed Central  PubMed  Google Scholar 

  54. Xu HHK, Moreau JL, Sun L, Chow LC. Novel CaF2 nanocomposite with high strength and fluoride ion release. J Dent Res. 2010;89(7):739–45.

    PubMed Central  PubMed  Google Scholar 

  55. Sun L, Chow LC. Preparation and properties of nano-sized calcium fluoride for dental applications. Dent Mater. 2008;24(1):111–6.

    PubMed Central  PubMed  Google Scholar 

  56. Weir MD, Moreau JL, Levine ED, Strassler HE, Chow LC, Xu HH. Nanocomposite containing CaF2 nanoparticles: thermal cycling, wear and long-term water-aging. Dent Mater. 2012;28(6):642–52.

    PubMed Central  PubMed  Google Scholar 

  57. Zhou H, Bhaduri S. Novel microwave synthesis of amorphous calcium phosphate nanospheres. J Biomed Mater Res B Appl Biomater. 2012;100(4):1142–50.

    PubMed  Google Scholar 

  58. Sun L, Chow LC, Frukhtbeyn SA, Bonevich JE. Preparation and properties of nanoparticles of calcium phosphates with various Ca/P ratios. J Res Natl Inst Stan. 2010;115(4):243.

    Google Scholar 

  59. Xu HHK, Moreau JL, Sun L, Chow LC. Nanocomposite containing amorphous calcium phosphate nanoparticles for caries inhibition. Dent Mater. 2011;27(8):762–9.

    PubMed Central  PubMed  Google Scholar 

  60. Karlinsey RL, Pfarrer AM. Fluoride plus functionalized β-TCP a promising combination for robust remineralization. Advan Dent Res. 2012;24(2):48–52.

    Google Scholar 

  61. Karlinsey RL, Mackey AC. Solid-state preparation and dental application of an organically modified calcium phosphate. J Mater Sci. 2009;44(1):346–9.

    Google Scholar 

  62. Ramay HRR, Zhang M. Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering. Biomaterials. 2004;25(21):5171–80.

    PubMed  Google Scholar 

  63. Roveri N, Rimondini L, Palazzo B, Iafisco M, Battistella E, Foltran I, Lelli M. Synthetic biomimetic carbonate-hydroxyapatite nanocrystals for enamel remineralization. Advan Mater Res. 2008;47:821–4.

    Google Scholar 

  64. Li L, Pan H, Tao J, Xu X, Mao C, Gu X, Tang R. Repair of enamel by using hydroxyapatite nanoparticles as the building blocks. J Mater Chem. 2008;18(34):4079–84.

    Google Scholar 

  65. Cai Y, Liu Y, Yan W, Hu Q, Tao J, Zhang M, Tang R. Role of hydroxyapatite nanoparticle size in bone cell proliferation. J Mater Chem. 2007;17(36):3780–7.

    Google Scholar 

  66. Yamagishi K, Onuma K, Suzuki T, Okada F, Tagami J, Otsuki M, Senawangse P. Materials chemistry: a synthetic enamel for rapid tooth repair. Nature. 2005;433(7028):819.

    PubMed  Google Scholar 

  67. Moshaverinia A, Roohpour N, Chee WWL, Schricker SR. A review of powder modifications in conventional glass-ionomer dental cements. J Mater Chem. 2011;21(5):1319–28.

    Google Scholar 

  68. Zhang H, Darvell BW. Mechanical properties of hydroxyapatite whisker-reinforced bis-GMA-based resin composites. Dent Mater. 2012;28(8):824–30.

    PubMed  Google Scholar 

  69. Goenka S, Balu R, Sampath Kumar TS. Effects of nanocrystalline calcium deficient hydroxyapatite incorporation in glass ionomer cements. J Mech Behav Biomed Mater. 2012;7:69–76.

    PubMed  Google Scholar 

  70. Wang QS, Wang Y, Li R, Zhao MM, Sun JJ, Gao Y. Effects of light-initiation agent on mechanical properties of light-cured nano-hydroxyapatite composite for dental restoration. Appl Mech Mater. 2012;138:1012–6.

    Google Scholar 

  71. Lee JJ, Lee YK, Choi BJ, Lee JH, Choi HJ, Son HK, Kim SO. Physical properties of resin-reinforced glass ionomer cement modified with micro and nano-hydroxyapatite. J Nanosci Nanotechnol. 2010;10(8):5270–6.

    PubMed  Google Scholar 

  72. Moshaverinia A, Ansari S, Movasaghi Z, Billington RW, Darr JA, Rehman IU. Modification of conventional glass-ionomer cements with N vinylpyrrolidone containing polyacids, nano-hydroxy and fluoroapatite to improve mechanical properties. Dent Mater. 2008;24(10):1381–90.

    PubMed  Google Scholar 

  73. Moshaverinia A, Ansari S, Moshaverinia M, Roohpour N, Darr JA, Rehman I. Effects of incorporation of hydroxyapatite and fluoroapatite nanobioceramics into conventional glass ionomer cements (GIC). Acta Biomater. 2008;4(2):432–40.

    PubMed  Google Scholar 

  74. Lin J, Zhu J, Gu X, Wen W, Li Q, Fischer-Brandies H, Mehl C. Effects of incorporation of nano-fluorapatite or nano-fluorohydroxyapatite on a resin-modified glass ionomer cement. Acta Biomater. 2011;7(3):1346–53.

    PubMed  Google Scholar 

  75. Zhang JX, Meng XC, Li XY, Lv KL. Remineralization effect of the nano-HA toothpaste on artificial caries. Key Eng Mater. 2007;330:267–70.

    Google Scholar 

  76. Wang L, Guan X, Yin H, Moradian-Oldak J, Nancollas GH. Mimicking the self-organized microstructure of tooth enamel. J Phys Chem C. 2008;112(15):5892–9.

    Google Scholar 

  77. Roveri N, Palazzo B, Iafisco M. The role of biomimetism in developing nanostructured inorganic matrices for drug delivery. Expert Opin Drug Deliv. 2008;5(8):861–77.

    PubMed  Google Scholar 

  78. Wang L, Guan X, Du C, Moradian-Oldak J, Nancollas GH. Amelogenin promotes the formation of elongated apatite microstructures in a controlled crystallization system. J Phys Chem C. 2007;111(17):6398–404.

    Google Scholar 

  79. Fan Y, Sun Z, Wang R, Abbott C, Moradian-Oldak J. Enamel inspired nanocomposite fabrication through amelogenin supramolecular assembly. Biomaterials. 2007;28(19):3034–42.

    PubMed Central  PubMed  Google Scholar 

  80. Fan Y, Sun Z, Moradian-Oldak J. Controlled remineralization of enamel in the presence of amelogenin and fluoride. Biomaterials. 2009;30(4):478–83.

    PubMed Central  PubMed  Google Scholar 

  81. Tao J, Pan H, Zeng Y, Xu X, Tang R. Roles of amorphous calcium phosphate and biological additives in the assembly of hydroxyapatite nanoparticles. J Phys Chem B. 2007;111(47):13410–8.

    PubMed  Google Scholar 

  82. Kirkham J, Firth A, Vernals D, Boden N, Robinson C, Shore RC, Aggeli A. Self-assembling peptide scaffolds promote enamel remineralization. J Dent Res. 2007;86(5):426–30.

    PubMed  Google Scholar 

  83. Fowler CE, Li M, Mann S, Margolis HC. Influence of surfactant assembly on the formation of calcium phosphate materials—a model for dental enamel formation. J Mater Chem. 2005;15(32):3317–25.

    Google Scholar 

  84. Chen H, Clarkson BH, Sun K, Mansfield JF. Self-assembly of synthetic hydroxyapatite nanorods into an enamel prism-like structure. J Coll Interface Sci. 2005;288(1):97–103.

    Google Scholar 

  85. Palazzo B, Walsh D, Iafisco M, Foresti E, Bertinetti L, Martra G, Roveri N. Amino acid synergetic effect on structure, morphology and surface properties of biomimetic apatite nanocrystals. Acta Biomater. 2009;5(4):1241–52.

    PubMed  Google Scholar 

  86. Iijima M, Moradian-Oldak J. Control of apatite crystal growth in a fluoride containing amelogenin-rich matrix. Biomaterials. 2005;26(13):1595–603.

    PubMed  Google Scholar 

  87. He G, Dahl T, Veis A, George A. Dentin matrix protein 1 initiates hydroxyapatite formation in vitro. Connect Tissue Res. 2003;44(1):240–5.

    PubMed  Google Scholar 

  88. Veis A. A window on biomineralization. Science. 2005;307(5714):1419–20.

    PubMed  Google Scholar 

  89. Boskey AL. Amorphous calcium phosphate: the contention of bone. J Dent Res. 1997;76(8):1433–6.

    PubMed  Google Scholar 

  90. Yan-Bao L, Dong-Xu L, Wen-Jian W. Amorphous calcium phosphates and its biomedical application. J Inorg Mater. 2007;22(5):775–82.

    Google Scholar 

  91. Sun W, Zhang F, Guo J, Wu J, Wu W. Effects of amorphous calcium phosphate on periodontal ligament cell adhesion and proliferation in vitro. J Med Biol Eng. 2008;28(2):107–10.

    Google Scholar 

  92. Li Y, Kong F, Weng W. Preparation and characterization of novel biphasic calcium phosphate powders (α‐TCP/HA) derived from carbonated amorphous calcium phosphates. J Biomed Mater Res B Appl Biomater. 2009;89(2):508–17.

    PubMed  Google Scholar 

  93. Dorozhkin SV. Calcium orthophosphates as bioceramics: state of the art. J Funct Biomater. 2010;1(1):22–107.

    PubMed Central  PubMed  Google Scholar 

  94. Melo MAS, Weir MD, Rodrigues LKA, Xu HH. Novel calcium phosphate nanocomposite with caries-inhibition in a human in situ model. Dent Mater. 2013;29:231–40.

    PubMed Central  PubMed  Google Scholar 

  95. Jie Z, Yu L, Wei-bin S, Hai Z. Amorphous calcium phosphate and its application in dentistry. Chem Cent J. 2011;5:40.

    Google Scholar 

  96. Skrtic D, Antonucci JM, Eanes ED. Effect of the monomer and filler systems on the remineralizing potential of bioactive dental composites based on amorphous calcium phosphate. Polym Advan Technol. 2001;12(6):369–79.

    Google Scholar 

  97. O’donnell JNR, Skrtic D, Antonucci JM. Amorphous calcium phosphate composites with improved mechanical properties1. J Bioact Compat Pol. 2006;21(3):169–84.

    Google Scholar 

  98. Schumacher GE, Antonucci JM, O’Donnell JNR, Skrtic D. The use of amorphous calcium phosphate composites as bioactive basing materials: their effect on the strength of the composite/adhesive/dentin bond. J Am Dent Assoc. 2007;138(11):1476.

    PubMed Central  PubMed  Google Scholar 

  99. Antonucci JM, Liu DW, Skrtic D. Amorphous calcium phosphate based composites: effect of surfactants and poly (ethylene oxide) on filler and composite properties. J Disper Sci Technol. 2007;28(5):819–24.

    Google Scholar 

  100. Eanes ED. Amorphous calcium phosphate: thermodynamic and kinetic considerations. In: Amjad Z editor. Calcium Phosphates in Biological and Industrial Systems. Springer International Publishing AG, Part of Springer Science+Business Media. 1998:21–39.

    Google Scholar 

  101. Liu Y, Kim YK, Dai L, Li N, Khan SO, Pashley DH, Tay FR. Hierarchical and non-hierarchical mineralisation of collagen. Biomaterials. 2011;32(5):1291–300.

    PubMed Central  PubMed  Google Scholar 

  102. Liu Y, Li N, Qi Y, Niu LN, Elshafiy S, Mao J, Tay FR. The use of sodium trimetaphosphate as a biomimetic analog of matrix phosphoproteins for remineralization of artificial caries-like dentin. Dent Mater. 2011;27(5):465–77.

    PubMed Central  PubMed  Google Scholar 

  103. Burwell AK, Thula-Mata T, Gower LB, Habeliz S, Kurylo M, Ho SP, Marshall GW. Functional remineralization of dentin lesions using polymer-induced liquid-precursor process. PLoS One. 2012;7(6):e38852.

    PubMed Central  PubMed  Google Scholar 

  104. Cross KJ, Huq NL, Reynolds EC. Anticariogenic peptides. In: Mine Y, Shahidi F, editors. Nutraceutical proteins and peptides in health and disease. Hoboken: CRC Press; 2005. p. 335–51.

    Google Scholar 

  105. Cross KJ, Huq NL, Palamara J, Perich J, Reynolds EC. Physicochemical characterization of casein phosphopeptide-amorphous calcium phosphate nanocomplexes. J Biol Chem. 2005;280:15362–9.

    PubMed  Google Scholar 

  106. Rose RK. Binding characteristics of Streptococcus mutans for calcium and casein phosphopeptide. Caries Res. 2000;34:427–31.

    PubMed  Google Scholar 

  107. Rose RK. Effects of an anticariogenic casein phosphopeptide on calcium diffusion in streptococcal model dental plaques. Arch Oral Biol. 2000;45:569–75.

    PubMed  Google Scholar 

  108. Reynolds EC. Remineralization of enamel subsurface lesions by casein phosphopeptide-stabilized calcium phosphate solutions. J Dent Res. 1997;76:1587–95.

    PubMed  Google Scholar 

  109. Reynolds EC. Calcium phosphate-based remineralization systems: scientific evidence? Aus Dent J. 2008;53:268–73.

    Google Scholar 

  110. Iijima Y, Cai F, Shen P, Walker G, Reynolds C, Reynolds EC. Acid resistance of enamel subsurface lesions remineralized by a sugar-free chewing gum containing casein phosphopeptideamorphous calcium phosphate. Caries Res. 2004;38:551–6.

    PubMed  Google Scholar 

  111. Beniash E, Metzler RA, Lam RS, Gilbert PU. Transient amorphous calcium phosphate in forming enamel. J Struct Biol. 2009;166:133–43.

    PubMed Central  PubMed  Google Scholar 

  112. Lowenstam HA, Weiner S. Transformation of amorphous calcium phosphate to crystalline dahillite in the radular teeth of chitons. Science. 1985;227:51–3.

    PubMed  Google Scholar 

  113. Mahamid J, Sharir A, Addadi L, Weiner S. Amorphous calcium phosphate is a major component of the forming fin bones of zebrafish: Indications for an amorphous precursor phase. Proc Natl Acad Sci. 2008;105:12748–53.

    PubMed Central  PubMed  Google Scholar 

  114. Combes C, Rey C. Amorphous calcium phosphates: synthesis, properties and uses in biomaterials. Acta Biomater. 2010;6:3362–78.

    PubMed  Google Scholar 

  115. Pan HH, Liu XY, Tang RK, Xu HY. Mystery of the transformation from amorphous calcium phosphate to hydroxyapatite. Chem Comm. 2010;46:7415–20.

    PubMed  Google Scholar 

  116. George A, Sabsay B, Simonian PA, Veis A. Characterization of a novel dentin matrix acidic phosphoprotein. Implications for induction of biomineralization. J Biol Chem. 1993;268:12624–30.

    PubMed  Google Scholar 

  117. Hunter GK, Hauschka PV, Poole AR, Robsenberg LC, Goldberg HA. Nucleation and inhibition of hydroxyapatite formation by mineralized tissue proteins. Biochem J. 1996;317:59–64.

    PubMed Central  PubMed  Google Scholar 

  118. He G, Ramachandran A, Dahl T, George S, Schultz D, Cookson D, George A. Phosphorylation of phosphophoryn is crucial for its function as a mediator of biomineralization. J Biol Chem. 2005;280(39):33109–14.

    PubMed  Google Scholar 

  119. Liou SC, Chen SY, Liu DM. Manipulation of nanoneedle and nanosphere apatite/poly(acrylic acid) nanocomposites. J Biomed Mater Res B Appl Biomater. 2005;73:117–22.

    PubMed  Google Scholar 

  120. Olszta MJ, Odom DJ, Douglas EP, Gower LB. A new paradigm for biomineral formation: mineralization via an amorphous liquid-phase precursor. Connect Tissue Res. 2003;44 Suppl 1:326–34.

    PubMed  Google Scholar 

  121. Gower LB, Olszta MJ, Douglas EP, Munisamy S, Wheeler DL. Biomimetic organic/inorganic composites, processes for their production, and methods of use. US patent application 20060204581, 2006.

    Google Scholar 

  122. Niederberger M, Cölfen H. Oriented attachment and mesocrystals: non-classical crystallization mechanisms based on nanoparticle assembly. Phys Chem Chem Phys. 2006;8:3271–87.

    PubMed  Google Scholar 

  123. Saito T, Yamauchi M, Crenshaw MA. Apatite induction by insoluble dentin collagen. J Bone Miner Res. 1998;13:265–70.

    PubMed  Google Scholar 

  124. Kinney JH, Habelitz S, Marshall SJ, Marshall GW. The importance of intrafibrillar mineralization of collagen on the mechanical properties of dentin. J Dent Res. 2003;82:957–61.

    PubMed  Google Scholar 

  125. Dai L, Liu Y, Salameh Z, Khan S, Mao J, Pashley DH, Tay FR. Can caries-affected dentin be completely remineralized by guided tissue remineralization? Dent Hypotheses. 2011;2(2):74.

    PubMed Central  PubMed  Google Scholar 

  126. Rinaudo M. Chitin and chitosan: properties and applications. Prog Polym Sci. 2006;31:603–32.

    Google Scholar 

  127. Malette W, Quigley H. Adickes E. In: Muzzarelli RAA, Jeuniaux C, Gooday GW, editors. Chitin in nature and technology. New York: Plenum Press; 1986. p. 435–42.

    Google Scholar 

  128. Huang M, Fang Y. Preparation, characterization, and properties of chitosan-g-poly(vinyl alcohol) copolymer. Biopolymers. 2006;81:160–6.

    PubMed  Google Scholar 

  129. Sakairi N, Shirai A, Miyazaki S, Tashiro H, Tsuji Y, Kawahara H, Yoshida T, Tokura S. Synthesis and properties of chitin phosphate. Kobunshi Ronbunshu. 1998;55:212–6.

    Google Scholar 

  130. Jayakumara R, Rajkumarb M, Freitas H, Selvamuruganc N, Nair SV, Furuikec T, Tamuraa H. Preparation, characterization, bioactive and metal uptake studies of alginate/phosphorylated chitin blend films. Int J Biol Macromol. 2009;44:107–11.

    Google Scholar 

  131. Wang XH, Zhu Y, Feng QL, Cui FZ, Ma JB. Responses of osteo- and fibroblast cells to phosphorylated chitin. Bioact Compat Polym. 2003;18:135–46.

    Google Scholar 

  132. Wang X, Ma J, Wang Y, He B. Bone repair in radii and tibias of rabbits with phosphorylated chitosan reinforced calcium phosphate cements. Biomaterials. 2002;23:4167–76.

    PubMed  Google Scholar 

  133. Wang X, Ma J, Feng QL, Cui FZ. Skeletal repair in rabbits with calcium phosphate cements incorporated phosphorylated chitin. Biomaterials. 2002;23:459–4600.

    Google Scholar 

  134. Abarrategi A, Moreno-Vicente C, Ramos V, Aranaz I, Sanz Casado JV, López-Lacomba JL. Improvement of porous beta-TCP scaffolds with rhBMP-2 chitosan carrier film for bone tissue application. Tissue Eng Part A. 2008;14(8):1305–19.

    PubMed  Google Scholar 

  135. Weir MD, Xu HH. Osteoblastic induction on calcium phosphate cement-chitosan constructs for bone tissue engineering. J Biomed Mater Res A. 2010;94(1):223–33.

    PubMed Central  PubMed  Google Scholar 

  136. Jayakumar R, Nwe N, Tokura S, Tamura H. Sulfated chitin and chitosan as novel biomaterials. Int J Biol Macromol. 2007;40:175–81.

    PubMed  Google Scholar 

  137. Zhang X, Yang P, Yang WT, Chen JC. The bio-inspired approach to controllable biomimetic synthesis of silver nanoparticles in organic matrix of chitosan and silver-binding peptide (NPSSLFRYLPSD). Mater Sci Eng C Biomim Mater Sens Syst. 2008;28:237–42.

    Google Scholar 

  138. Xu Z, Neoh KG, Lin CC, Kishen A. Remineralization of partially demineralized dentine substrate using phosphorylated chitosan. J Biomed Mater Res B Appl Mater. 2011;98B(1):150–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Zhang PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhang, X., Deng, X., Wu, Y. (2015). Remineralizing Nanomaterials for Minimally Invasive Dentistry. In: Kishen, A. (eds) Nanotechnology in Endodontics. Springer, Cham. https://doi.org/10.1007/978-3-319-13575-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13575-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13574-8

  • Online ISBN: 978-3-319-13575-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics