Skip to main content

Nanoparticles for Dentin Tissue Stabilization

  • Chapter
  • First Online:
Nanotechnology in Endodontics

Abstract

Nanotechnology has been applied to manage previously infected dentin. These treatment procedures are aimed for non-invasive elimination of residual bacterial biofilms, improve the resistance of dentin to enzymatic (host/bacterial-mediated) degradation and improve the mechanical integrity of dentin matrix. This chapter discusses the issues associated with previously infected dentin, strategies used to strengthen dentin tissue matrix and current progress/potential applications of various functional nanoparticles for the physical, chemical and mechanical stabilization of dentin. Nanoparticles of various materials (polymers, metals), size and shape as well as modifications are available depending on the requirement. Nanoparticles could be tailored to perform specific or multiple functions based on the tissue-specific requirements. Carefully tailored nanoparticles with sound scientific basis on the mechanism of action, safety and dose will find potential advantage in minimally invasive/non-invasive dentin tissue stabilization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang SF, Rivera EM, Walton RE. Vertical root fracture in nonendodontically treated teeth. J Endod. 1995;21:337–9.

    PubMed  Google Scholar 

  2. Pitts DL, Matheny HE, Nicholls JI. An in vitro study of spreader loads required to cause vertical root fracture during lateral condensation. J Endod. 1983;9:544–50.

    PubMed  Google Scholar 

  3. Chan CP, Tseng SC, Lin CP, Huang CC, Tsai TP, Chen CC. Vertical root fracture in nonendodontically treated teeth–a clinical report of 64 cases in Chinese patients. J Endod. 1998;24:678–81.

    PubMed  Google Scholar 

  4. Yeh CJ. Fatigue root fracture: a spontaneous root fracture in non-endodontically treated teeth. Br Dent J. 1997;182:261–6.

    PubMed  Google Scholar 

  5. Moule AJ, Kahler B. Diagnosis and management of teeth with vertical root fractures. Aust Dent J. 1999;44:75–87.

    PubMed  Google Scholar 

  6. Testori T, Badino M, Castagnola M. Vertical root fractures in endodontically treated teeth: a clinical survey of 36 cases. J Endod. 1993;19:87–91.

    PubMed  Google Scholar 

  7. Torbjorner A, Karlsson S, Odman PA. Survival rate and failure characteristics for two post designs. J Prosthet Dent. 1995;73:439–44.

    PubMed  Google Scholar 

  8. Morfis AS. Vertical root fractures. Oral Surg Oral Med Oral Pathol. 1990;69:631–5.

    PubMed  Google Scholar 

  9. Bergman B, Lundquist P, Sjogren U, Sundquist G. Restorative and endodontic results after treatment with cast posts and cores. J Prosthet Dent. 1989;61:10–5.

    PubMed  Google Scholar 

  10. Fuss Z, Lustig J, Tamse A. Prevalence of vertical root fractures in extracted endodontically treated teeth. Int Endod J. 1999;32:283–6.

    PubMed  Google Scholar 

  11. Coppens CRMD, DeMoor RJG. Prevalence of vertical root fractures in extracted endodontically treated teeth. Int Endod J. 2003;36:926.

    Google Scholar 

  12. Kishen A. Mechanisms and risk factors for fracture predilection in endodontically treated teeth. Endod Top. 2006;13.

    Google Scholar 

  13. Vier FV, Figueiredo JA. Internal apical resorption and its correlation with the type of apical lesion. Int Endod J. 2004;37:730–7.

    PubMed  Google Scholar 

  14. Vier FV, Figueiredo JA. Prevalence of different periapical lesions associated with human teeth and their correlation with the presence and extension of apical external root resorption. Int Endod J. 2002;35:710–9.

    PubMed  Google Scholar 

  15. Ferrari M, Mason PN, Goracci C, Pashley DH, Tay FR. Collagen degradation in endodontically treated teeth after clinical function. J Dent Res. 2004;83:414–9.

    PubMed  Google Scholar 

  16. Hubble TS, Hatton JF, Nallapareddy SR, Murray BE, Gillespie MJ. Influence of Enterococcus faecalis proteases and the collagen-binding protein, Ace, on adhesion to dentin. Oral Microbiol Immunol. 2003;18:121–6.

    PubMed  Google Scholar 

  17. Niu W, Yoshioka T, Kobayashi C, Suda H. A scanning electron microscopic study of dentinal erosion by final irrigation with EDTA and NaOCl solutions. Int Endod J. 2002;35:934–9.

    PubMed  Google Scholar 

  18. Calt S, Serper A. Time-dependent effects of EDTA on dentin structures. J Endod. 2002;28:17–9.

    PubMed  Google Scholar 

  19. Tay FR, Hosoya Y, Loushine RJ, Pashley DH, Weller RN, Low DC. Ultrastructure of intraradicular dentin after irrigation with BioPure MTAD. II. The consequence of obturation with an epoxy resin-based sealer. J Endod. 2006;32:473–7.

    PubMed  Google Scholar 

  20. Habelitz S, Balooch M, Marshall SJ, Balooch G, Marshall Jr GW. In situ atomic force microscopy of partially demineralized human dentin collagen fibrils. J Struct Biol. 2002;138:227–36.

    PubMed  Google Scholar 

  21. Bertassoni LE, Orgel JP, Antipova O, Swain MV. The dentin organic matrix – limitations of restorative dentistry hidden on the nanometer scale. Acta Biomater. 2012;8:2419–33.

    PubMed Central  PubMed  Google Scholar 

  22. Kinney JH, Pople JA, Marshall GW, Marshall SJ. Collagen orientation and crystallite size in human dentin: a small angle x-ray scattering study. Calcif Tissue Int. 2001;69:31–7.

    PubMed  Google Scholar 

  23. Rivera EM, Yamauchi M. Site comparisons of dentine collagen cross-links from extracted human teeth. Arch Oral Biol. 1993;38:541–6.

    PubMed  Google Scholar 

  24. Kinney JH, Marshall SJ, Marshall GW. The mechanical properties of human dentin: a critical review and re-evaluation of the dental literature. Crit Rev Oral Biol Med. 2003;14:13–29.

    PubMed  Google Scholar 

  25. Gutmann JL. The dentin-root complex: anatomic and biologic considerations in restoring endodontically treated teeth. J Prosthet Dent. 1992;67:458–67.

    PubMed  Google Scholar 

  26. Currey JD. Effects of difference in mineralization on the mechanical properties of bone. Philos Trans R Soc Lond Biol Sci. 1984;13:509–18.

    Google Scholar 

  27. Miguez PA, Pereira PN, Atsawasuwan P, Yamauchi M. Collagen cross-linking and ultimate tensile strength in dentin. J Dent Res. 2004;83:807–10.

    PubMed  Google Scholar 

  28. Kinney JH, Habelitz S, Marshall SJ, Marshall GW. The importance of intrafibrillar mineralization of collagen on the mechanical properties of dentin. J Dent Res. 2003;82:957–61.

    PubMed  Google Scholar 

  29. Jameson MW, Hood JA, Tidmarsh BG. The effects of dehydration and rehydration on some mechanical properties of human dentine. J Biomech. 1993;26:1055–65.

    PubMed  Google Scholar 

  30. Pashley DH, Agee KA, Carvalho RM, Lee KW, Tay FR, Callison TE. Effects of water and water-free polar solvents on the tensile properties of demineralized dentin. Dent Mater. 2003;19:347–52.

    PubMed  Google Scholar 

  31. Vincent J. Structural biomaterials. Princeton: Princeton University Press; 1990.

    Google Scholar 

  32. Kishen A, George S, Kumar R. Enterococcus faecalis-mediated biomineralized biofilm formation on root canal dentine in vitro. J Biomed Mater Res A. 2006;77:406–15.

    PubMed  Google Scholar 

  33. George S, Kishen A, Song KP. The role of environmental changes on monospecies biofilm formation on root canal wall by Enterococcus faecalis. J Endod. 2005;31:867–72.

    PubMed  Google Scholar 

  34. Vire DE. Failure of endodontically treated teeth: classification and evaluation. J Endod. 1991;17:338–42.

    PubMed  Google Scholar 

  35. van Strijp AJ, Jansen DC, DeGroot J, ten Cate JM, Everts V. Host-derived proteinases and degradation of dentine collagen in situ. Caries Res. 2003;37:58–65.

    PubMed  Google Scholar 

  36. Carrilho MR, Geraldeli S, Tay F, de Goes MF, Carvalho RM, Tjaderhane L, et al. In vivo preservation of the hybrid layer by chlorhexidine. J Dent Res. 2007;86:529–33.

    PubMed  Google Scholar 

  37. Mazzoni A, Mannello F, Tay FR, Tonti GA, Papa S, Mazzotti G, et al. Zymographic analysis and characterization of MMP-2 and -9 forms in human sound dentin. J Dent Res. 2007;86:436–40.

    PubMed  Google Scholar 

  38. Itoh T, Nakamura H, Kishi J, Hayakawa T. The activation of matrix metalloproteinases by a whole-cell extract from Prevotella nigrescens. J Endod. 2009;35:55–9.

    PubMed  Google Scholar 

  39. Huang FM, Yang SF, Chang YC. Up-regulation of gelatinases and tissue type plasminogen activator by root canal sealers in human osteoblastic cells. J Endod. 2008;34:291–4.

    PubMed  Google Scholar 

  40. Hebling J, Pashley DH, Tjaderhane L, Tay FR. Chlorhexidine arrests subclinical degradation of dentin hybrid layers in vivo. J Dent Res. 2005;84:741–6.

    PubMed  Google Scholar 

  41. Hashimoto M, Tay FR, Ohno H, Sano H, Kaga M, Yiu C, et al. SEM and TEM analysis of water degradation of human dentinal collagen. J Biomed Mater Res B Appl Biomater. 2003;66:287–98.

    PubMed  Google Scholar 

  42. Pashley DH, Tay FR, Yiu C, Hashimoto M, Breschi L, Carvalho RM, et al. Collagen degradation by host-derived enzymes during aging. J Dent Res. 2004;83:216–21.

    PubMed  Google Scholar 

  43. Carrilho MR, Tay FR, Donnelly AM, Agee KA, Tjaderhane L, Mazzoni A, et al. Host-derived loss of dentin matrix stiffness associated with solubilization of collagen. J Biomed Mater Res B Appl Biomater. 2009;90:373–80.

    PubMed Central  PubMed  Google Scholar 

  44. Kim MM, Kim SK. Chitooligosaccharides inhibit activation and expression of matrix metalloproteinnase-2 in human dermal fibroblasts. FEBS Lett. 2006;580:2661–6.

    PubMed  Google Scholar 

  45. Zhang K, Kim YK, Cadenaro M, Bryan TE, Sidow SJ, Loushine RJ, et al. Effects of different exposure times and concentrations of sodium hypochlorite/ethylenediaminetetraacetic acid on the structural integrity of mineralized dentin. J Endod. 2010;36:105–9.

    PubMed  Google Scholar 

  46. Oliveira LD, Carvalho CA, Nunes W, Valera MC, Camargo CH, Jorge AO. Effects of chlorhexidine and sodium hypochlorite on the microhardness of root canal dentin. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;104:e125–8.

    PubMed  Google Scholar 

  47. Saleh AA, Ettman WM. Effect of endodontic irrigation solutions on microhardness of root canal dentine. J Dent. 1999;27:43–6.

    PubMed  Google Scholar 

  48. White JD, Lacefield WR, Chavers LS, Eleazer PD. The effect of three commonly used endodontic materials on the strength and hardness of root dentin. J Endod. 2002;28:828–30.

    PubMed  Google Scholar 

  49. Shemesh H, Bier CA, Wu MK, Tanomaru-Filho M, Wesselink PR. The effects of canal preparation and filling on the incidence of dentinal defects. Int Endod J. 2009;42:208–13.

    PubMed  Google Scholar 

  50. Kishen A, Messer HH. Vertical root fractures: radiological diagnosis. In: Basrani B, editor. Endodontic radiology. 2nd ed. Ames: Wiley-Blackwell; 2012. p. 235–50.

    Google Scholar 

  51. Rao KP. Recent developments of collagen-based materials for medical applications and drug delivery systems. J Biomater Sci Polym Ed. 1995;7:623–45.

    PubMed  Google Scholar 

  52. Sung HW, Chang Y, Liang IL, Chang WH, Chen YC. Fixation of biological tissues with a naturally occurring crosslinking agent: fixation rate and effects of pH, temperature, and initial fixative concentration. J Biomed Mater Res. 2000;52:77–87.

    PubMed  Google Scholar 

  53. Spikes JD, Shen HR, Kopeckova P, Kopecek J. Photodynamic crosslinking of proteins. III. Kinetics of the FMN- and rose bengal-sensitized photooxidation and intermolecular crosslinking of model tyrosine-containing N-(2-hydroxypropyl)methacrylamide copolymers. Photochem Photobiol. 1999;70:130–7.

    PubMed  Google Scholar 

  54. Jayakrishnan A, Jameela SR. Glutaraldehyde as a fixative in bioprostheses and drug delivery matrices. Biomaterials. 1996;17:471–84.

    PubMed  Google Scholar 

  55. Bedran-Russo AK, Pashley DH, Agee K, Drummond JL, Miescke KJ. Changes in stiffness of demineralized dentin following application of collagen crosslinkers. J Biomed Mater Res B Appl Biomater. 2008;86B:330–4.

    Google Scholar 

  56. Bedran-Russo AK, Pereira PN, Duarte WR, Drummond JL, Yamauchi M. Application of crosslinkers to dentin collagen enhances the ultimate tensile strength. J Biomed Mater Res B Appl Biomater. 2007;80:268–72.

    PubMed  Google Scholar 

  57. Sung HW, Chang WH, Ma CY, Lee MH. Crosslinking of biological tissues using genipin and/or carbodiimide. J Biomed Mater Res A. 2003;64:427–38.

    PubMed  Google Scholar 

  58. Qin C, Xu J, Zhang Y. Spectroscopic investigation of the function of aqueous 2-hydroxyethylmethacrylate/glutaraldehyde solution as a dentin desensitizer. Eur J Oral Sci. 2006;114:354–9.

    PubMed  Google Scholar 

  59. Loke WK, Khor E. Validation of the shrinkage temperature of animal tissue for bioprosthetic heart valve application by differential scanning calorimetry. Biomaterials. 1995;16:251–8.

    PubMed  Google Scholar 

  60. Simmons DM, Kearney JN. Evaluation of collagen cross-linking techniques for the stabilization of tissue matrices. Biotechnol Appl Biochem. 1993;17(Pt 1):23–9.

    PubMed  Google Scholar 

  61. Beauchamp Jr RO, St Clair MB, Fennell TR, Clarke DO, Morgan KT, Kari FW. A critical review of the toxicology of glutaraldehyde. Crit Rev Toxicol. 1992;22:143–74.

    PubMed  Google Scholar 

  62. Shrestha A, Friedman S, Kishen A. Photodynamically crosslinked and chitosan-incorporated dentin collagen. J Dent Res. 2011;90:1346–51.

    PubMed  Google Scholar 

  63. Madhavan K, Belchenko D, Motta A, Tan W. Evaluation of composition and crosslinking effects on collagen-based composite constructs. Acta Biomater. 2010;6:1413–22.

    PubMed  Google Scholar 

  64. Liu Y, Chen M, Yao X, Xu C, Zhang Y, Wang Y. Enhancement in dentin collagen’s biological stability after proanthocyanidins treatment in clinically relevant time periods. Dent Mater. 2013;29:485–92.

    PubMed Central  PubMed  Google Scholar 

  65. Bedran-Russo AK, Castellan CS, Shinohara MS, Hassan L, Antunes A. Characterization of biomodified dentin matrices for potential preventive and reparative therapies. Acta Biomater. 2011;7:1735–41.

    PubMed Central  PubMed  Google Scholar 

  66. Bedran-Russo AK, Yoo KJ, Ema KC, Pashley DH. Mechanical properties of tannic-acid-treated dentin matrix. J Dent Res. 2009;88:807–11.

    PubMed Central  PubMed  Google Scholar 

  67. Rafat M, Li F, Fagerholm P, Lagali NS, Watsky MA, Munger R, et al. PEG-stabilized carbodiimide crosslinked collagen-chitosan hydrogels for corneal tissue engineering. Biomaterials. 2008;29:3960–72.

    PubMed  Google Scholar 

  68. Olde Damink LH, Dijkstra PJ, van Luyn MJ, van Wachem PB, Nieuwenhuis P, Feijen J. Cross-linking of dermal sheep collagen using a water-soluble carbodiimide. Biomaterials. 1996;17:765–73.

    PubMed  Google Scholar 

  69. Staros JV, Wright RW, Swingle DM. Enhancement by N-hydroxysulfosuccinimide of water-soluble carbodiimide-mediated coupling reactions. Anal Biochem. 1986;156:220–2.

    PubMed  Google Scholar 

  70. Han B, Jaurequi J, Tang BW, Nimni ME. Proanthocyanidin: a natural crosslinking reagent for stabilizing collagen matrices. J Biomed Mater Res A. 2003;65:118–24.

    PubMed  Google Scholar 

  71. Itoh S, Takakuda K, Kawabata S, Aso Y, Kasai K, Itoh H, et al. Evaluation of cross-linking procedures of collagen tubes used in peripheral nerve repair. Biomaterials. 2002;23:4475–81.

    PubMed  Google Scholar 

  72. Weadock KS, Miller EJ, Bellincampi LD, Zawadsky JP, Dunn MG. Physical crosslinking of collagen fibers: comparison of ultraviolet irradiation and dehydrothermal treatment. J Biomed Mater Res. 1995;29:1373–9.

    PubMed  Google Scholar 

  73. Billiar K, Murray J, Laude D, Abraham G, Bachrach N. Effects of carbodiimide crosslinking conditions on the physical properties of laminated intestinal submucosa. J Biomed Mater Res. 2001;56:101–8.

    PubMed  Google Scholar 

  74. Redmond RW, Gamlin JN. A compilation of singlet oxygen yields from biologically relevant molecules. Photochem Photobiol. 1999;70:391–475.

    PubMed  Google Scholar 

  75. Dubbelman TM, Haasnoot C, van Steveninck J. Temperature dependence of photodynamic red cell membrane damage. Biochim Biophys Acta. 1980;601:220–7.

    PubMed  Google Scholar 

  76. Shrestha A, Hamblin MR, Kishen A. Photoactivated rose bengal functionalized chitosan nanoparticles produce antibacterial/biofilm activity and stabilize dentin-collagen. Nanomedicine. 2014;10(3):491–501.

    PubMed  Google Scholar 

  77. Fawzy AS, Nitisusanta LI, Iqbal K, Daood U, Beng LT, Neo J. Chitosan/Riboflavin-modified demineralized dentin as a potential substrate for bonding. J Mech Behav Biomed Mater. 2013;17:278–89.

    PubMed  Google Scholar 

  78. Daood U, Iqbal K, Nitisusanta LI, Fawzy AS. Effect of chitosan/riboflavin modification on resin/dentin interface: spectroscopic and microscopic investigations. J Biomed Mater Res A. 2013;10:1846–56.

    Google Scholar 

  79. Fawzy AS, Nitisusanta LI, Iqbal K, Daood U, Neo J. Riboflavin as a dentin crosslinking agent: ultraviolet A versus blue light. Dent Mater. 2012;28:1284–91.

    PubMed  Google Scholar 

  80. Chan BP, Chan OC, So KF. Effects of photochemical crosslinking on the microstructure of collagen and a feasibility study on controlled protein release. Acta Biomater. 2008;4:1627–36.

    PubMed  Google Scholar 

  81. Chan BP, Amann C, Yaroslavsky AN, Title C, Smink D, Zarins B, et al. Photochemical repair of Achilles tendon rupture in a rat model. J Surg Res. 2005;124:274–9.

    PubMed  Google Scholar 

  82. Wollensak G, Iomdina E. Long-term biomechanical properties of rabbit cornea after photodynamic collagen crosslinking. Acta Ophthalmol. 2009;87:48–51.

    PubMed  Google Scholar 

  83. Ibusuki S, Halbesma GJ, Randolph MA, Redmond RW, Kochevar IE, Gill TJ. Photochemically cross-linked collagen gels as three-dimensional scaffolds for tissue engineering. Tissue Eng. 2007;13:1995–2001.

    PubMed  Google Scholar 

  84. Wollensak G, Iomdina E, Dittert DD, Salamatina O, Stoltenburg G. Cross-linking of scleral collagen in the rabbit using riboflavin and UVA. Acta Ophthalmol Scand. 2005;83:477–82.

    PubMed  Google Scholar 

  85. Everaerts F, Torrianni M, van Luyn M, van Wachem P, Feijen J, Hendriks M. Reduced calcification of bioprostheses, cross-linked via an improved carbodiimide based method. Biomaterials. 2004;25:5523–30.

    PubMed  Google Scholar 

  86. Taravel MN, Domard A. Collagen and its interactions with chitosan, III some biological and mechanical properties. Biomaterials. 1996;17:451–5.

    PubMed  Google Scholar 

  87. Chen J, Li Q, Xu J, Huang Y, Ding Y, Deng H, et al. Study on biocompatibility of complexes of collagen-chitosan-sodium hyaluronate and cornea. Artif Organs. 2005;29:104–13.

    PubMed  Google Scholar 

  88. Sionkowska A, Wisniewski M, Skopinska J, Kennedy CJ, Wess TJ. Molecular interactions in collagen and chitosan blends. Biomaterials. 2004;25:795–801.

    PubMed  Google Scholar 

  89. Chandy T, Sharma CP. Chitosan–as a biomaterial. Biomater Artif Cells Artif Organs. 1990;18:1–24.

    PubMed  Google Scholar 

  90. Tan W, Krishnaraj R, Desai TA. Evaluation of nanostructured composite collagen–chitosan matrices for tissue engineering. Tissue Eng. 2001;7:203–10.

    PubMed  Google Scholar 

  91. Moczek L, Nowakowska M. Novel water-soluble photosensitizers from chitosan. Biomacromolecules. 2007;8:433–8.

    PubMed  Google Scholar 

  92. Persadmehr A, Torneck CD, Cvitkovitch DG, Pinto V, Talior I, Kazembe M, et al. Bioactive chitosan nanoparticles and photodynamic therapy inhibit collagen degradation in vitro. J Endod. 2014;40:703–9.

    PubMed  Google Scholar 

  93. Tian L, Peng C, Shi Y, Guo X, Zhong B, Qi J, et al. Effect of mesoporous silica nanoparticles on dentinal tubule occlusion: an in vitro study using SEM and image analysis. Dent Mater J. 2014;33:125–32.

    PubMed  Google Scholar 

  94. Lee SY, Kwon HK, Kim BI. Effect of dentinal tubule occlusion by dentifrice containing nano-carbonate apatite. J Oral Rehabil. 2008;35:847–53.

    PubMed  Google Scholar 

  95. Mitchell JC, Musanje L, Ferracane JL. Biomimetic dentin desensitizer based on nano-structured bioactive glass. Dent Mater. 2011;27:386–93.

    PubMed  Google Scholar 

  96. Besinis A, van Noort R, Martin N. Infiltration of demineralized dentin with silica and hydroxyapatite nanoparticles. Dent Mater. 2012;28:1012–23.

    PubMed  Google Scholar 

  97. Allison RR, Mota HC, Bagnato VS, Sibata CH. Bio-nanotechnology and photodynamic therapy–state of the art review. Photodiagnosis Photodyn Ther. 2008;5:19–28.

    PubMed  Google Scholar 

  98. Decraene V, Pratten J, Wilson M. An assessment of the activity of a novel light-activated antimicrobial coating in a clinical environment. Infect Control Hosp Epidemiol. 2008;29:1181–4.

    PubMed  Google Scholar 

  99. Nakabayashi N. Bonding mechanism of resins and the tooth. Kokubyo Gakkai Zasshi. 1982;49:410.

    PubMed  Google Scholar 

  100. Nakabayashi N, Kojima K, Masuhara E. The promotion of adhesion by the infiltration of monomers into tooth substrates. J Biomed Mater Res. 1982;16:265–73.

    PubMed  Google Scholar 

  101. Walter R, Miguez PA, Arnold RR, Pereira PN, Duarte WR, Yamauchi M. Effects of natural cross-linkers on the stability of dentin collagen and the inhibition of root caries in vitro. Caries Res. 2008;42:263–8.

    PubMed Central  PubMed  Google Scholar 

  102. Nam KS, Shon YH. Suppression of metastasis of human breast cancer cells by chitosan oligosaccharides. J Microbiol Biotechnol. 2009;19:629–33.

    PubMed  Google Scholar 

  103. Shen KT, Chen MH, Chan HY, Jeng JH, Wang YJ. Inhibitory effects of chitooligosaccharides on tumor growth and metastasis. Food Chem Toxicol. 2009;47:1864–71.

    PubMed  Google Scholar 

  104. Tezvergil-Mutluay A, Mutluay MM, Gu LS, Zhang K, Agee KA, Carvalho RM, et al. The anti-MMP activity of benzalkonium chloride. J Dent. 2011;39:57–64.

    PubMed  Google Scholar 

  105. Gendron R, Grenier D, Sorsa T, Mayrand D. Inhibition of the activities of matrix metalloproteinases 2, 8, and 9 by chlorhexidine. Clin Diagn Lab Immunol. 1999;6:437–9.

    PubMed Central  PubMed  Google Scholar 

  106. Breschi L, Mazzoni A, Nato F, Carrilho M, Visintini E, Tjaderhane L, et al. Chlorhexidine stabilizes the adhesive interface: a 2-year in vitro study. Dent Mater. 2010;26:320–5.

    PubMed  Google Scholar 

  107. Liu SQ, Qiu B, Chen LY, Peng H, Du YM. The effects of carboxymethylated chitosan on metalloproteinase-1, -3 and tissue inhibitor of metalloproteinase-1 gene expression in cartilage of experimental osteoarthritis. Rheumatol Int. 2005;26:52–7.

    PubMed  Google Scholar 

  108. Cova A, Breschi L, Nato F, Ruggeri Jr A, Carrilho M, Tjaderhane L, et al. Effect of UVA-activated riboflavin on dentin bonding. J Dent Res. 2011;90:1439–45.

    PubMed Central  PubMed  Google Scholar 

  109. Pashley DH, Tay FR, Breschi L, Tjaderhane L, Carvalho RM, Carrilho M, et al. State of the art etch-and-rinse adhesives. Dent Mater. 2011;27:1–16.

    PubMed  Google Scholar 

  110. Tezvergil-Mutluay A, Mutluay MM, Agee KA, Seseogullari-Dirihan R, Hoshika T, Cadenaro M, et al. Carbodiimide cross-linking inactivates soluble and matrix-bound MMPs, in vitro. J Dent Res. 2012;91:192–6.

    PubMed Central  PubMed  Google Scholar 

  111. Schwartz RS. Adhesive dentistry and endodontics. Part 2: bonding in the root canal system-the promise and the problems: a review. J Endod. 2006;32:1125–34.

    PubMed  Google Scholar 

  112. Schwartz RS, Fransman R. Adhesive dentistry and endodontics: materials, clinical strategies and procedures for restoration of access cavities: a review. J Endod. 2005;31:151–65.

    PubMed  Google Scholar 

  113. Tay FR, Pashley DH. Monoblocks in root canals: a hypothetical or a tangible goal. J Endod. 2007;33:391–8.

    PubMed Central  PubMed  Google Scholar 

  114. Gwinnett AJ. Quantitative contribution of resin infiltration/hybridization to dentin bonding. Am J Dent. 1993;6:7–9.

    PubMed  Google Scholar 

  115. Garcia-Godoy F, Tay FR, Pashley DH, Feilzer A, Tjaderhane L, Pashley EL. Degradation of resin-bonded human dentin after 3 years of storage. Am J Dent. 2007;20:109–13.

    PubMed  Google Scholar 

  116. Tay FR, Hashimoto M, Pashley DH, Peters MC, Lai SC, Yiu CK, et al. Aging affects two modes of nanoleakage expression in bonded dentin. J Dent Res. 2003;82:537–41.

    PubMed  Google Scholar 

  117. Al-Ammar A, Drummond JL, Bedran-Russo AK. The use of collagen cross-linking agents to enhance dentin bond strength. J Biomed Mater Res B Appl Biomater. 2009;91:419–24.

    PubMed Central  PubMed  Google Scholar 

  118. Melo MAS, Guedes SFF, Xu HKK, et al. Nanotechnology-based restorative materials for dental caries management. Trends Biotechnol. 2013;31(8):459–67.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annie Shrestha PhD, MSc, BDS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kishen, A., Shrestha, A. (2015). Nanoparticles for Dentin Tissue Stabilization. In: Kishen, A. (eds) Nanotechnology in Endodontics. Springer, Cham. https://doi.org/10.1007/978-3-319-13575-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13575-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13574-8

  • Online ISBN: 978-3-319-13575-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics