Skip to main content

Nanomedicine: Size-Related Drug Delivery Applications, Including Periodontics and Endodontics

  • Chapter
  • First Online:
Nanotechnology in Endodontics

Abstract

In this chapter, we discuss polymer- and liposome-based nanocarriers used in the delivery of bioactive molecules, from drugs to proteins. The focus is on the enhancements in efficacy of bioactive molecules when nanotechnology is used for delivering them. The perspective centres around commercial and clinical successes and a rationalization of these successes. Microparticulate systems are also discussed in relation to their nano-counterparts, and the advantages of nano size are emphasized in relevant applications. In general, the main application of nanocarriers is in cancer therapy; however, with the ability to programme sustained release of bioactive molecules from certain types of nanoparticles, other applications in ocular, cardiovascular and periodontic/endodontic therapy may be possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CMC:

Critical micellar concentration

DNA:

Deoxyribonucleic acid

DOX:

Doxorubicin

DPPC:

Dipalmitoylphosphatidylcholine

DSPE:

Distearoyl-phosphatidyl-ethanolamine

DXY:

Doxycycline

EPM:

Extracellular polymeric matrix

EPR:

Enhanced Permeation and Retention

FDA:

Food and Drug Administration

GI:

Gingival index

HLE:

Harungana madagascariensis Lam. Ex Poir.

IOP:

Intraocular pressure

IV:

Intravenous

MIC:

Minocycline

NC:

NanoCarriers

PCL:

Poly (caprolactone)

PD:

Probing depth

PDT:

Photodynamic therapy

PEG:

Poly(ethylene glycol)

PI:

Phosphatidylinositol

PLA:

(Poly l-lactide)

PLGA:

(Poly (d,l-lactic acid and Glycolic acid copolymer)

PS:

Photosensitizers

PVA:

(Poly vinyl Alcohol)

PVP:

Poly(vinyl pyrrolidone)

RES:

Reticulo-endothelial system

RPE:

Retinal pigmented epithelium

S. oralis :

Streptococcus oralis

S. sanguis :

Streptococuss sanguis

SA:

Steraylamine

SESD:

Spontaneous emulsification solvent diffusion

TCL:

Tetracycline

TCS:

Triclosan

TEM:

Transmission electron microscopy

T g :

Glass transition temperatures

T m :

Melting points

TPP:

Tripolyphosphate

TSA:

Tissue-specific antigen

ULV:

Uni lamellar vesicle

References

  1. Rapamune®, an immunosuppressant, approved in 1999; Emend®, an anti-emetic, approved in 2003.

    Google Scholar 

  2. Abraxane®, albumin-bound paclitaxel, approved 2005; IT-101, a camptothecin bound cyclodextrin polymer, in clinical trials currently.

    Google Scholar 

  3. Ambisome®, approved in 1997, for fungal infections; Diprivan®, an anaesthetic approved in 1989; and Doxil® approved in 1995 for ovarian cancer.

    Google Scholar 

  4. Wagner V, et al. The emerging nanomedicine landscape. Nat Biotech. 2006;24(10):1211–7.

    Article  Google Scholar 

  5. Etheridge ML, et al. The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomedicine: Nanotechnol Biology Med. 2013;9(1):1–14.

    Article  Google Scholar 

  6. Venkatraman SS, et al. Polymer- and liposome-based nanoparticles in targeted drug delivery. Front Biosci (Schol Ed). 2010;2:801–14.

    Article  Google Scholar 

  7. Cegnar M, Kos J, Kristl J. Cystatin incorporated in poly(lactide-co-glycolide) nanoparticles: development and fundamental studies on preservation of its activity. Eur J Pharm Sci. 2004;22(5):357–64.

    Article  PubMed  Google Scholar 

  8. Quintanar-Guerrero D, et al. Preparation and characterization of nanocapsules from preformed polymers by a new process based on emulsification-diffusion technique. Pharm Res. 1998;15(7):1056–62.

    Article  PubMed  Google Scholar 

  9. Olson F, et al. Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes. Biochim Biophys Acta Biomembr. 1979;​557(1):9–23.

    Article  Google Scholar 

  10. Mayer LD, Bally MB, Cullis PR. Uptake of adriamycin into large unilamellar vesicles in response to a pH gradient. Biochim Biophys Acta Biomembr. 1986;​857(1):​123–6.

    Article  Google Scholar 

  11. Clerc S, Barenholz Y. Loading of amphipathic weak acids into liposomes in response to transmembrane calcium acetate gradients. Biochim Biophys Acta Biomembr. 1995;1240(2):257–65.

    Article  Google Scholar 

  12. Haran G, et al. Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases. Biochim Biophys Acta Biomembr. 1993;1151(2):201–15.

    Article  Google Scholar 

  13. Patri AK, Majoros IJ, Baker Jr JR. Dendritic polymer macromolecular carriers for drug delivery. Curr Opin Chem Biol. 2002;6(4):466–71.

    Article  PubMed  Google Scholar 

  14. Barenholz Y. Doxil® — the first FDA-approved nano-drug: lessons learned. J Control Release. 2012;​160(2):117–34.

    Article  PubMed  Google Scholar 

  15. Vaage J, et al. Therapy of human ovarian carcinoma xenografts using doxorubicin encapsulated in sterically stabilized liposomes. Cancer. 1993;72(12):​3671–5.

    Article  PubMed  Google Scholar 

  16. Papahadjopoulos D, et al. Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci. 1991;​88(24):​11460–4.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Myocet. Wikipedia; 2014. http://en.wikipedia.org/wiki/Myocet. [cited 2014 Jan 30].

  18. Ramesh R, et al. Successful treatment of primary and disseminated human lung cancers by systemic delivery of tumor suppressor genes using an improved liposome vector. Mol Ther. 2001;3(3):337–50.

    Article  PubMed  Google Scholar 

  19. 10Q Detective. Introgen therapeutics: empty promises for cancer patients and shareholders. Seeking alpha April 2007. http://seekingalpha.com/article/33114-introgen-therapeutics-empty-promises-for-cancer-patients-&-shareholders. [cited 2014 Jan 30].

  20. Xu L, et al. Fragment-targeted immunoliposomes for systemic gene delivery, U.S. Patent, Editor; 2009.

    Google Scholar 

  21. Venkatraman SS, et al. Micelle-like nanoparticles of PLA–PEG–PLA triblock copolymer as chemotherapeutic carrier. Int J Pharm. 2005;298(1):219–32.

    Article  PubMed  Google Scholar 

  22. Jie P, et al. Micelle-like nanoparticles of star-branched PEO–PLA copolymers as chemotherapeutic carrier. J Control Release. 2005;110(1):20–33.

    Article  PubMed  Google Scholar 

  23. Critical micelle concentration. Wikipedia; 2014. http://en.wikipedia.org/wiki/Critical_micelle_concentration. [cited 2014 30 January].

  24. Hamaguchi T, et al. NK105, a paclitaxel-incorporating micellar nanoparticle formulation, can extend in vivo antitumour activity and reduce the neurotoxicity of paclitaxel. Br J Cancer. 2005;92(7):1240–6.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Rowinsky EK, Donehower RC. Paclitaxel (Taxol). N Engl J Med. 1995;332(15):1004–14.

    Article  PubMed  Google Scholar 

  26. Hamaguchi T, et al. A phase I and pharmacokinetic study of NK105, a paclitaxel-incorporating micellar nanoparticle formulation. Br J Cancer. 2007;97(2):​170–6.

    Article  PubMed Central  PubMed  Google Scholar 

  27. A phase III study of NK105 in patients with breast cancer. ClinicalTrials.gov; 2012 http://clinicaltrials.gov/ct2/show/study/NCT01644890. [cited 2014 Jan 30].

  28. Kataoka K, et al. Polymeric micelle containing cisplatin enclosed therein and use thereof. 2003; US 2003/0170201 A1.

    Google Scholar 

  29. Pinzani V, et al. Cisplatin-induced renal toxicity and toxicity-modulating strategies: a review. Cancer Chemother Pharmacol. 1994;35(1):1–9.

    Article  PubMed  Google Scholar 

  30. Nishiyama N, et al. Novel cisplatin-incorporated polymeric micelles can eradicate solid tumors in mice. Cancer Res. 2003;63(24):8977–83.

    PubMed  Google Scholar 

  31. NC-6004 Nanoplatin™. NanoCarrier; 2013. http://www.nanocarrier.co.jp/en/research/pipeline/02.html. [cited 2014 Jan 30].

  32. Nakanishi T, et al. Development of the polymer micelle carrier system for doxorubicin. J Control Release. 2001;74(1–3):295–302.

    Article  PubMed  Google Scholar 

  33. Matsumura Y, et al. Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin. Br J Cancer. 2004;91(10):1775–81.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Tsukioka Y, et al. Pharmaceutical and biomedical differences between micellar doxorubicin (NK911) and liposomal doxorubicin (Doxil). Jpn J Cancer Res. 2002;93(10):1145–53.

    Article  PubMed  Google Scholar 

  35. Torchilin VP. Micellar nanocarriers: pharmaceutical perspectives. Pharm Res. 2007;24(1):1–16.

    Article  PubMed  Google Scholar 

  36. Allen C, et al. Polycaprolactone-b-poly(ethylene Oxide) block copolymer micelles as a novel drug delivery vehicle for neurotrophic agents FK506 and L-685,818. Bioconjug Chem. 1998;9(5):564–72.

    Article  PubMed  Google Scholar 

  37. Kim SY, et al. Methoxy poly(ethylene glycol) and ϵ-caprolactone amphiphilic block copolymeric micelle containing indomethacin: II. Micelle formation and drug release behaviours. J Control Release. 1998;51(1):13–22.

    Article  PubMed  Google Scholar 

  38. Gref R, et al. ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B Biointerfaces. 2000;18(3–4):301–13.

    Article  PubMed  Google Scholar 

  39. Ma LL, Jie P, Venkatraman SS. Block copolymer ‘stealth’ nanoparticles for chemotherapy: interactions with blood cells in vitro. Adv Funct Mater. 2008;​18(5):716–25.

    Article  Google Scholar 

  40. Xu P, et al. Highly stable core-surface-crosslinked nanoparticles as cisplatin carriers for cancer chemotherapy. Colloids Surf B Biointerfaces. 2006;48(1):​50–7.

    Article  PubMed  Google Scholar 

  41. Murakami H, et al. Preparation of poly(dl-lactide-co-glycolide) nanoparticles by modified spontaneous emulsification solvent diffusion method. Int J Pharm. 1999;187(2):143–52.

    Article  PubMed  Google Scholar 

  42. Beletsi A, et al. Simultaneous optimization of cisplatin-loaded PLGA-mPEG nanoparticles with regard to their size and drug encapsulation. Curr Nanosci. 2008;4(2):173–8.

    Article  Google Scholar 

  43. Desai MP, et al. Immune response with biodegradable nanospheres and alum: studies in rabbits using staphylococcal enterotoxin B-toxoid. J Microencapsul. 2000;17(2):215–25.

    Article  PubMed  Google Scholar 

  44. Cohen H, et al. Sustained delivery and expression of DNA encapsulated in polymeric nanoparticles. Gene Ther. 2000;7(22):1896–905.

    Article  PubMed  Google Scholar 

  45. Dunn SE, et al. In vitro cell interaction and in vivo biodistribution of poly(lactide-co-glycolide) nanospheres surface modified by poloxamer and poloxamine copolymers. J Control Release. 1997;44(1):​65–76.

    Article  Google Scholar 

  46. De Jaeghere F, et al. Formulation and lyoprotection of poly(lactic acid-co-ethylene oxide) nanoparticles: influence on physical stability and in vitro cell uptake. Pharm Res. 1999;16(6):859–66.

    Article  PubMed  Google Scholar 

  47. Gref R, et al. Biodegradable long-circulating polymeric nanospheres. Science. 1994;263(5153):​1600–3.

    Article  PubMed  Google Scholar 

  48. Peracchia MT, et al. Complement consumption by poly(ethylene glycol) in different conformations chemically coupled to poly(isobutyl 2-cyanoacrylate) nanoparticles. Life Sci. 1997;61(7):749–61.

    Article  PubMed  Google Scholar 

  49. Liang C, et al. Improved therapeutic effect of folate-decorated PLGA-PEG nanoparticles for endometrial carcinoma. Bioorg Med Chem. 2011;19(13):​4057–66.

    Article  PubMed  Google Scholar 

  50. Lasic DD. On the thermodynamic stability of liposomes. J Colloid Interface Sci. 1990;140(1):302–4.

    Article  Google Scholar 

  51. QLT shows positive efficacy trends from data in plug combinations in phase II studies for glaucoma using latanoprost punctual plug delivery system. QLT, Inc. http://www.qltinc.com/newsCenter/2012/121025.htm. [cited 2014 Jan 30].

  52. Michael Möller. In vitro and in vivo studies of polymeric micelles for ophthalmic applications. Universite de Geneve. http://www.unige.ch/sciences/pharm/f/la_section/docu/compet/51.pdf. [cited 2014 Jan 30].

  53. Natarajan JV, et al. Nanomedicine for glaucoma: liposomes provide sustained release of latanoprost in the eye. Int J Nanomedicine. 2012;7:123–31.

    PubMed Central  PubMed  Google Scholar 

  54. Natarajan JV, et al. Sustained drug release in nanomedicine: a long-acting nanocarrier-based formulation for glaucoma. ACS Nano. 2014;8(1):419–29.

    Article  PubMed  Google Scholar 

  55. Bourges JL, et al. Ocular drug delivery targeting the retina and retinal pigment epithelium using polylactide nanoparticles. Invest Ophthalmol Vis Sci. 2003;​44(8):3562–9.

    Article  PubMed  Google Scholar 

  56. Bochot A, Fattal E. Liposomes for intravitreal drug delivery: a state of the art. J Control Release. 2012;​161(2):628–34.

    Article  PubMed  Google Scholar 

  57. Petersen PE, et al. The global burden of oral diseases and risks to oral health. Bull World Health Organ. 2005;83(9):661–9.

    PubMed Central  PubMed  Google Scholar 

  58. Difference Between Periodontist & Endodontist. Intelligent Dental. http://www.intelligentdental.com/2011/10/24/difference-between-periodontist-endodontist/. [cited 2014 Jan 30].

  59. del Pozo JL, Patel R. The challenge of treating biofilm-associated bacterial infections. Clin Pharmacol Ther. 2007;82(2):204–9.

    Article  PubMed  Google Scholar 

  60. Álvarez AL, Espinar FO, Méndez JB. The application of microencapsulation techniques in the treatment of endodontic and periodontal diseases. Pharmaceutics. 2011;3(3):538–71.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Mundargi RC, et al. Nano/micro technologies for delivering macromolecular therapeutics using poly(D, L-lactide-co-glycolide) and its derivatives. J Control Release. 2008;125(3):193–209.

    Article  PubMed  Google Scholar 

  62. Srirangarajan S, et al. Randomized, controlled, single-masked, clinical study to compare and evaluate the efficacy of microspheres and gel in periodontal pocket therapy. J Periodontol. 2011;82(1):114–21.

    Article  PubMed  Google Scholar 

  63. Patel P, et al. Microencapsulation of doxycycline into poly(lactide-co-glycolide) by spray drying technique: Effect of polymer molecular weight on process parameters. J Appl Polym Sci. 2008;108(6):4038–46.

    Article  Google Scholar 

  64. Strom TA, et al. Endodontic release system for apexification with calcium hydroxide microspheres. J Dent Res. 2012;91(11):1055–9.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Socialstyrelsen, Editor. Release of nanoparticles from dental materials. Ministry of Health and Social Affair (Sweden): Stockholm; 2013. p. 14–5.

    Google Scholar 

  66. Chogle SM, et al. Preliminary evaluation of a novel polymer nanocomposite as a root-end filling material. Int Endod J. 2011;44(11):1055–60.

    Article  PubMed  Google Scholar 

  67. Kong M, et al. Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol. 2010;144(1):51–63.

    Article  PubMed  Google Scholar 

  68. Dung TH, et al. Chitosan-TPP nanoparticle as a release system of antisense oligonucleotide in the oral environment. J Nanosci Nanotechnol. 2007;7(11):​3695–9.

    Article  PubMed  Google Scholar 

  69. Moulari B, et al. Potentiation of the bactericidal activity of Harungana madagascariensis Lam. ex Poir. (Hypericaceae) leaf extract against oral bacteria using poly (D, L-lactide-co-glycolide) nanoparticles: in vitro study. Acta Odontol Scand. 2006;64(3):​153–8.

    Article  PubMed  Google Scholar 

  70. Pinon-Segundo E, et al. Preparation and characterization of triclosan nanoparticles for periodontal treatment. Int J Pharm. 2005;294(1–2):217–32.

    Article  PubMed  Google Scholar 

  71. Wilson M. Lethal photosensitisation of oral bacteria and its potential application in the photodynamic therapy of oral infections. Photochem Photobiol Sci. 2004;3(5):412–8.

    Article  PubMed  Google Scholar 

  72. Patel NB. Targeted methylene blue-containing polymeric nanoparticle formulations for oral antimicrobial photodynamic therapy. In: Bouvé College of Health Sciences. Department of Pharmaceutical Sciences. Northeastern University; 2009. p. 11.

    Google Scholar 

  73. Wilson M, Burns T, Pratten J. Killing of Streptococcus sanguis in biofilms using a light-activated antimicrobial agent. J Antimicrob Chemother. 1996;37(2):​377–81.

    Article  PubMed  Google Scholar 

  74. Dunne Jr WM, Mason Jr EO, Kaplan SL. Diffusion of rifampin and vancomycin through a Staphylococcus epidermidis biofilm. Antimicrob Agents Chemother. 1993;37(12):2522–6.

    Article  PubMed Central  PubMed  Google Scholar 

  75. Jung B-O, et al. Preparation of amphiphilic chitosan and their antimicrobial activities. J Appl Polym Sci. 1999;72(13):1713–9.

    Article  Google Scholar 

  76. Rabea EI, et al. Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules. 2003;4(6):1457–65.

    Article  PubMed  Google Scholar 

  77. Lovric J, et al. Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death. Chem Biol. 2005;12(11):1227–34.

    Article  PubMed  Google Scholar 

  78. Shrestha A, et al. Nanoparticulates for antibiofilm treatment and effect of aging on its antibacterial activity. J Endod. 2010;36(6):1030–5.

    Article  PubMed  Google Scholar 

  79. Jones MN, Kaszuba M. Polyhydroxy-mediated interactions between liposomes and bacterial biofilms. Biochim Biophys Acta. 1994;1193(1):48–54.

    Article  PubMed  Google Scholar 

  80. Jones MN, et al. The interaction of phospholipid liposomes with bacteria and their use in the delivery of bactericides. J Drug Target. 1997;5(1):25–34.

    Article  PubMed  Google Scholar 

  81. Paster BJ, et al. The breadth of bacterial diversity in the human periodontal pocket and other oral sites. Periodontol. 2000;2006(42):80–7.

    Google Scholar 

  82. Narayanan LL, Vaishnavi C. Endodontic microbiology. J Conserv Dent. 2010;13(4):233–9.

    Article  PubMed Central  PubMed  Google Scholar 

  83. Costerton JW, et al. Bacterial biofilms in nature and disease. Annu Rev Microbiol. 1987;41:435–64.

    Article  PubMed  Google Scholar 

  84. George S, Kishen A, Song KP. The role of environmental changes on monospecies biofilm formation on root canal wall by Enterococcus faecalis. J Endod. 2005;31(12):867–72.

    Article  PubMed  Google Scholar 

  85. Distel JW, Hatton JF, Gillespie MJ. Biofilm formation in medicated root canals. J Endod. 2002;28(10):​689–93.

    Article  PubMed  Google Scholar 

  86. Robinson AM, Creeth JE, Jones MN. The specificity and affinity of immunoliposome targeting to oral bacteria. Biochim Biophys Acta. 1998;1369(2):​278–86.

    Article  PubMed  Google Scholar 

  87. Neelakantan P, Subbarao CV. An analysis of the antimicrobial activity of ten root canal sealers–a duration based in vitro evaluation. J Clin Pediatr Dent. 2008;​33(2):117–22.

    PubMed  Google Scholar 

  88. Peters OA, Schonenberger K, Laib A. Effects of four Ni-Ti preparation techniques on root canal geometry assessed by micro computed tomography. Int Endod J. 2001;34(3):221–30.

    Article  PubMed  Google Scholar 

  89. Song CX, et al. Formulation and characterization of biodegradable nanoparticles for intravascular local drug delivery. J Control Release. 1997;43(2–3):​197–212.

    Article  Google Scholar 

  90. Labhasetwar V, et al. Arterial uptake of biodegradable nanoparticles: effect of surface modifications. J Pharm Sci. 1998;87(10):1229–34.

    Article  PubMed  Google Scholar 

  91. Guzman LA, et al. Local intraluminal infusion of biodegradable polymeric nanoparticles. A novel approach for prolonged drug delivery after balloon angioplasty. Circulation. 1996;94(6):1441–8.

    Article  PubMed  Google Scholar 

  92. Mundargi RC, et al. Development and evaluation of novel biodegradable microspheres based on poly(d, l-lactide-co-glycolide) and poly(epsilon-caprolactone) for controlled delivery of doxycycline in the treatment of human periodontal pocket: in vitro and in vivo studies. J Control Release. 2007;119(1):59–68.

    Article  PubMed  Google Scholar 

  93. Uchino H, Matsumara Y, Negishi T, et al. Cisplatin-incorporating polymeric micelles (NC-6004) can reduce nephrotoxicity and neurotoxicity of cisplastin in rats. Br J Cancer. 2005;93(6):678–87.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the School of Materials Science and Engineering, Nanyang Technological University for part of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subbu S. Venkatraman PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ng, X.W., Mundargi, R.C., Venkatraman, S.S. (2015). Nanomedicine: Size-Related Drug Delivery Applications, Including Periodontics and Endodontics. In: Kishen, A. (eds) Nanotechnology in Endodontics. Springer, Cham. https://doi.org/10.1007/978-3-319-13575-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13575-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13574-8

  • Online ISBN: 978-3-319-13575-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics