Skip to main content

Plant Response to UV-B: From Tolerance to Toxicity

  • Chapter
Stress Responses in Plants

Abstract

In higher plants, UV-B is known to have two very diverse effects: one in response to the evoked damage and the other in response to the perception of UV-B by postulated receptor, leading to UV-B-induced photomorphogenesis and thus acclimation. The UV-B-specific pathway involves the UVR8-COP1-HY5 pathway. The response depends on wavelength, fluence rate, and duration of the UV-B radiation as well as the extent of adaptation. On the other hand, the damage response pathway includes activation of more general stress responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albert KR, Mikkelsen TN, Ro-Poulsen H (2005) Effects of ambient versus reduced UV-B radiation on high arctic Salix arctica assessed by measurements and calculations of chlorophyll fluorescence transients. Physiol Plant 124:208–226

    Article  CAS  Google Scholar 

  • Allen DJ, NoguÕs S, Baker NR (1998) Ozone depletion and increased UV-B radiation: is there a real threat to photosynthesis? J Exp Bot 49(328):1775–1788

    CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • BallarÕ CL, Barnes PW, Flint SD (1995) Inhibition of hypocotyls elongation by ultraviolet-B radiation in de-etiolating. I. The photoreceptor. Physiol Plant 93:584–592

    Article  Google Scholar 

  • Barnes PW, Flint SD, Caldwell MM (1990) Morphological responses of crop and weed species of different growth forms to ultraviolet-B radiation. Am J Bot 77:1354–1360

    Article  Google Scholar 

  • Boccalandro HE, Mazza CA, Mazzella MA et al (2001) Ultraviolet B radiation enhances a phytochrome-B-mediated photomorphogenic response in Arabidopsis. Plant Physiol 126:780–788

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bornman JF, Reuber S, Cen Y-P et al (1997) Ultraviolet radiation as a stress factor and the role of protective pigments. In: Lumsden J (ed) Plants and UV-B: responses to environmental change. Cambridge University Press, Cambridge, pp 157–168

    Chapter  Google Scholar 

  • Britt AB (1999) Molecular genetics of DNA repair in higher plants. Trends Plant Sci 4:20–25

    Article  PubMed  Google Scholar 

  • Campi M, Andrea LD, Emiliani J et al (2012) Participation of chromatin remodeling proteins in the repair of UV-B damaged DNA. Plant Physiol 158(2):981–995

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Casati P, Walbot V (2004) Rapid transcriptome responses of maize (Zea mays) to UV-B in irradiated and shielded tissues. Genome Biol 5:R16

    Article  PubMed Central  PubMed  Google Scholar 

  • Casati P, Stapleton AE, Blum JE et al (2006) Genome-wide analysis of high-altitude maize and gene knockdown stocks implicates chromatin remodeling proteins in response to UV-B. Plant J 46:613–627

    Article  CAS  PubMed  Google Scholar 

  • Cen YP, Bornman JF (1993) The effect of exposure to enhanced UV-B radiation on the penetration of monochromatic and polychromatic UV-B radiation on leaves of Brassica napus. Physiol Plant 87:249–255

    Article  CAS  Google Scholar 

  • Cerovic ZG, Moise N, Agati G et al (2008) New portable optical sensors for the assessment of winegrape phenolic maturity based on berry fluorescence. J Food Compos Anal 21:650–654

    Article  CAS  Google Scholar 

  • Cheeseman JM (2006) Hydrogen peroxide concentrations in leaves under natural conditions. J Exp Bot 57:2435–2444

    Article  CAS  PubMed  Google Scholar 

  • Chen GX, Blubaugh DJ, Homann PH et al (1995) Superoxide contributes to the rapid inactivation of specific secondary donors of the photosystem II reaction center during photodamage of manganese-depleted photosystem II membranes. Biochemistry 34:2317–2332

    Article  CAS  PubMed  Google Scholar 

  • Cullighan K, Tissier A, Britt A (2004) ATR regulates a G2-phase cell-cycle checkpoint in Arabidopsis thaliana. Plant Cell 16(5):1091–1104

    Article  Google Scholar 

  • De Veylder L, JoubÃ’s J, InzÕ D (2003) Plant cell cycle transitions. Curr Opin Plant Biol 6:536–543

    Article  PubMed  Google Scholar 

  • Demmig-Adams B, Adams WW III (1996) Xanthophyll cycle and light stress in nature: uniform response to excess direct sun-light among higher plant species. Planta 198:460–470

    Article  CAS  Google Scholar 

  • Favory JJ, Stec A, Gruber H, Rizzini L et al (2009) Interaction of COP1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis. EMBO J 28:591–601

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Forster PM, Thompson DWJ, Baldwin MP et al (2011) Stratospheric changes and climate, Chapter 4. In: Scientific assessment of ozone depletion: 2010, Global Ozone Research and Monitoring Project–Report No. 52, 516pp, World Meteorological Organization, Geneva. ISBN:9966-7319-6-2

    Google Scholar 

  • Gounaris K, Barber J, Harwood JL (1986) The thylakoid membranes of higher-plant chloroplasts. Biochem J 237:313–326

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hada H, Hidema MM, Kumagai T (2003) Higher amount of anthocyanin and UV-B absorbing compounds effectively lowered CPD photorepair in purple rice (Oryza sativa L.). Plant Cell Environ 26:1691–1701

    Article  CAS  Google Scholar 

  • Hakala M, Tuominen I, Kerðnen M et al (2005) Evidence for the role of the oxygen-evolving manganese complex in photoinhibition of Photosystem II. Biochim Biophys Acta 1706:68

    Article  CAS  PubMed  Google Scholar 

  • Harvaux M, Kloppstech K (2001) The protective functions and carotenoid and flavonoid pigments against excess visible radiation at chilling temperature investigated in Arabidopsis npq and tt mutants. Planta 213:801–806

    Google Scholar 

  • Hase Y, Trung KH, Matsunaga T et al (2006) A mutation in the uvi4 gene promotes progression of endo-reduplication and confers increased tolerance towards ultraviolet B light. Plant J 46:317–326

    Article  CAS  PubMed  Google Scholar 

  • Hectors K, Prinsen E, De Coen W et al (2007) Arabidopsis thaliana plants acclimated to low dose rates of ultraviolet B radiation show specific changes in morphology and gene expression in the absence of stress symptoms. New Phytol 175:255–270

    Article  CAS  PubMed  Google Scholar 

  • Hectors K, Jacques E, Prinsen E et al (2010) UV radiation reduces epidermal cell expansion in leaves of Arabidopsis thaliana. J Exp Bot 61(15):4339–4349

    Article  CAS  PubMed  Google Scholar 

  • Hidema J, Kang HS, Kumagai T (1996) Differences in the sensitivity to UVB radiation of two cultivars of rice (Oryza sativa L.). Plant Cell Physiol 37:742–747

    Article  CAS  Google Scholar 

  • Hidema J, Kumagai T, Sutherland BM (2000) UV-radiation sensitive Norin 1 rice contains defective cyclobutane pyrimidine dimer photolyase. Plant Cell 12:1569–1578

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hofmann RW, Campbell BD, Bloor SJ et al (2003) Responses to UV-B radiation in Trifolium repens L.—physiological links to plant productivity and water availability. Plant Cell Environ 26:603–612

    Article  CAS  Google Scholar 

  • Holley SR, Yalamanchili RD, Moura DS et al (2003) Convergence of signaling pathways induced by systemin, oligosaccharide elicitors, and ultraviolet-B radiation at the level of mitogen-activated protein kinases in wild tomato suspension-cultured cells. Plant Physiol 132:1728–1738

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hopkins L, Bond MA, Tobin AK (2002) Ultraviolet-B radiation reduces the rates of cell division and elongation in the primary leaf wheat (Triticum aestivum L. cv Maris Huntsman). Plant Cell Environ 25:617–624

    Article  Google Scholar 

  • Ibdah M, Krins A, Seidlitz HK et al (2002) Spectral dependence of flavonol and betacyanin accumulation in Mesembryanthemum crystallinum under enhanced ultraviolet radiation. Plant Cell Environ 25:1145–1154

    Article  CAS  Google Scholar 

  • Izaguirre MM, Mazza CA, Svatos A et al (2007) Solar ultraviolet-B radiation and insect herbivory trigger partially overlapping phenolic responses in Nicotiana attenuata and Nicotiana longiflora. Ann Bot 99:103–109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jansen MAK, Noort RE, Tan MYA et al (2001) Phenol-oxidizing peroxidases contribute to the protection of plants from ultraviolet-B radiation stress. Plant Physiol 126:1012–1023

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jenkins GI (2009) Signal transduction in responses to UV-B radiation. Annu Rev Plant Biol 60:407–431

    Article  CAS  PubMed  Google Scholar 

  • Jenkins GI, Brown BA (2007) UV-B perception and signal transduction. In: Whitelam GC, Halliday KJ (eds) Light and plant development, vol 30. Blackwell, Oxford, pp 155–182

    Chapter  Google Scholar 

  • Jenkins GI, Long JC, Wade HK et al (2001) UV and blue light signaling: pathways regulating chalcone synthase gene expression in Arabidopsis. New Phytol 151:121–131

    Article  CAS  Google Scholar 

  • Jiang L, Wang Y, Bjorn LO et al (2011) UV-B-induced DNA damage mediates expression changes of cell cycle regulatory genes in Arabidopsis root tips. Planta 233:831–841

    Article  CAS  PubMed  Google Scholar 

  • Jordan BR, Chow WS, Strid A et al (1991) Reduction in Cab and psbA RNA transcripts in response to supplementary UV-B radiation. FEBS Lett 284:5–8

    Article  CAS  PubMed  Google Scholar 

  • Jordan BR, He J, Chow WS et al (1992) Changes in mRNA levels and polypeptide subunit of ribulose 1,5-bisphosphate carboxylase in response to supplemental UV-B radiation. Plant Cell Environ 15:91–98

    Article  CAS  Google Scholar 

  • JoubÃ’s J, Walsh D, Raymond P et al (2000) Molecular characterization of the expression of distinct classes of cyclins during the early development of tomato fruit. Planta 211:430–439

    Article  Google Scholar 

  • Kalbina I, Strid A (2006) Supplementary ultraviolet-B irradiation reveals differences in stress responses between Arabidopsis thaliana ecotypes. Plant Cell Environ 29:754–763

    Article  CAS  PubMed  Google Scholar 

  • Kim BC, Tennessen DJ, Last RL (1998) UV-B induced photomorphogenesis in Arabidopsis thaliana. Plant J 15:667–674

    Article  CAS  PubMed  Google Scholar 

  • Kimura S, Sakaguchi K (2006) DNA repair in plants. Chem Rev 106:753–766

    Article  CAS  PubMed  Google Scholar 

  • Kliebenstein DJ, Lim JE, Landry LG et al (2002) Arabidopsis UVR8 regulates ultraviolet-B signal transduction and tolerance and contains sequence similarity to human regulator of chromatin condensation 1. Plant Physiol 130:234–243

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krieger-Liszkay A (2005) Singlet oxygen production in photosynthesis. J Exp Bot 56:337

    Article  CAS  PubMed  Google Scholar 

  • Lake JA, Field KJ, Davey MP et al (2009) Metabolomic and physiological responses reveal multi-phasic acclimation of Arabidopsis thaliana to chronic UV radiation. Plant Cell Environ 232:1377–1389

    Article  Google Scholar 

  • Landry LG, Stapleton AE, Lin J et al (1997) An Arabidopsis photolyase mutant is hypersensitive to ultraviolet-B radiation. Proc Natl Acad Sci U S A 94:328–332

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lario LD, Ramirez-Parra E, Gutierrez C et al (2011) Regulation of plant MSH2 and MSH6 genes in the UV-B induced DNA damage response. J Exp Bot 62:2925–2937. doi:10.1093/jxb/err001

    Article  CAS  PubMed  Google Scholar 

  • Li J, Qu-Lee TM, Raba R et al (1993) Arabidopsis flavonoid mutants are hypersensitive to UVB irradiation. Plant Cell 5:171–179

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ling H, Boudsocg F, Plosky BS et al (2003) Replication of a cis-syn thymine dimer at atomic resolution. Nature 28:1083–1087

    Article  Google Scholar 

  • Liu L, Gitz DC III, McClure JW (1995) Effects of UV-B on flavonoids, ferulic acid, growth and photosynthesis in barley primary leaves. Physiol Plant 93:725–733

    Article  CAS  Google Scholar 

  • Liu Z, Hall JD, Mount DW (2001) Arabidopsis UVH3 gene is a homolog of Saccharomyces cerevisiae RAD2 and human XPG DNA repair genes. Plant J 26:329–338

    Article  CAS  PubMed  Google Scholar 

  • Liu N, Zhong NQ, Wang GL et al (2007) Cloning and functional characterization of PpDB F1 gene encoding a DRE binding transcription factor from Physcomitrella patens. Planta 226:827–838

    Article  CAS  PubMed  Google Scholar 

  • Lytvyn DI, Yemets AI, Blume YB (2010) UV-B overexposure induces programmed cell death in a BY-2 tobacco cell line. Environ Exp Bot 68:51–57

    Article  CAS  Google Scholar 

  • Mackerness SA-H, Jordan BR (1999) Changes in gene expression in response to UV-B induced stress. In: Pessarakli M (ed) Handbook of plant and crop stress. Marcel Dekker, New York, pp 749–768

    Chapter  Google Scholar 

  • Mackerness SA-H, John CF, Jordan B et al (2001) Early signaling components in ultraviolet-B responses: distinct roles for different reactive oxygen species and nitric oxide. FEBS Lett 489:237–242

    Article  CAS  Google Scholar 

  • McKenzie RL, Aucamp PJ, Bais AF et al (2011) Ozone depletion and climate change: impacts on UV radiation. Photochem Photobiol Sci 10:182–198

    Article  CAS  PubMed  Google Scholar 

  • Miyao M (1994) Involvement of active oxygen species in degradation of the D1 protein under strong illumination in isolated subcomplexes of photosystem II. Biochemistry 33:9722–9730

    Article  CAS  PubMed  Google Scholar 

  • Nakajima S, Sugiyama M, Iwai S et al (1998) Cloning and characterization of a gene (UVR3) required for photorepair of 6-4 photoproducts in Arabidopsis thaliana. Nucleic Acids Res 26:638–644

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nishitani K, Vissenberg K (2007) Roles of the XTH protein family in the expanding cell. In: Verbelen JP, Vissenberg K (eds) The expanding cell, vol 5, Plant cell monographs. Springer, Berlin, pp 89–116

    Chapter  Google Scholar 

  • NoguÕs S, Allen DJ, Morison JIL et al (1998) Ultraviolet-B radiation effects on water relations, leaf development, and photosynthesis in droughted pea plants. Plant Physiol 117:173–181

    Article  Google Scholar 

  • Ohnishi N, Allakhverden SI, Takahashi S et al (2005) Two-step mechanism of photodamage in photosystem II: step I occurs at the oxygen evolving complex and step 2 occurs at the photochemical reaction center. Biochemistry 44:8494–8499

    Article  CAS  PubMed  Google Scholar 

  • Ramel F, Birtic S, Ginies C et al (2012) Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants. Proc Natl Acad Sci U S A 109:5535–5540

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rizzini L, Favory JJ, Cloix C et al (2011) Perception of UV-B by the Arabidopsis UVR8 protein. Science 332:103–106

    Article  CAS  PubMed  Google Scholar 

  • Rousseaux MC, Julkunen-Tiitto R, Searles PS et al (2004) Solar UV-B radiation affects leaf quality and insect herbivory in the southern beech tree Nothofagus antarctica. Oecologia 138:505–512

    Article  PubMed  Google Scholar 

  • Sancar A (1994) Structure and function of DNA photolyase. Biochemistry 33:2–9

    Article  CAS  PubMed  Google Scholar 

  • Sancar A, Sancar GB (1988) DNA repair enzymes. Annu Rev Biochem 57:29–67

    Article  CAS  PubMed  Google Scholar 

  • Sato T, Kumagai T (1993) Cultivar differences in resistance to the inhibitory effects of near-UV radiation among Asian ecotype and Japanese lowland and upland cultivars of rice. Jpn J Breed 43:61–68

    Article  Google Scholar 

  • Schopfer P (1996) Hydrogen peroxidase-mediated cell-wall stiffening in vitro. Planta 199:43–49

    Article  CAS  Google Scholar 

  • Schulze-Lefert P, Becker-Andre M, Schulz W et al (1989) Functional architecture of the light responsive chalcone synthase and flavonoid end products in epidermal cells of parsley leaves. Proc Natl Acad Sci U S A 85:2989–2993

    Google Scholar 

  • Smith CA, Taylor JS (1993) Preparation and characterization of a set of deoxyoligonucleotide 49-mers containing site-specific cis-syn, trans-syn-I, (6-4), and Dewar photoproducts of thymidylyl(3′→5′)-thymidine. J Biol Chem 268:11143–11151

    CAS  PubMed  Google Scholar 

  • Stratmann JW (2003) Ultraviolet-B radiation co-opts defense signaling pathways. Trends Plant Sci 8(11):526–533

    Article  CAS  PubMed  Google Scholar 

  • Suesslin C, Frohnmeyer H (2003) An Arabidopsis mutant defective in UV-B light-mediated responses. Plant J 33:591–601

    Article  CAS  PubMed  Google Scholar 

  • Taylor JS, Brockie IR, O’Day CL (1987) A building block for the sequence-specific introduction of cis-syn thymine dimmers into oligonucleotides. Solid-phase synthesis of TpT[c, s]pTpT. J Am Chem Soc 109:6735–6742

    Article  CAS  Google Scholar 

  • Teranishi M, Iwamatsu Y, Hidema J et al (2004) Ultraviolet-B sensitivities in Japanese lowland rice cultivars: cyclobutane pyrimidine dimer photolyase activity and gene mutation. Plant Cell Physiol 45:1848–1856

    Article  CAS  PubMed  Google Scholar 

  • Tevini M, Teramura AH (1989) UV-B effects on terrestrial plants. Photochem Photobiol 50:479–487

    Article  CAS  Google Scholar 

  • Tohge T, Kusano M, Fukushima A et al (2011) Transcriptional and metabolic programs following exposure of plants to UV-B irradiation. Plant Signal Behav 6:1987–1992

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Triantaphylides C, Havaux M (2009) Singlet oxygen in plants: production, detoxification and signaling. Trends Plant Sci 14:219–228

    Article  CAS  PubMed  Google Scholar 

  • TriantaphylidÃ’s C, Krischke M, Hoeberichts FA et al (2008) Singlet oxygen is the major reactive oxygen species involved in photooxidative damage to plants. Plant Physiol 148:960–968

    Article  Google Scholar 

  • Tuteja N, Singh MB, Misra MK et al (2001) Molecular mechanisms of DNA damage and repair: progress in plants. Crit Rev Biochem Mol Biol 36:337–397

    Article  CAS  PubMed  Google Scholar 

  • Ulm R (2003) Molecular genetics of genotoxic stress signalling in plants. Topics Curr Genet 4:217–240

    Google Scholar 

  • Ulm R, Nagy F (2005) Signalling and gene regulation in response to ultraviolet light. Curr Opin Plant Biol 8:477–482

    Article  CAS  PubMed  Google Scholar 

  • Vandepoele K, Raes J, De Veylder L (2002) Genome-wide analysis of core cell cycle genes in Arabidopsis. Plant Cell 14:903–916

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vass I, Sass L, Spetea C et al (1996) UV-B induced inhibition of photosystem II electron transport studied by ESR and chlorophyll fluorescence. Impairment of donor and acceptor side components. Biochemistry 35:8964–8973

    Article  CAS  PubMed  Google Scholar 

  • Vlieghe K, Inze D, de Veylder L (2007) Physiological relevance and molecular control of the endocycle in plants. In: InzÕ D (ed) Cell cycle control and plant development, vol 32, Annual plant reviews. Wiley-Blackwell, Oxford, pp 227–248

    Chapter  Google Scholar 

  • Wagner D, Przyloyla D, Op den Camp R et al (2004) The genetic basis of singlet oxygen-induced stress responses of Arabidopsis thaliana. Science 306:1183–1185

    Article  CAS  PubMed  Google Scholar 

  • Wargent JJ, Gegas VC, Jenkins GI et al (2009) UVR8 in Arabidopsis thaliana regulates multiple aspects of cellular differentiation during leaf development in response to ultraviolet B radiation. New Phytol 183:315–326

    Article  CAS  PubMed  Google Scholar 

  • Wilson MI, Greenberg BM (1993) Protection of the D1 photosystem II reaction center protein from degradation in ultraviolet radiation following adaptation of Brassica napus L. to growth in ultraviolet-B. Photochem Photobiol 57:556–563

    Article  CAS  Google Scholar 

  • Wu D, Hu Q, Yan Z et al (2012) Structural basis of ultraviolet-B perception by UVR8. Nature 484:214–218

    Article  PubMed  Google Scholar 

  • Yang HQ, Tang RH, Cashmore AR (2001) The signaling mechanism of Arabidopsis CRY1 involves direct interaction with COP1. Plant Cell 13:2573–2587

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Authors are thankful to Head, Department of Botany; CSIR and UGC. The authors are also thankful to Department of Science and Technology, New Delhi, for providing financial assistance to Suruchi Singh as a young scientist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Agrawal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Singh, S., Agrawal, S.B., Agrawal, M. (2015). Plant Response to UV-B: From Tolerance to Toxicity. In: Tripathi, B., Müller, M. (eds) Stress Responses in Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-13368-3_8

Download citation

Publish with us

Policies and ethics