Skip to main content

Response of Wheat Seedlings to Combined Effect of Drought and Salinity

  • Chapter
Stress Responses in Plants

Abstract

In field conditions the plants are most commonly subjected to simultaneous effects of multiple stresses. The mechanisms of plant tolerance to salinity and drought are physiologically connected and overlapping, but some aspects of physiology and metabolism may differ when in the experiment salt and water stress is used separately or both stresses are used simultaneously. Physiological and biochemical reactions of the plants under combined effect of the drought and salinity are unique, which cannot be directly extrapolated from respective responses to each of these stresses individually. Drought and salinity reduce individually the availability of water for plants. However, the presence of salt in the soil inhibits the rate of the development of drought, enabling the plant to survive in unfavorable period of short-term drought without violation of basic physiological functions. At increased NaCl concentration in the soil during the combined stress, basic physiological and biochemical functions of the plants remain constant until a critical threshold, after which the plants’ productivity decreases dramatically. This article shows the features of the combined stress and its difference from the drought and salinity individually.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CAT:

Catalase

DAE:

Days after emergence

DAT:

Days after treatment

DW:

Dry weight

MDA:

Malondialdehyde

PEG:

Polyethylene glycol

POD:

Peroxidase

ROS:

Reactive oxygen species

RWCL :

Relative water content of leaves

RWCS :

Relative water content of soil

SOD:

Superoxide dismutase

References

  • Ahmed IM, Dai H, Zheng W, Cao F, Zhang G, Sun D, Wu F (2013) Genotypic differences in physiological characteristics in the tolerance to drought and salinity combined stress between Tibetan wild and cultivated barley. Plant Physiol Biochem 63:49–60

    CAS  PubMed  Google Scholar 

  • Alian A, Altaian A, Heuer B (2000) Genotypic difference in salinity and water stress tolerance of fresh market tomato cultivars. Plant Sci 152:59–65

    CAS  Google Scholar 

  • Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, Maclean DJ, Ebert PR, Kazan K (2004) Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 16:3460–3479

    PubMed Central  CAS  PubMed  Google Scholar 

  • Araus JL (2004) The problem of sustainable water use in the Mediterranean and research requirements for agriculture. Ann Appl Biol 144:259–272

    Google Scholar 

  • Araus JL, Slafer GA, Reynolds MP, Royo C (2002) Plant breeding and water relations in C3 cereals: what should we breed for? Ann Bot 89:925–940

    PubMed Central  PubMed  Google Scholar 

  • Araus JL, Slafer GA, Royo C, Serret MD (2008) Breeding for yield potential and stress adaptation in cereals. Crit Rev Plant Sci 27:377–412

    Google Scholar 

  • Asada K (1999) The water–water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    CAS  PubMed  Google Scholar 

  • Ashraf M (2001) Relationships between growth and gas exchange characteristics in some salt-tolerant amphidiploid Brassica species in relation to their diploid parents. Environ Exp Bot 45:155–163

    PubMed  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:207–216

    Google Scholar 

  • Atreya A, Vartak V, Bhargava S (2009) Salt priming improves tolerance to desiccation stress and to extreme salt stress in Bruguiera cylindrica. Int J Integr Biol 6:68–73

    CAS  Google Scholar 

  • Badawi GH, Kawano N, Yamauchi Y, Shimada E, Sasaki R, Kubo A, Tanaka K (2004) Over-expression of ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water deficit. Physiol Plant 121:231–238

    CAS  PubMed  Google Scholar 

  • Blum A (1996) Constitutive traits affecting plant performance under stress. In: Edmeades GO, Benziger M, Mickelson HR, Pena-Valdivia CB (eds) Developing drought and low N tolerant maize. CIMMYT El-Batan, Mexico DF, pp 131–135

    Google Scholar 

  • Blum A, Ebrecon A (1981) Cell membrane stability as measure of drought and heat tolerance in wheat. Crop Sci 21:43–47

    Google Scholar 

  • Boggess SF, Stewart CR (1976) Contribution of arginine on proline accumulation in water stressed barley leaves. Plant Physiol 58:796–797

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7:1099–1111

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bowler C, Fluhr R (2000) The role of calcium and activated oxygens as signals for controlling cross-tolerance. Trends Plant Sci 5:241–246

    CAS  PubMed  Google Scholar 

  • Brown CE, Pezeshki SR (2007) Threshold for recovery in the marsh halophyte Spartina alterniflora grown under the combined effects of salinity and soil drying. J Plant Physiol 164:274–282

    CAS  PubMed  Google Scholar 

  • Brugnoli E, Bjorkman O (1992) Growth of cotton under continuous salinity stress: influence on allocation pattern, stomatal conductance and non-stomatal components of photosynthesis and dissipation of excess light energy. Planta 187:335–347

    CAS  PubMed  Google Scholar 

  • Cardinale F, Meskiene I, Ouaked F, Hirt H (2002) Convergence and divergence of stress-induced mitogen-activated protein kinase signaling pathways at the level of two distinct mitogen-activated protein kinase kinases. Plant Cell 14:703–711

    PubMed Central  CAS  PubMed  Google Scholar 

  • Casal JJ (2002) Environmental cues affecting development. Curr Opin Plant Biol 5:37–42

    PubMed  Google Scholar 

  • Ceccarelli S, Grando S, Baum M, Udupa SM (2004) Breeding for drought resistance in a changing climate. In: Backer FWG (ed) Drought resistance in cereals. CAB Int. Publishing, Wallingford, pp 167–190

    Google Scholar 

  • Chandler SF, Thrope TA (1987) Characterization of growth, water relations and proline accumulation in sodium sulfate tolerant callus of Brassica napus L. cv. Westar (canola). Plant Physiol 84:106–111

    PubMed Central  CAS  PubMed  Google Scholar 

  • Charest C, Pan CT (1990) Cold acclimation of wheat (Triticum aestivum): properties of enzymes involved in proline metabolism. Physiol Plant 80:159–168

    CAS  Google Scholar 

  • Cha-um S, Kirdmanee C (2009) Proline accumulation, photosynthetic abilities and growth characters of sugarcane (Saccharum officinarum L.) plantlets in response to iso-osmotic salt and water-deficit stress. Agric Sci China 8:51–58

    CAS  Google Scholar 

  • Chavan PD, Karadge BB (1986) Growth mineral nutrition, organic constituents and rate of photosynthesis in Sesbania grandiflora grown under saline conditions. Plant Soil 92:395–404

    Google Scholar 

  • Chaves MM, Oliveira MM (2004) Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot 55:2365–2384

    CAS  PubMed  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cheeseman JM (1998) Mechanisms of salinity tolerance in plants. Plant Physiol 87:547–550

    Google Scholar 

  • Chen L, Zhang S, Zhao H, Korpelainen H, Li C (2010) Sex-related adaptive responses to interaction of drought and salinity in Populus yunnanensis. Plant Cell Environ 33:1767–1778

    CAS  PubMed  Google Scholar 

  • Cheong YH, Chang HS, Gupta R, Wang X, Zhu T, Luan S (2002) Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol 129:661–677

    PubMed Central  CAS  PubMed  Google Scholar 

  • Clark H, Newton PCD, Barker DJ (1999) Physiological and morphological responses to elevated CO2 and a soil moisture deficit of temperate pasture species growing in an established plant community. J Exp Bot 50:233–242

    CAS  Google Scholar 

  • Colmer TD, Fan TWM, Higashi RM, Läuchli A (1994) Interactions of Ca2+ and NaCl stress on the relations and intracellular pH of Sorghum bicolor root tips: an in vivo 31P NMR study. J Exp Bot 45:1037–1044

    CAS  Google Scholar 

  • Cramer G, Bowman D (1991) Short-term leaf elongation kinetics of maize in response to salinity are independent of the root. Plant Physiol 95:965–967

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dalton FN, Poss JA (1989) Water transport and salt loading: a unified concept of plant response to salinity. Acta Hortic 278:187–193

    Google Scholar 

  • Dalton FN, Maggio A, Piccinni G (1997) Effect of root temperature on plant response functions for tomato: comparison of static and dynamic salinity stress indices. Plant Soil 192:307–319

    CAS  Google Scholar 

  • Dalton FN, Maggio A, Piccinni G (2001) Assessing the affect of solar radiation on plant salt tolerance using static and dynamic salinity stress indices. Plant Soil 229:189–195

    CAS  Google Scholar 

  • Dang YP, Dalal RC, Mayer DG, McDonald M, Routley R, Schwenke GD, Buck SR, Daniells IG, Singh DK, Manning W, Ferguson N (2008) High subsoil chloride concentrations reduce soil water extraction and crop yield on Vertisols in north-eastern Australia. Aust J Agric Res 59:321–330

    CAS  Google Scholar 

  • De Herralde F, Biel C, Savй R, Morales MA, Torrecillas A, Alarcуn JJ, Sánchez-Bianco MJ (1998) Effect of water and salt stresses on the growth, gas exchange and water relations in Argyranthemum coronopifolium plants. Plant Sci 139:9–17

    Google Scholar 

  • De Pascale S, Ruggiero C, Barbieri G, Maggio A (2003) Physiological responses of pepper to salinity and drought. J Am Soc Hortic Sci 128:48–54

    Google Scholar 

  • Delledonne M, Xia Y, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394:585–588

    CAS  PubMed  Google Scholar 

  • Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135:1–9

    CAS  Google Scholar 

  • Dix PJ, Pearce RS (1981) Proline accumulation in NaCl-resistant and sensitive cell lines of Nicotiana sylvestris. Physiologie 102:243–248

    CAS  Google Scholar 

  • Ebenhardt HJ, Wegmann K (1989) Effects of abscisic acid and proline adaptation of tobacco callus cultures to salinity and osmotic shock. Physiol Plant 76:283–288

    Google Scholar 

  • Erdei L, Kuiper PJC (1979) The effect of salinity on growth, cation content, Na-uptake and translocation in salt-sensitive and salt-tolerantPlantago species. Physiol Plant 47:95–99

    CAS  Google Scholar 

  • Errabii T, Gandonou CB, Essalmani H, Abrini J, Idaomar M, Senhaji NS (2007) Effect of NaCl and mannitol induced stress on sugarcane (Saccharum sp.) callus cultures. Acta Physiol Plant 29:95–102

    CAS  Google Scholar 

  • Everard JD, Gucci R, Kahn SC, Flore JA, Loescher WH (1994) Gas exchange and carbon partitioning in the leaves of celery (Apium graveolens L.) at various levels of root zone salinity. Plant Physiol 106:281–292

    PubMed Central  CAS  PubMed  Google Scholar 

  • Farooq S, Azam F (2002) Co-existence of salt and drought tolerance in Triticeae. Hereditas 135:205–210

    Google Scholar 

  • Farooq S, Niazi MLK, Iqbal N, Shah TM (1989) Salt tolerance potential of wild resources of the tribe Triticeae—II. Screening of species of genus Aegilops. Plant Soil 119:255–260

    CAS  Google Scholar 

  • Farquhar GD, Sharkey TD (1982) Stomatal conductance and photosynthesis. J Annu Rev Plant Physiol 33:317–345

    CAS  Google Scholar 

  • Feddes RE, Bresler E, Neuman AP (1974) Field test of a modified numerical model for water uptake by root systems. Water Resour Res 9:1199–1206

    Google Scholar 

  • Flanagan LB, Jefferies RL (1989) Effect of increased salinity of carbon dioxide assimilation, oxygen evolution and the isotopic ratio values of leaves of Plantago maritima L. developed at low and high sodium chloride. Planta 178:377–384

    CAS  PubMed  Google Scholar 

  • Flexas J, Bota J, Loreto F, Cornic G, Sharkey TD (2004) Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol 6:269–279

    CAS  PubMed  Google Scholar 

  • Flowers TJ, Yeo AR (1986) Ion relations of plants under drought and salinity. Aust J Plant Physiol 13:75–91

    CAS  Google Scholar 

  • Flowers TJ, Yeo AR (1995) Breeding for salinity tolerance in crop plants: where next? Aust J Plant Physiol 22:875–884

    Google Scholar 

  • Flowers TJ, Troke PF, Yeo AR (1977) The mechanism of salt tolerance in halophytes. Annu Rev Plant Physiol 28:89–121

    CAS  Google Scholar 

  • Flowers TJ, Hajibagheri MA, Yeo AR (1991) Ion accumulation in the cell walls of rice plants growing under saline conditions: evidence for the Oertli hypothesis. Plant Cell Environ 14:319–325

    Google Scholar 

  • Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JD, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446

    CAS  PubMed  Google Scholar 

  • Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690

    PubMed Central  CAS  PubMed  Google Scholar 

  • Francois LE, Maas EV (1999) Crop response and management of salt-affected soils. In: Pessarakli M (ed) Handbook of plant and crop stress. Marcel Dekker Inc., New York, pp 169–201

    Google Scholar 

  • Glenn E, Pfister R, Brown J, Thompson T, O’Leary J (1996) Na and K accumulation and salt tolerance of Atriplex canescens (Chenopodiaceae) genotypes. Am J Bot 83:997–1005

    CAS  Google Scholar 

  • Glenn E, Brown J (1998) Effects of soil salt levels on the growth and water use efficiency of Atriplex canescens (Chenopodiaceae) varieties in drying soil. Am J Bot 85:10–16

    Google Scholar 

  • Gossett DR, Millhollon EP, Lucas MC, Banks SW, Marney MM (1994) The effects of NaCl on antioxidant enzyme activities in callus tissue of salt-tolerant and salt sensitive cultivars (Gossypium hirsutum L.). Plant Cell Rep 13:498–503

    CAS  PubMed  Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol 31:149–190

    CAS  Google Scholar 

  • Grewal HS (2010) Response of wheat to subsoil salinity and temporary water stress at different stages of the reproductive phase. Plant Soil 330:103–113

    Google Scholar 

  • Hamdy A, Ragab R, Scarascia-Mugnozza E (2003) Coping with water scarcity: water saving and increasing water productivity. Irrig Drain 52:3–20

    Google Scholar 

  • Handa S, Bressan RA, Handa AK, Carpita NC, Hasegawa PM (1983) Solutes contributing to osmotic adjustment in cultured plant cells adapted to water stress. Plant Physiol 73:834–843

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    CAS  PubMed  Google Scholar 

  • Havaux M (1998) Carotenoids as membrane stabilizer in chloroplasts. Trends Plant Sci 3:147–151

    Google Scholar 

  • Herbers K, Sonnewald U (1998) Molecular determinants of sink strength. Curr Opin Plant Biol 1:207–216

    CAS  PubMed  Google Scholar 

  • Hernandez JA, Jimenez A, Mullineaux P, Sevilia F (2000) Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defense. Plant Cell Environ 23:853–862

    CAS  Google Scholar 

  • Hirel B, Le Gouis J, Ney B, Gallais A (2007) The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. J Exp Bot 58:2369–2387

    CAS  PubMed  Google Scholar 

  • Hsiao TC (1973) Plant response to water stress. Annu Rev Plant Physiol 24:519–570

    CAS  Google Scholar 

  • Iqbal MS, Naseem A, Mehmood K, Akhter J (2001) Comparative performance of wheat (Triticum aestivum) under salinity stress. II. Ionic composition. J Biol Sci 2:43–45

    Google Scholar 

  • James RA, Von Caemmerer S, Condon AG, Zwart AB, Munns R (2008) Genetic variation in tolerance to the osmotic stress component of salinity stress in durum wheat. Funct Plant Biol 35:111–123

    CAS  Google Scholar 

  • Jensen CR (1981) Influence of water and salt stress on water relationships and carbon dioxide exchange of top and roots in beans. New Phytol 87:285–295

    CAS  Google Scholar 

  • Joo JH, Bae YS, Lee JS (2001) Role of auxin-induced reactive oxygen species in root gravitropism. Plant Physiol 126:1055–1060

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kandpal RP, Vaidyanathan CS, Udayakumar M, Krisnasastri KS, Appaji-Rao N (1981) Alteration in the activities of the enzyme of proline metabolism in ragi (Eleusine coracana) leaves during water stress. J Biosci 3:361–369

    CAS  Google Scholar 

  • Katerji N (1990) Use of simulation methods for determining critical leaf water potential for stomatal closure in field conditions. Ecol Modell 50:133–144

    Google Scholar 

  • Katerji N, van Hoorn JW, Hamdy A, Mastrorilli M (2003) Salinity effect on crop development and yield analysis of salt tolerance according to several classification methods. Agric Water Manage 62:37–66

    Google Scholar 

  • Katerji N, Mastrorilli M, van Horn JW, Lahmer FZ, Hamdy A, Oweis T (2009) Durum wheat and barley productivity in saline-drought environments. Eur J Agron 31:1–9

    Google Scholar 

  • Katerji N, Mastrorilli M, Lahmerc FZ, Maaloufd F, Oweis T (2011) Faba bean productivity in saline―drought conditions. Eur J Agron 35:2–12

    Google Scholar 

  • Kohl DH, Lin JJ, Shearer G, Scubert KR (1990) Activities of the pentose pathway and enzymes of proline metabolism in legume root nodules. Plant Physiol 94:1258–1264

    PubMed Central  CAS  PubMed  Google Scholar 

  • Koyro HW (2000) Effect of high NaCl-salinity on plant growth, leaf morphology, and ion composition in leaf tissues of Beta vulgaris ssp. maritima. J Appl Bot 74:67–73

    CAS  Google Scholar 

  • Koyro HW (2003) Study of potential cash crop halophytes in a quick check system task. Veg Sci 38:5–17

    Google Scholar 

  • Koyro HW (2006) Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.). Environ Exp Bot 56:136–146

    CAS  Google Scholar 

  • Koyro HW, Stelzer R (1988) Ion concentrations in the cytoplasms and vacuoles of rhizodermis cells from NaCl treated Sorghum, Spartina and Puccinellia plants. J Plant Physiol 133:441–446

    CAS  Google Scholar 

  • Kreps JA, Wu Y, Chang H-S, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol 130:2129–2141

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JD, Schroeder JI (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signalling in Arabidopsis. EMBO J 22:2623–2633

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kwon SY, Jeong YJ, Lee HS, Kim JS, Cho KY, Allen RD, Kwak SS (2002) Enhanced tolerances of transgenic tobacco plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against methyl viologen-mediated oxidative stress. Plant Cell Environ 25:873–882

    Google Scholar 

  • Laloi C, Apel K, Danon A (2004) Reactive oxygen signalling: the latest new. Curr Opin Plant Biol 7:323–328

    CAS  PubMed  Google Scholar 

  • Lee YP, Baek KH, Lee HS, Kwak SS, Bang JW, Kwon SY (2010) Tobacco seeds simultaneously over-expressing Cu/Zn superoxide dismutase and ascorbate peroxidase display enhanced seed longevity and germination rates under stress conditions. J Exp Bot 61:2499–2506

    PubMed Central  CAS  PubMed  Google Scholar 

  • LeRudulier D, Strom AR, Dandekar AM, Smith LT, Valentine RC (1984) Molecular biology of osmoregulation. Science 224:1064–1068

    CAS  Google Scholar 

  • Liszkay A, van der Zalm E, Schopfer P (2004) Production of reactive oxygen intermediates (O2ˉ·), H2O2, and · OH by maize roots and their role in wall loosening and elongation growth. Plant Physiol 136:3114–3123

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu F, Stützel H (2002) Leaf water relations of vegetable amaranth (Amaranthus spp.) in response to soil drying. Eur J Agron 16:137–150

    Google Scholar 

  • Lu C, Jiang G, Wang B, Kuang T (2003) Photosystem II photochemistry and photosynthetic pigment composition in salt-adapted halophyte Artimisia anethifolia grown under outdoor conditions. J Plant Physiol 160:403–408

    CAS  PubMed  Google Scholar 

  • Maas EV, Grattan SR (1999) Crop yields as affected by salinity. In: Skaggs RW, van Schilfgaarde J (eds) Agricultural drainage. Agron Monogr No. 38. Amer Soc Agron, Madison, pp 55–108

    Google Scholar 

  • Maas EV, Hoffmann GJ (1977) Crop salt tolerance-current assessment. J Irrig Drain Div ASCE 103:115–134

    Google Scholar 

  • Madan S, Nainawatee HS, Jain RK, Chowdhury JB (1995) Proline and proline metabolizing enzymes in in vitro selected NaCl tolerant Brassica juncea L. under salt stress. Ann Bot 76:51–57

    CAS  Google Scholar 

  • Maggio A, Dalton FN, Piccinni G (2002) The effects of elevated carbon dioxide on static and dynamic indices for tomato salt tolerance, water use efficiency, root-shoot ratio and leaf chloride accumulation. Eur J Agron 16:197–206

    CAS  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stress: an overview. Arch Biochem Biophys 444:139–158

    CAS  PubMed  Google Scholar 

  • Martínez JP, Lutts S, Schanck A, Bajji M, Kinet JM (2004) Is osmotic adjustment required for water-stress resistance in the Mediterranean shrub Atriplex halimus L.? J Plant Physiol 161:1041–1051

    PubMed  Google Scholar 

  • Martínez JP, Kinet JM, Bajji M, Lutts S (2005) NaCl alleviates polyethylene glycol induced water stress in the halophyte species Atriplex halimus L. J Exp Bot 56:2421–2431

    PubMed  Google Scholar 

  • Martinez-Ballesta MC, Martinez V, Carvajal M (2004) Osmotic adjustment, water relations and gas exchange in pepper plants grown under NaCl and KCl. Environ Exp Bot 52:161–174

    CAS  Google Scholar 

  • McKersie BD, Bowley SR, Jones KS (1999) Winter survival of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol 119:839–848

    PubMed Central  CAS  PubMed  Google Scholar 

  • McNaughton S (1991) Dryland herbaceous perennials. In: Mooney H, Winner W, Pell E (eds) Response of plants to multiple stresses. Academic, New York, pp 307–328

    Google Scholar 

  • Meloni DA, Oliva MA, Martinez CA, Cambraia J (2003) Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione in cotton under salt stress. Environ Exp Bot 49:69–76

    CAS  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19

    CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) The reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    CAS  PubMed  Google Scholar 

  • Mohamed R, Meilan R, Ostry ME, Michler CH, Strauss SH (2001) Bacterio-opsin gene overexpression fails to elevate fungal disease resistance in transgenic poplar (Populus). Can J For Res 31:268–275

    CAS  Google Scholar 

  • Mohammadkhani N, Heidari R (2008) Water stress induced stomatal closure in two maize cultivars. Res J Biol Sci 3:750–754

    Google Scholar 

  • Moorthy P, Kathiresan K (1999) Effects of UV-B radiation on photosynthetic reactions in Rhizophora apiculata. Plant Growth Regul 28:49–54

    CAS  Google Scholar 

  • Mudrik V, Kosobrukhov A, Knyazeva I, Pigulevskaya T (2003) Changes in the photosynthetic characteristics of Plantago major plants caused by soil drought stress. Plant Growth Regul 40:1–6

    CAS  Google Scholar 

  • Mühling KH, Läuchli A (2002) Effect of salt stress on growth and cation compartmentation in leaves of two plant species differing in salt tolerance. J Plant Physiol 159:137–146

    Google Scholar 

  • Munné-Bosch S, Alegre L (2004) Die and let live: leaf senescence contributes to plant survival under drought stress. Funct Plant Biol 31:203–216

    Google Scholar 

  • Munns R (1993) Physiological process limiting plant growth in saline soils: some dogmas and hypotheses. Plant Cell Environ 16:15–24

    CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    CAS  PubMed  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    CAS  PubMed  Google Scholar 

  • Munns R, Termaat A (1986) Whole plant response to salinity. Aust J Plant Physiol 13:143–160

    Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    CAS  PubMed  Google Scholar 

  • Munns R, Hare RA, James RA, Rebetzke GJ (2000a) Genetic variation for improving the salt tolerance of durum wheat. Aust J Agric Res 51:69–74

    CAS  Google Scholar 

  • Munns R, Passioura JB, Guo J, Chazen O, Cramer GR (2000b) Water relations and leaf expansion: importance of time scale. J Exp Bot 51:1495–1504

    CAS  PubMed  Google Scholar 

  • Munns R, James RA, Sirault XRR, Furbank RT, Jones HG (2010) New phenotyping methods for screening wheat and barley for beneficial responses to water deficit. J Exp Bot 61:3499–3507

    CAS  PubMed  Google Scholar 

  • Muranaka S, Shimizu K, Kato M (2002) Ionic and osmotic effects of salinity on single-leaf photosynthesis in two wheat cultivars with different drought tolerance. Photosynthetica 40:201–207

    CAS  Google Scholar 

  • Naik CR, Joshi CL (1983) Ineffectual role of proline metabolism in salt stressed sugar cane leaves. Proc Indian Acad Sci 92:265–269

    CAS  Google Scholar 

  • Nielsen DL, Brock MA (2009) Modified water regime and salinity as a consequence of climate change: prospects for wetlands of Southern Australia. Clim Change 95:523–533

    CAS  Google Scholar 

  • Omami EN, Hammes PS (2006) Interactive effects of salinity and water stress on growth, leaf water relations, and gas exchange in amaranth (Amaranthus spp.). N Z J Crop Hortic Sci 34:33–44

    Google Scholar 

  • Orozco-Cárdenas ML, Narváez-Vásquez J, Ryan CA (2001) Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell 13:179–191

    PubMed Central  PubMed  Google Scholar 

  • Ouerghi Z, Cornic G, Roudani M, Ayadi A, Brulfert J (2000) Effect of NaCl on photosynthesis of two wheat species (Triticum durum and T. aestivum) differing in their sensitivity to salt stress. J Plant Physiol 156:335–340

    CAS  Google Scholar 

  • Overmyer K, Broschè M, Kangasjärvi J (2003) Reactive oxygen species and hormonal control of cell death. Trends Plant Sci 8:335–342

    CAS  PubMed  Google Scholar 

  • Pandey R, Agarwal RM, Jeevaratnam K, Sharma GL (2004) Osmotic stress-induced alterations in rice (Oryza sativa L.) and recovery on stress release. Plant Growth Regul 42:79–87

    CAS  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    CAS  PubMed  Google Scholar 

  • Passioura JB (1996) Drought and drought tolerance. Plant Growth Regul 20:79–83

    CAS  Google Scholar 

  • Passioura JB, Munns R (2000) Rapid environmental changes that affect leaf water status induce transient surges or pauses in leaf expansion rate. Aust J Plant Physiol 27:941–948

    Google Scholar 

  • Pei ZM, Murata Y, Benning G, Thomine S, Klusener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406:731–734

    CAS  PubMed  Google Scholar 

  • Pérez-Alfocea F, Estañ MT, Caro M, Guerrier G (1993) Osmotic adjustment in Lycopersicon esculentum and L. pennellii under NaCl and polyethylene glycol 6000 iso-osmotic stresses. Physiol Plant 87:493–498

    Google Scholar 

  • Pérez-López U, Robredo A, Lacuesta M, Mena-Petite A, Muñoz-Rueda A (2012) Elevated CO2 reduces stomatal and metabolic limitations on photosynthesis caused by salinity in Hordeum vulgare. Photosynth Res 111:1–15

    Google Scholar 

  • Pérez-Pérez JG, Syvertsen JP, Botia P, García-Sánchez F (2007) Leaf water relations and net gas exchange responses of salinized carrizo citrange seedlings during drought stress and recovery. Ann Bot 100:335–345

    PubMed Central  PubMed  Google Scholar 

  • Pitman MG (1988) Whole plants. In: Baker DA, Hall JL (eds) Solute transport in plant cells and tissues. Longman, Harlow, pp 346–391

    Google Scholar 

  • Plas FS, Elmayan T, Blein JP (2002) The plasma membrane oxidase NtrbohD is responsible for AOS production in elicited tobacco cells. Plant J 31:137–147

    Google Scholar 

  • Premachandra GS, Saneoka H, Ogta S (1989) Nutrio-physiological evaluation of the polyethylene glycol test of cell membrane stability in maize. Crop Sci 29:1292–1297

    Google Scholar 

  • Premachandra GS, Saneoka H, Fujita K, Ogata S (1992) Leaf water relations, osmotic adjustment, cell membrane stability, epi-cuticular wax load and growth as affected by increasing water deficits in Sorghum. J Exp Bot 43:1569–1576

    CAS  Google Scholar 

  • Premachandra GS, Hahn DT, Rhodes D, Joly RJ (1995) Leaf water relations and solute accumulation in two grain sorghum lines exhibiting contrasting drought tolerance. J Exp Bot 46:1833–1841

    CAS  Google Scholar 

  • Qureshi RH (1985) Selection of crop varieties and plant species suitable for salt affected areas of Pakistan. In: Qureshi RH (ed) Proceedings of the National Workshop on Biosaline Research in Pakistan, Univer Agric Faisalabad, Pakistan Press, pp 28–42

    Google Scholar 

  • Rahnama A, Poustini K, Munns R, James RA (2010) Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. Funct Plant Biol 37: 255–263

    Google Scholar 

  • Ramani B, Reeck T, Debez A, Stelzer R, Huchzermeyer B, Schmidt A, Papenbrock J (2006) Aster tripolium L. and Sesuvium portulacastrum L.: two halophytes, two strategies to survive in saline habitats. Plant Physiol Biochem 44:395–408

    CAS  PubMed  Google Scholar 

  • Ramoliya PJ, Pandey AN (2002) Effect of increasing salt concentration on emergence, growth and survival of seedlings of Salvadora oleoides (Salvadoraceae). J Arid Environ 51:121–132

    Google Scholar 

  • Raven JA (1985) Regulation of PH and generation of osmolarity in vascular plants: a cost-benefit analysis in relation to efficiency of use of energy, nitrogen and water. New Phytol 101:25–77

    CAS  Google Scholar 

  • Rawson HM, Munns R (1984) Leaf expansion in sunflower as influenced by salinity and short-term changes in carbon fixation. Plant Cell Environ 7:207–213

    CAS  Google Scholar 

  • Razzaghi F, Ahmadi SH, Adolf VI, Jensen CR, Jacobsen SE, Andersen MN (2011) Water relations and transpiration of quinoa (Chenopodium quinoa willd.) under salinity and soil drying. J Agron Crop Sci 197:348–360

    Google Scholar 

  • Redondo-Gómez S, Mateos-Naranjo E, Davy AJ, Fernбndez-Muñoz F, Castellanos EM, Luque T, Figueroa ME (2007) Growth and photosynthetic responses to salinity of the salt-marsh shrub Atriplex portulacoides. Ann Bot 100:555–563

    PubMed Central  PubMed  Google Scholar 

  • Reeves EP, Lu H, Jacobs HL, Messina CG, Bolsover S, Gabella G, Potma EO, Warley A, Roes J, Segal AW (2002) Killing activity of neutrophils is mediated through activation of proteases by K+ flux. Nature 21:291–297

    Google Scholar 

  • Rengasamy P, Chittleborough D, Helyar K (2003) Root-zone constraints and plant-based solutions for dry land salinity. Plant Soil 257:249–260

    CAS  Google Scholar 

  • Richards R (1992) Increasing salinity tolerance of grain crops: is it worthwhile? Plant Soil 146:89–98

    CAS  Google Scholar 

  • Richardson SG, McCree KJ (1985) Carbon balance and water relations of sorghum exposed to salt and water stress. Plant Physiol 79: 1015-1020

    Google Scholar 

  • Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide: the response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1683–1696

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rodríguez P, Torrecillas A, Morales MA, Ortuño MF, Sánchez-Blanco MJ (2005) Effects of NaCl salinity and water stress on growth and leaf water relations of Asteriscus maritimus plants. Environ Exp Bot 53:113–123

    Google Scholar 

  • Rossel JB, Wilson IW, Pogson BJ (2002) Global changes in gene expression in response to high light in Arabidopsis. Plant Physiol 130:1109–1120

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rouhi V, Samson R, Lemeur R, Van Damme P (2007) Photosynthetic gas exchange characteristics in three different almond species during drought stress and subsequent recovery. Environ Exp Bot 59:117–129

    CAS  Google Scholar 

  • Rubinigg M, Wenisch J, Elzenga JTM, Stulen I (2004) NaCl salinity affects lateral root development in Plantago maritima. Funct Plant Biol 31:775–780

    CAS  Google Scholar 

  • Ruiz-Sánchez MC, Domingo R, Torrecillas A, Pérez-Pastor A (2000) Water stress preconditioning to improve drought resistance in young apricot plants. Plant Sci 156:245–251

    PubMed  Google Scholar 

  • Sairam RK, Rao KV, Srivastava GC (2002) Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci 163:1037–1046

    CAS  Google Scholar 

  • Sakamoto A, Murata N (2002) The role of glycine betaine in protection of plants from stress. Clues from transgenic plants. Plant Cell Environ 25:163–171

    CAS  PubMed  Google Scholar 

  • Schopfer P (1996) Hydrogen peroxide-mediated cell-wall stiffening in vitro in maize coleoptiles. Planta 199:43–49

    CAS  Google Scholar 

  • Shafqat F, Farooqe A (2006) The use of cell membrane stability (CMS) technique to screen for salt tolerant wheat varieties. J Plant Physiol 163:629–637

    Google Scholar 

  • Shaheen R, Hood-Nowotny RC (2005) Effect of drought and salinity on carbon isotope discrimination in wheat cultivars. Plant Sci 168:901–909

    CAS  Google Scholar 

  • Shalhevet J (1993) Plants under water and salt stress. In: Fowden L, Mansfield T, Stoddart J (eds) Plant adaptation to environmental stress. Chapman and Hall, New York, pp 133–154

    Google Scholar 

  • Shalhevet L, Hsiao TC (1986) Salinity and drought—a comparison of their effects on osmotic adjustment, assimilation, transpiration and growth. Irrig Sci 7:249–264

    CAS  Google Scholar 

  • Sicher RC (1999) Photosystem-II activity is decreased by yellowing of barley primary leaves during growth in elevated carbon dioxide. Int J Plant Sci 160:849–854

    CAS  PubMed  Google Scholar 

  • Slama I, Ghnaya T, Savouré A, Abdelly C (2008) Combined effects of long-term salinity and soil drying on growth, water relations, nutrient status and proline accumulation of Sesuvium portulacastrum. C R Biol 331:442–451

    CAS  PubMed  Google Scholar 

  • Smekens MJ, Tienderen PH (2001) Genetic variation and plasticity of Plantago coronopus under saline conditions. Acta Oecol 22:187–200

    Google Scholar 

  • Somal TLC, Yapa PAJ (1998) Accumulation of proline in cowpea under nutrient, drought, and saline stresses. J Plant Nutr 21:2465–2473

    CAS  Google Scholar 

  • Sonnewald U (2001) Sugar sensing and regulation of photosynthetic carbon metabolism. In: Aro EM, Andersson B (eds) Advances in photosynthesis and respiration, V 11. Kluwer Academic Publishers, Dordrecht, pp 109–120

    Google Scholar 

  • Stewart CR (1978) Role of carbohydrates in proline accumulation of wilted barley leaves. Plant Physiol 61:775–778

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stewart CR, Lee JA (1974) The role of proline accumulation in halophytes. Planta 120:279–289

    CAS  PubMed  Google Scholar 

  • Stewart CR, Boggess SF, Aspinall D, Paleg LG (1977) Inhibition of proline oxidation by water stress. Plant Physiol 59:930–932

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sucre B, Suárez N (2011) Effect of salinity and PEG-induced water stress on water status, gas exchange, solute accumulation, and leaf growth in Ipomoea pes-caprae. Environ Exp Bot 70:192–203

    CAS  Google Scholar 

  • Szalai G, Kellõs T, Galiba G, Kocsy G (2009) Glutathione as an antioxidant and regulatory molecule in plants under abiotic stress conditions. J Plant Growth Regul 28:66–80

    CAS  Google Scholar 

  • Tardieu F, Reymond M, Hamard H, Granier C, Muller B (2000) Spatial distributions of expansion rate, cell division rate and cell size in maize leaves: a synthesis of the effects of soil water status, evaporative demand and temperature. J Exp Bot 51:1505–1514

    CAS  PubMed  Google Scholar 

  • Tardieu F, Granier CH, Muller B (2011) Water deficit and growth. Coordinating processes without an orchestrator? Curr Opin Plant Biol 14:283–289

    PubMed  Google Scholar 

  • Tattini M, Montagni G, Traversi ML (2002) Gas exchange, water relations and osmotic adjustment in Phillyrea latifolia grown at various salinity concentrations. Tree Physiol 22:403–412

    PubMed  Google Scholar 

  • Termaat A, Munns R (1986) Use of concentrated macronutrient solutions to separate osmotic from NaCl-specific effects on plant growth. Aust J Plant Physiol 13:509–522

    CAS  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tezara W, Martнnez D, Rengifo E, Herrera A (2003) Photosynthetic responses of the tropical spiny shrub Lycium nodosum (Solanaceae) to drought, soil salinity and saline spray. Ann Bot 92:757–765

    PubMed Central  CAS  PubMed  Google Scholar 

  • Thiel G, Lynch J, Läuchli A (1988) Short-term effects of salinity stress on the turgor and elongation of growing barley leaves. J Plant Physiol 132:38–44

    CAS  Google Scholar 

  • Torrecillas A, Guillaume C, Alarcon JJ, Ruiz-Sanchez MC (1995) Water relations of two tomato species under water stress and recovery. Plant Sci 105:169–176

    CAS  Google Scholar 

  • Trovato M, Mattioli R, Costantino P (2008) Multiple roles of proline in plant stress tolerance and development. Rend Lincei Sci Fis 19:325–346

    Google Scholar 

  • Turner NC, Jones MM (1980) Turgor maintenance by osmotic adjustment: a review and evaluation. In: Turner NC, Kramer PJ (eds) Adaptation of plants to water and high temperature stress. Wiley Interscience, New York, pp 87–103

    Google Scholar 

  • Turner NC (1986) Adaptation to water deficit: a changing perspective. Aust J Plant Physiol 13: 175-190

    Google Scholar 

  • Wang RRC, Li XM, Hu ZM, Zhang JY, Larson SR, Zhang XY, Grieve CM, Shannon MC (2003a) Development of salinity-tolerant wheat recombinant lines from a wheat disomic addition line carrying a Thinopyrum junceum chromosome. Int J Plant Sci 164:25–33

    Google Scholar 

  • Wang W, Vinocur B, Altman A (2003b) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    CAS  PubMed  Google Scholar 

  • Wang R, Chen S, Zhou X, Shen X, Deng L, Zhu H, Shao J, Shi Y, Dai S, Fritz E, Hüttermann A, Polle A (2008) Ionic homeostasis and reactive oxygen species control in leaves and xylem sap of two poplars subjected to NaCl stress. Tree Physiol 28:947–957

    CAS  PubMed  Google Scholar 

  • Wild A (2003) Soils, land and food: managing the land during the twenty-first century. Cambridge University Press, Cambridge, p 246

    Google Scholar 

  • Wilhite DA, Glantz MH (1985) Understanding the drought phenomenon: the role of definitions. Water Int 10:111–120

    Google Scholar 

  • Wilson JDO, McDonald JMB (1986) The lipid peroxidation model of seed ageing. Seed Sci Technol 14:269–300

    CAS  Google Scholar 

  • Xiong L, Yang Y (2003) Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell 15:745–759

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xu HL, Gauthier L, Gosselin A (1994) Photosynthetic responses of greenhouse tomato plants to high solution electrical conductivity and low soil water content. J Hortic Sci 69:821–832

    CAS  Google Scholar 

  • Yeo AR, Lee KS, Izard P, Boursier PJ, Flowers TJ (1991) Short- and long-term effects of salinity on leaf growth in rice (Oryza sativa L.). J Exp Bot 42:881–889

    CAS  Google Scholar 

  • Yousfi S, Serret MD, Araus JL (2009) Shoot d15N gives a better indication than ion concentration or D13C of genotypic differences in the response of durum wheat to salinity. Funct Plant Biol 36:144–155

    CAS  Google Scholar 

  • Yousfi S, Serret MD, Voltas J, Araus JL (2010) Effect of salinity and water stress during the reproductive stage on growth, ion concentrations, D13C, and d15N of durum wheat and related amphiploids. J Exp Bot 61:3529–3542

    CAS  PubMed  Google Scholar 

  • Yousfi SS, Serret MD, Márquez AJ, Voltas J, Araus JL (2012) Combined use of δ13C, δ18O and δ15N tracks nitrogen metabolism and genotypic adaptation of durum wheat to salinity and water deficit. New Phytol 194:230–244

    CAS  PubMed  Google Scholar 

  • Zelko IN, Mariani TJ, Folz RJ (2002) Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med 33:337–349

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoly A. Ivanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ivanov, A.A. (2015). Response of Wheat Seedlings to Combined Effect of Drought and Salinity. In: Tripathi, B., Müller, M. (eds) Stress Responses in Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-13368-3_7

Download citation

Publish with us

Policies and ethics