Skip to main content

Signal Perception and Mechanism of Salt Toxicity/Tolerance in Photosynthetic Organisms: Cyanobacteria to Plants

  • Chapter
Stress Responses in Plants

Abstract

High salt concentration represents one of the most significant abiotic constraints, affecting all life forms including plants and cyanobacteria. Soil salinity curtails plant growth by way of osmotic, ionic and oxidative stresses resulting in multiple inhibitory effects on various physiological processes such as growth, photosynthesis, respiration and cellular metabolism. In order to combat high salinity, various adaptive strategies employed include ion homeostasis achieved by ion transport and compartmentalization of injurious ions, osmotic homeostasis by accumulation of compatible solutes/osmolytes and upregulation of antioxidant defence mechanism. The aforesaid processes are executed through SOS and MAPK signalling pathways leading to modulation of gene expression. Salt stress signal transduction pathways initiate through sensing extracellular Na+ ions causing modification of constitutively expressed transcription factors. This modification is responsible for expression of early transcriptional activators such as CBF/DREB gene family which eventually activate stress tolerance effector genes such as osmolyte biosynthesis genes, detoxification enzymes, and chaperones. Various genes/cDNAs encoding proteins involved in these adaptive mechanisms have been isolated and identified. Bioinformatic predictions through docking revealed interaction of salt across the species at conserved domains and motifs as a possible mechanism for response of a particular protein under salt stress. In this chapter, major aspects of salt stress are reviewed with emphasis on its detrimental consequences and biochemical and molecular mechanisms of signal transduction in plants and cyanobacteria under high salinity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abadia J, Morales F, Abadia A (1999) Photosystem II efficiency in low chlorophyll, iron-deficient leaves. Plant Soil 215:183–192

    CAS  Google Scholar 

  • Allakhverdiev SI, Kinoshita M, Inaba M et al (2001) Unsaturated fatty acids in membrane lipids protect the photosynthetic machinery against salt-induced damage in Synechococcus. Plant Physiol 125(4):1842–1853

    PubMed Central  CAS  PubMed  Google Scholar 

  • Allakhverdiev SI, Nishiyama Y, Miyairi S et al (2002) Salt stress inhibits the repair of photodamaged photosystem II by suppressing the transcription and translation of psbA genes in Synechocystis. Plant Physiol 130:1443–1453

    PubMed Central  CAS  PubMed  Google Scholar 

  • Alvarez-Pizarro A, Gomes-Filho E, De Lacerda C et al (2009) Salt-induced changes on H+-ATPase activity, sterol and phospholipid content and lipid peroxidation of root plasma membrane from dwarf-cashew (Anacardium occidentale L.) seedlings. Plant Growth Regul 59:125–135

    CAS  Google Scholar 

  • Azachi M, Sadka A, Fisher M et al (2002) Salt induction of fatty acid elongase and membrane lipid modifications in the extreme halotolerant alga Dunaliella salina. Plant Physiol 129(3):1320–1329

    PubMed Central  CAS  PubMed  Google Scholar 

  • Babu MA, Singh D, Gothandam KM (2011) Effect of salt stress on expression of carotenoid pathway genes in tomato. J Stress Physiol Biochem 7(3):87–94

    Google Scholar 

  • Baki GK, Siefritz F, Man HM et al (2000) Nitrate reductase in Zea mays L. under salinity. Plant Cell Environ 23:515–521

    Google Scholar 

  • Begcy K, Mariano ED, Mattiello L et al (2011) An Arabidopsis mitochondrial uncoupling protein confers tolerance to drought and salt stress in transgenic tobacco plants. PLoS One 6(8):e23776

    PubMed Central  CAS  PubMed  Google Scholar 

  • Benhayyim G, Faltin Z, Gepstein S et al (1993) Isolation and characterization of salt-associated protein in Citrus. Plant Sci 88:129–140

    CAS  Google Scholar 

  • Binzel ML, Hess FD, Bressan RA et al (1988) Intracellular compartmentation of ions in salt adapted tobacco cells. Plant Physiol 86(2):607–614

    PubMed Central  CAS  PubMed  Google Scholar 

  • Blumwald E, Aharon GS, Apse M (2000) Sodium transport in plant cells. Biochim Biophys Acta 1465:140–151

    CAS  PubMed  Google Scholar 

  • Bohnert HJ, Ayoubi P, Borchert C et al (2001) A genomics approach towards salt stress tolerance. Plant Physiol Biochem 39:295–311

    CAS  Google Scholar 

  • Bolaños JA, Longstreth DJ (1984) Salinity effects on water potential components and bulk elastic modulus of Alternanthera philoxeroides (Mart.). Griseb Plant Physiol 75(2):281–284

    Google Scholar 

  • Bongi G, Loreto F (1989) Gas-exchange properties of salt-stressed olive (Olea europaea L.) leaves. Plant Physiol 90:1408–1416

    PubMed Central  CAS  PubMed  Google Scholar 

  • Borghesi E, González-Miret ML, Escudero-Gilete ML et al (2011) Effects of salinity stress on carotenoids, anthocyanins, and color of diverse tomato genotypes. J Agric Food Chem 59(21):11676–11682

    CAS  PubMed  Google Scholar 

  • Bostock RM, Quatrano RS (1992) Regulation of Em gene expression in Rice: interaction between osmotic stress and ABA. Plant Physiol 98:1356–1363

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brownell PF, Nicholas DJ (1967) Some effects of sodium on nitrate assimilation and N2 fixation in Anabaena cylindrica. Plant Physiol 42(7):915–921

    PubMed Central  CAS  PubMed  Google Scholar 

  • Caffrey M (1985) Kinetics and mechanism of lamellar gel/lamellar liquid-crystal and lamellar/inverted hexagonal phase transition in phosphatidylethanolamine: a real-time X-ray diffraction study using synchrotron radiation. Biochemistry 24:4826–4844

    CAS  PubMed  Google Scholar 

  • Campbell SJ, Gold ND, Jackson RM et al (2003) Ligand binding: functional site location, similarity and docking. Curr Opin Struct Biol 13:389–395

    CAS  PubMed  Google Scholar 

  • Chaum S, Kirdmanee C (2009) Effect of salt stress on proline accumulation, photosynthetic ability and growth characters in two Maize cultivars. Pak J Bot 41(1):87–98

    CAS  Google Scholar 

  • Chen RD, Yu LX, Greer AF et al (1994) Isolation of an osmotic stress and abscisic acid-induced gene encoding an acidic endochitinase from Lycopersicon chilense. Mol Gen Genet 245:195–202

    CAS  PubMed  Google Scholar 

  • Chen Z, Zhou M, Newman I et al (2007) Potassium and sodium relations in salinised barley tissues as a basis of differential salt tolerance. Funct Plant Biol 34:150–162

    CAS  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu J (2006) Salt stress signaling and mechanisms of plant salt tolerance. Annu Rev Genet Eng 27:141–177

    CAS  Google Scholar 

  • Chitteti B, Peng Z (2007) Proteome and phosphoproteome differential expression under salinity stress in rice (Oryza sativa) roots. J Proteome Res 6:1718–1727

    CAS  PubMed  Google Scholar 

  • Cushman JC (2001) Crassulacean acid metabolism: a plastic photosynthesis adaptation to arid environment. Plant Physiol 127:1439–1448

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cushman JC, Meyer G, Michalowski CB et al (1989) Salt stress leads to differential expression of two isogenes of PEPCase during CAM induction in the common Ice plant. Plant Cell 1:715–725

    PubMed Central  CAS  PubMed  Google Scholar 

  • Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4:215–223

    CAS  Google Scholar 

  • Desplats P, Folco E, Salerno GL (2005) Sucrose may play an additional role to that of an osmolyte in Synechocystis sp. PCC 6803 salt-shocked cells. Plant Physiol Biochem 43:133–138

    CAS  PubMed  Google Scholar 

  • Doganlar ZB, Demir K, Basak H et al (2010) Effects of salt stress on pigment and total soluble protein contents of the three different Tomato cultivars. Afr J Agric 5(15):2056–2065

    Google Scholar 

  • Douglas TJ, Walker RP (1984) Phospholipids, free sterols and adenosine triphosphatase of plasma membrane-enriched preparations from roots of citrus genotypes differing in chloride exclusion ability. Plant Physiol 62:51–58

    CAS  Google Scholar 

  • Downing WL, Mauxion F, Fauvarque MO et al (1992) A Brassica napus transcript en coding a protein related to the Kunitz protease inhibitors family accumulates upon water stress in leaves, not in seeds. Plant J 2:685–693

    CAS  PubMed  Google Scholar 

  • Eddin RS, Doddema H (1986) Effects of NaCl on the nitrogen metabolism of the halophyte Arthrocnemum fruticosum (L.) Moq. grown in a greenhouse. Plant Soil 92:373–385

    CAS  Google Scholar 

  • Erdmann N, Hagemann M (2001) Salt acclimation of algae and cyanobacteria: a comparison. In: Rai LC et al (eds) Algal adaptation to environmental stresses. Springer, Heidelberg

    Google Scholar 

  • Eryilmaz F (2007) The relationships between salt stress and anthocyanin content in higher plants. Biotechnol J 20(1):47–52

    Google Scholar 

  • Espartero J, Sanchez-Aguayo I, Pardo JM (1995) Molecular characterization of glyoxalase-1 from a higher plant: upregulation by stress. Plant Mol Biol 29:1223–1233

    CAS  PubMed  Google Scholar 

  • Everard JD, Gucci R, Kann SC et al (1994) Gas exchange and carbon partitioning in the leaves of celery (Apium graveolens L.) at various levels of root zone salinity. Plant Physiol 106:281–292

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fadzilla NM, Finch PR, Burdon RH (1997) Salinity, oxidative stress and antioxidant responses in shoot culture of rice. J Exp Bot 48(307):325–331

    CAS  Google Scholar 

  • Fernandes TA, Iyer V, Apte SK (1993) Differential responses of nitrogen-fixing cyanobacteria to salinity and osmotic stresses. Appl Environ Microbiol 59:899

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ferreira A, O’Byrne CP, Boor KJ (2001) Role of σB in heat, ethanol, acid, and oxidative stress resistance and during carbon starvation in Listeria monocytogenes. Appl Environ Microbiol 67:4454–4457

    PubMed Central  CAS  PubMed  Google Scholar 

  • Flowers TJ (1972) Salt tolerance in Suaeda maritima (L.) Dum. The effect of sodium chloride on growth, respiration, and soluble enzymes in a comparative study with Pisum sativum L. J Exp Bot 23(2):310–321

    CAS  Google Scholar 

  • Foresthofel NR, Cushman MAF, Cushman JC et al (1995) A salinity induced gene from the halophyte M. crystallinum encodes a glycolytic enzyme, cofactor-independent phosphoglyceromutase. Plant Mol Biol 29:213–216

    Google Scholar 

  • Frias JE, Flores E, Herrero A (1997) Nitrate assimilation gene cluster from the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 179:477–486

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fulda S, Mikkat S, Huang F et al (2006) Proteome analysis of salt stress response in the cyanobacterium Synechocystis sp. strain PCC 6803. Proteomics 6:2733–2745

    CAS  PubMed  Google Scholar 

  • Gao M, Tao R, Miura K et al (2001) Transformation of Japanese persimmon (Diospyros kaki Thunb.) with apple cDNA encoding NADP-dependent sorbitol-6-phosphate dehydrogenase. Plant Sci 160:837–845

    CAS  PubMed  Google Scholar 

  • Garcia A-B, de Almeida EJ, Iyer S et al (1997) Effects of osmoprotectants upon NaCl in rice. Plant Physiol 115:159–169

    PubMed Central  CAS  PubMed  Google Scholar 

  • García-Mauriño S, Monreal JA, Alvarez R et al (2003) Characterization of salt stress-enhanced phosphoenolpyruvate carboxylase kinase activity in leaves of Sorghum vulgare: independence from osmotic stress, involvement of ion toxicity and significance of dark phosphorylation. Planta 216(4):648–655

    PubMed  Google Scholar 

  • Gong Q, Li P, Ma S et al (2005) Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. Plant Physiol 44:826–839

    CAS  Google Scholar 

  • Grattan SR, Grieve CM (1999) Salinity-mineral nutrient relations in horticultural crops. Sci Hortic 78:127–157

    CAS  Google Scholar 

  • Greenway H, Osmond CB (1972) Salt responses of enzymes from species differing in salt tolerance. Plant Physiol 49:256–259

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hagemann M (2011) Molecular biology of cyanobacterial salt acclimation. FEMS Microbiol Rev 35(1):87–123

    CAS  PubMed  Google Scholar 

  • Hagemann M, Schoor A, Erdmann N (1996) NaCl acts as a direct modulator in the salt adaptive response: salt-dependent activation of glucosylglycerol synthesis in vivo and in vitro. J Plant Physiol 149:746–752

    CAS  Google Scholar 

  • Hajibagheri MA, Flowers TJ (1989) X-ray microanalysis of ion distribution within root cortical cells of the halophyte Suaeda maritima (L.) Dum. Planta 177:131–134

    CAS  PubMed  Google Scholar 

  • Hall JL, Flowers TJ (1973) The effect of salt on protein synthesis in the halophyte Suaeda maritime. Planta (Berl) 110:361–368

    CAS  Google Scholar 

  • Hamada A, Hibino T, Nakamura T et al (2001) Na+/H+ antiporter from Synechocystis sp. PCC 6803, homologous to SOS1, contains an aspartic residue and long C-terminal tail important for the carrier activity. Plant Physiol 125:437–446

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hare PD, Cress WA (1997) Metabolic implications of stress induced proline accumulation in plants. Plant Growth Regul 21:79–102

    CAS  Google Scholar 

  • Hasegawa PM, Bressan RA (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    CAS  PubMed  Google Scholar 

  • Holland D, Hayyim GB, Faltin Z et al (1993) Molecular characterization of a salt stress associated protein in citrus and cDNA sequence homology to mammalian glutathione peroxidases. Plant Mol Biol 21:923–927

    CAS  PubMed  Google Scholar 

  • Hsiao TC (1973) Plant responses to water stress. Annu Rev Plant Physiol 24:519–570

    CAS  Google Scholar 

  • Hu C, Delauney AJ, Verma DPS (1992) A bifunctional enzyme (1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants. Proc Natl Acad Sci U S A 89:9354–9358

    PubMed Central  CAS  PubMed  Google Scholar 

  • Huang F, Fulda S, Hagemann M et al (2006) Proteomic screening of salt-stress-induced changes in plasma membranes of Synechocystis sp. strain PCC 6803. Proteomics 6:910

    CAS  PubMed  Google Scholar 

  • Huang Z, Zhao L, Chen D et al (2013) Salt stress encourages proline accumulation by regulating proline biosynthesis and degradation in Jerusalem Artichoke plantlets. PLoS One 8(4):e62085

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hui H, Xu X, Li S (2004) Possible mechanism of inhibition on photosynthesis of Lycium barbarum under salt stress. Chin J Ecol 23:5–9

    Google Scholar 

  • Hussain SS, Ali M, Ahmad M et al (2011) Polyamines: natural and engineered abiotic and biotic stress tolerance in plants. Biotechnol Adv 29:300–311

    CAS  PubMed  Google Scholar 

  • Ishitani M, Nakamura T, Han SY et al (1995) Expression of the betaine aldehyde dehydrogenase gene in barley in response to osmotic stress and abscisic acid. Plant Mol Biol 27:307–315

    CAS  PubMed  Google Scholar 

  • Ishitani M, Majumder AL, Bornhouser A et al (1996) Coordinate transcriptional induction of myo-inositol metabolism during environmental stress. Plant J 9:537–548

    CAS  PubMed  Google Scholar 

  • Jafarinia M, Shariati M (2012) Effects of salt stress on photosystem II of canola plant (Brassica napus L.) probing by chlorophyll a fluorescence measurements. Iran J Sci Technol AI:71–76

    Google Scholar 

  • Jeanjean R, Matthijs HCP, Onana B et al (1993) Exposure of cyanobacterium Synechocystis PCC6803 to salt stress induces concerted changes in respiration and photosynthesis. Plant Cell Physiol 34:1073–1079

    CAS  Google Scholar 

  • Kaiser WM (1979) Reversible inhibition of the Calvin cycle and activation of oxidative pentose phosphate cycle in isolated intact chloroplast by hydrogen peroxide. Planta 145:377–382

    CAS  PubMed  Google Scholar 

  • Kanai M, Higuchi K, Hagihara T et al (2007) Common reed produces starch granules at the shoot base in response to salt stress. New Phytol 176:572–580

    CAS  PubMed  Google Scholar 

  • Kaneko T, Sato S, Kotani H (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3:109–136

    CAS  PubMed  Google Scholar 

  • Kempa S, Krasensky J, Dal Santo S et al (2008) Central role of abscisic acid in stress-regulated carbohydrate metabolism. PLoS One 3:e3935

    PubMed Central  PubMed  Google Scholar 

  • Kerkeb L, Donaire JP, Rodriguez-Rosales MP (2001) Plasma membrane H+-ATPase activity is involved in adaptation of tomato to NaCl. Plant Physiol 111:483–490

    CAS  Google Scholar 

  • Kytridis VP, Karageorgou P, Levizou E et al (2008) Intra-species variation in transient accumulation of leaf anthocyanins in Cistus creticus during winter: evidence that anthocyanins may compensate for an inherent photosynthetic and photoprotective inferiority of the red-leaf phenotype. J Plant Physiol 165:952–959

    CAS  PubMed  Google Scholar 

  • Ladas NP, Papageorgiou GC (2000) Cell turgor: a critical factor for the proliferation of cyanobacteria at unfavorable salinity. Photosynth Res 65(2):155–164

    CAS  PubMed  Google Scholar 

  • Larcher W (1980) Physiological plant ecology, 2nd edn. Springer, Berlin

    Google Scholar 

  • Liu J, Zhu JK (1998) A calcium sensor homolog required for plant salt tolerance. Science 280:1943–1945

    CAS  PubMed  Google Scholar 

  • Liu C, Zhao L, Yu G (2011) The dominant glutamic acid metabolic flux to produce gamma-amino butyric acid over proline in Nicotiana tabacum leaves under water stress relates to its significant role in antioxidant activity. J Integr Plant Biol 53:608–618

    CAS  PubMed  Google Scholar 

  • Livne A, Levin N (1967) Tissue respiration and mitochondrial oxidative phosphorylation of NaCl-treated pea seedlings. Plant Physiol 42(3):407–414

    PubMed Central  CAS  PubMed  Google Scholar 

  • Locy RD, Chang CC, Nielsen BL et al (1996) Photosynthesis in salt adapted heterotrophic tobacco cells and regenerated plants. Plant Physiol 110(1):321–328

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lopez F, Yansuyt G, Fourcroy P et al (1994) Accumulation of a 22 kDa protein and its mRNA in the leaves of Raphanus sativus in response to salt stress or water deficit. Plant Physiol 91:605–614

    CAS  Google Scholar 

  • Lu C, Vonshak A (1999) Characterization of PSII photochemistry in salt-adapted cells of cyanobacterium Spirulina platensis. New Phytol 141:231–239

    CAS  Google Scholar 

  • Lu C, Vonshak A (2002) Effects of salinity stress on photosystem II function in cyanobacteria Spirulina platensis cells. Plant Physiol 114:405–413

    CAS  Google Scholar 

  • Lv S, Jiang P, Chen X et al (2012) Multiple compartmentalization of sodium conferred salt tolerance in Salicornia europaea. Plant Physiol Biochem 51:47–52

    CAS  PubMed  Google Scholar 

  • Maathuis JMF, Amtmann A (1999) K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. Ann Bot 84:123–133

    CAS  Google Scholar 

  • Mansour MMF (2000) Nitrogen containing compounds and adaptation of plants to salinity stress. Plant Biol 43:491–500

    CAS  Google Scholar 

  • Mansour MMF, Al-Mutawa MM, Salama KHA et al (2002) Effect of NaCl and polyamines on plasma membrane lipids of wheat roots. Plant Biol 45:235–239

    CAS  Google Scholar 

  • Mansour MMF, Salama KHA, Ali FZM et al (2005) Cell and plant responses to NaCl in Zea mays L. cultivars differing in salt tolerance. Gen Appl Plant Physiol 31:29–41

    CAS  Google Scholar 

  • Marin K, Kanesaki Y, Los DA (2004) Gene expression profiling reflects physiological processes in salt acclimation of Synechocystis sp. strain PCC 6803. Plant Physiol 136:3290–3300

    PubMed Central  CAS  PubMed  Google Scholar 

  • Matoh T, Watanabe J, Takahashi E (1987) Sodium, potassium, chloride, and betaine concentrations in isolated vacuoles from salt-grownAtriplex gmelini leaves. Plant Physiol 84:173–177

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mikkat S, Hagemann M, Schoor A (1996) Active transport of glucosylglycerol is involved in salt adaptation of the cyanobacterium Synechocystis sp. strain PCC 6803. Microbiology 142(7):1725–1732

    CAS  PubMed  Google Scholar 

  • Moisnder PH, McClinton E, Paer HW (2002) Salinity effects on growth, photosynthetic parameters, and nitrogenase activity in estuarine planktonic cyanobacteria. Microb Ecol 43:432–442

    Google Scholar 

  • Molitor V, Trnka M, Erber W et al (1990) Impact of salt adaptation on esterified fatty acids and cytochrome oxidase in plasma and thylakoid membranes from the cyanobacterium Anacystis nidulans. Arch Microbiol 154:112–119

    CAS  Google Scholar 

  • Moller IM, Jensen PE, Hansson A (2007) Oxidative modification to cellular components in plants. Annu Rev Plant Biol 58:480–481

    Google Scholar 

  • Mundy J, Yamaguchi-Shinozaki K, Chua NH (1990) Nuclear proteins bind conserved elements in the abscisic acid responsive promoter of a rice RAB gene. Proc Natl Acad Sci U S A 87:1406–1410

    PubMed Central  CAS  PubMed  Google Scholar 

  • Munns R, Termaat A (1986) Whole plant responses to salinity. Aust J Plant Physiol 13:143–160

    Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    CAS  PubMed  Google Scholar 

  • Munns R, Schachtman D, Condon A (1995) The significance of a two-phase growth response to salinity in wheat and barley. Funct Plant Biol 22(4):561–569

    CAS  Google Scholar 

  • Murata N, Mohanty PS, Hayashi H et al (1992) Glycine betaine stabilizes the association of extrinsic proteins with the photosynthetic oxygen evolving complex. FEBS Lett 296:187–189

    CAS  PubMed  Google Scholar 

  • Naot D, Ben-Hayyim G, Eshdat Y et al (1995) Drought, heat, and salt stress induce the expression of a citrus homologue of an atypical late embryogenesis Lea5 gene. Plant Mol Biol 27:619–622

    CAS  PubMed  Google Scholar 

  • Nishizawa A, Yabuta Y, Shigeoka S (2008) Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol 147:1251–1263

    PubMed Central  CAS  PubMed  Google Scholar 

  • Norberg P, Liljenberg C (1991) Lipids of plasma membranes prepared from oat root cells: effects of induced water-deficit tolerance. Plant Physiol 96:1136–1141

    PubMed Central  CAS  PubMed  Google Scholar 

  • Otoch MDL, Sobreira ACM, deAragao MEF et al (2001) Salt modulation of vacuolar H+-ATPase and H+-pyrophosphatase activities in Vigna unguiculata. J Plant Physiol 158:545–551

    CAS  Google Scholar 

  • Page-Sharp M, Behm CA, Smith GD (1998) Cyanophycin and glycogen synthesis in a cyanobacterial Scytonema species in response to salt stress. FEMS Microbiol Lett 160:11–15

    CAS  Google Scholar 

  • Pandhal J, Wright PC, Biggs CA (2008) Proteomics with a pinch of salt: a cyanobacterial perspective. Saline Systems 4:1. doi:10.1186/1746-1448-4-1

    PubMed Central  PubMed  Google Scholar 

  • Pang Q, Chen S, Dai S et al (2010) Comparative proteomics of salt tolerance in Arabidopsis thaliana and Thellungiella halophila. J Proteome Res 9(5):2584–2599

    CAS  PubMed  Google Scholar 

  • Parida AK, Das AB, Mohanty P (2004) Defense potentials to NaCl in a mangrove, Bruguiera parviflora: differential changes of isoforms of some antioxidative enzymes. J Plant Physiol 161(5):531–542

    CAS  PubMed  Google Scholar 

  • Patra B, Ray S, Richter A et al (2010) Enhanced salt tolerance of transgenic tobacco plants by co-expression of PcINO1 oxidase enhances freezing tolerance of plants. Plant J 22:449–453

    Google Scholar 

  • Paul MJ, Primavesi LF, Jhurreea D et al (2008) Trehalose metabolism and signaling. Annu Rev Plant Biol 59:417–441

    CAS  PubMed  Google Scholar 

  • Piatkowski D, Schneider K, Salamini F et al (1990) Characterization of five abscisic acid responsive cDNA clones isolated from the desiccation tolerant plant Craterostigma plantagineum and their relationship to other water stress genes. Plant Physiol 94:447–451

    Google Scholar 

  • Quintero FJ, Garciadeblas B, Rodriguez-Navarro A (1996) The SAL1 gene of Arabidopsis, encoding an enzyme with 3′(2′),5′-bisphosphate nucleotidase and inositol polyphosphate 1-phosphatase activities, increases salt tolerance in yeast. Plant Cell 8:529–537

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rahdari P, Tavakoli S, Hosseini SM (2012) Studying of salinity stress effect on germination, proline, sugar, protein, lipid and chlorophyll content in Purslane (Portulaca oleracea L.) leaves. J Stress Physiol Biochem 8(1):182–193

    Google Scholar 

  • Rai S, Agrawal C, Shrivastava AK et al (2014) Comparative proteomics unveils cross species variations in Anabaena under salt stress. J Proteomics 98:254–270

    CAS  PubMed  Google Scholar 

  • Rao CASV, Reddy AR (2008) Glutathione reductase: a putative redox regulatory system in plant cells. In: Khan NA, Singh S, Umar S (eds) Sulfur assimilation and abiotic stresses in plants. Springer, Dordrecht, pp 111–147

    Google Scholar 

  • Ratcliffe RG, Shachar-Hill Y (2006) Measuring multiple fluxes through plant metabolic networks. Plant J 45:490–511

    CAS  PubMed  Google Scholar 

  • Rathinasabapathi B, Brunet M, Russell BL et al (1997) Choline monooxygenase, an unusual iron sulfur enzyme catalyzing the first step of glycine betaine synthesis in plants: prosthetic group characterization and cDNA cloning. Proc Natl Acad Sci U S A 94:3454–3458

    PubMed Central  CAS  PubMed  Google Scholar 

  • Reddy MP, Vora AB (1986) Changes in pigment composition, Hill reaction activity and saccharides metabolism in Bajra (Pennisetum typhoides S & H) leaves under NaCl salinity. Photosynthetica 20:50–55

    CAS  Google Scholar 

  • Reed RH (1986) Halotolerant and halophilic microbes. In: Herbert RA, Codd GA (eds) Microbes in extreme environment. Academic, London, pp 55–82

    Google Scholar 

  • Renault H, Roussel V, El Amrani A et al (2010) The Arabidopsis pop2-1 mutant reveals the involvement of GABA transaminase in salt stress tolerance. BMC Plant Biol 10:20

    PubMed Central  PubMed  Google Scholar 

  • Reviron MP, Vartanian N, Sallantin M et al (1992) Characterization of a novel protein induced by progressive or rapid drought and salinity in Brassica napus leaves. Plant Physiol 100:1486–1493

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sacala E, Demczuk A, Grzys E et al (2008) Effect of salt and water stresses on growth, nitrogen and phosphorous metabolism in Cucumis sativus L. seedlings. Acta Soc Bot Pol 77:23–28

    CAS  Google Scholar 

  • Sadaka A, Himmelhoch S, Zamir A (1991) A 150 kilodalton cell surface protein is induced by salt in the halotolerant green alga Dunaliella salina. Plant Physiol 95:822–831

    Google Scholar 

  • Sairam RK, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci 86:407–421

    CAS  Google Scholar 

  • Saleh B (2012) Salt stress alters physiological indicators in cotton (Gossypium hirsutum L.). Soil Environ 31(2):113–118

    CAS  Google Scholar 

  • Sanchez DH, Siahpoosh MR, Roessner U et al (2008) Plant metabolomics reveals conserved and divergent metabolic responses to salinity. Physiol Plant 132:209–219

    CAS  PubMed  Google Scholar 

  • Sanchez DH, Pieckenstain FL, Escaray F et al (2011) Comparative ionomics and metabolomics in extremophile and glycophytic Lotus species under salt stress challenge the metabolic pre-adaptation hypothesis. Plant Cell Environ 34:605–617

    CAS  PubMed  Google Scholar 

  • Scandalios JG (1993) Oxygen stress and superoxide dismutase. Plant Physiol 101:712–726

    Google Scholar 

  • Schachtman DP (2000) Molecular insights into the structure and function of plant K+ transport mechanisms. Biochim Biophys Acta 1465:127–139

    CAS  PubMed  Google Scholar 

  • Schubert H, Fluda S, Hagemann M (1993) Effects of adaptation to different salt concentrations on photosynthesis and pigmentation of the cyanobacterium Synechocystis sp. PCC6803. J Plant Physiol 142:291–295

    CAS  Google Scholar 

  • Sengupta S, Patra B, Ray S et al (2008) Inositol methyl tranferase from a halophytic wild rice, Porteresia coarctata Roxb. (Tateoka): regulation of pinitol synthesis under abiotic stress. Plant Cell Environ 31:1442–1459

    CAS  PubMed  Google Scholar 

  • Serrano R (1996) Salt tolerance in plants and microorganisms: toxicity targets and defense responses. Int Rev Cytol 165:1–52

    CAS  PubMed  Google Scholar 

  • Serrano R, Mulet JM, Ríos G et al (1999) A glimpse of the mechanism of ion homeostasis during salt stress. J Exp Bot 50:1023–1036

    CAS  Google Scholar 

  • Shabala S, Cuin TA, Prismall L et al (2007) Expression of animal CED-9 anti-apoptotic gene in tobacco modifies plasma membrane ion fluxes in response to salinity and oxidative stress. Planta 227:189–197

    CAS  PubMed  Google Scholar 

  • Shi HZ, Zhu JK (2002) Regulation of expression of the vacuolar Na+/H+ antiporter gene AtNHX1 by salt stress and abscisic acid. Plant Mol Biol 50:543–550

    CAS  PubMed  Google Scholar 

  • Singh DP, Kshatriya K (2002) Characterization of salinity-tolerant mutant of Anabaena doliolum exhibiting multiple stress tolerance. Curr Microbiol 45:165–170

    CAS  PubMed  Google Scholar 

  • Singh NK, Handa AK, Hasegawa PM et al (1985) Proteins associated with adaptation of cultured tobacco cells to NaCl. Plant Physiol 79:126–137

    PubMed Central  CAS  PubMed  Google Scholar 

  • Singh NK, Bracker CA, Hasegawa PM et al (1987) Characterization of osmotin Athumatin-like protein associated with osmotic adaptation in plant cells. Plant Physiol 85(79):126–137

    Google Scholar 

  • Siringam K, Juntawong N, Cha-um S et al (2012) Salt tolerance enhancement in indica rice (Oryza sativa L. spp. indica) seedlings using exogenous sucrose supplementation. Plant Omics J 5:52–59

    CAS  Google Scholar 

  • Sivakumar P, Sharmila P, Pardha Saradhi P (2000) Proline alleviates salt-stress-induced enhancement in ribulose-1,5-bisphosphate oxygenase activity. Biochem Biophys Res Commun 279(2):512–515

    CAS  PubMed  Google Scholar 

  • Srivastava AK, Bhargava P, Rai LC (2005) Salinity and copper-induced oxidative damage and changes in the antioxidative defence systems of Anabaena doliolum. World J Microbiol Biotechnol 21:1291

    CAS  Google Scholar 

  • Srivastava AK, Bhargava P, Thapar R et al (2008) Salinity-induced physiological and proteomic changes in Anabaena doliolum. Environ Exp Bot 64:49

    CAS  Google Scholar 

  • Srivastava AK, Bhargava P, Kumar A et al (2009) Molecular characterization and the effect of salinity on cyanobacterial diversity in the rice fields of Eastern Uttar Pradesh, India. Saline Systems 5:4

    PubMed Central  PubMed  Google Scholar 

  • Stepien P, Johnson GN (2009) Contrasting responses of photosynthesis to salt stress in the glycophyte Arabidopsis and the halophyte Thellungiella: role of the plastid terminal oxidase as an alternative electron sink. Plant Physiol 149(2):1154–1165

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stock AM, Robinson VL, Goudreau PN (2000) Two-component signal transduction. Annu Rev Biochem 69:183–215

    CAS  PubMed  Google Scholar 

  • Szabados L, Savoure A (2009) Proline: a multifunctional amino acid. Trends Plant Sci 2:89–97

    Google Scholar 

  • Székely G, Abrahám E, Cséplo A et al (2008) Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J 53(1):11–28

    PubMed  Google Scholar 

  • Teakle NL, Tyerman SD (2010) Mechanisms of Cl(−) transport contributing to salt tolerance. Plant Cell Environ 33:566–589

    CAS  PubMed  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    PubMed Central  CAS  PubMed  Google Scholar 

  • Thomas J, Apte SK (1984) Sodium requirement and metabolism in nitrogen-fixing cyanobacteria. J Biosci 6(5):771–794

    CAS  Google Scholar 

  • Torres-Schumann S, Godoy JA, Pintor-Toro JA (1992) A probable lipid transfer protein gene is induced by NaCl stress in tomato plants. Plant Mol Biol 18:749–757

    CAS  PubMed  Google Scholar 

  • Turan MA, Katkat V, Taban S (2007) Variations in proline, chlorophyll and mineral elements contents of Wheat plants grown under salinity stress. Agron J 6(1):137–141

    CAS  Google Scholar 

  • Turner NC (1979) Drought resistance and adaptation to water deficits in crop plants. In: Muel H, Staps RC (eds) Stress physiology of crop plants. Wiley, New York, pp 343–372

    Google Scholar 

  • Umeda M, Hara C, Matsubayashi Y et al (1994) Expressed sequence tags from cultured cells of rice (Oryza sativa L.) under stressed conditions: analysis of transcripts of genes engaged in ATP-generating pathways. Plant Mol Biol 25:469–478

    CAS  PubMed  Google Scholar 

  • UNESCO Water Portal (2007) http://www.unesco.org/water

  • Vernon DM, Bohnert HJ (1992) A novel methyltransferase induced by osmotic stress in the facultative halophyte Mesembryanthemum crystallinum. EMBO J 11:2077–2085

    PubMed Central  CAS  PubMed  Google Scholar 

  • Waditee R, Hibino T, Tanaka Y et al (2001) Halotolerant cyanobacterium Aphanothece halophytica contains an Na+/H+ antiporter, homologous to eukaryotic ones, with novel ion specificity affected by C terminal tail. J Biol Chem 276:36931–36938

    CAS  PubMed  Google Scholar 

  • Wang BS, Luttge U, Ratajczak R (2001) Effects of salt treatment and osmotic stress on V-ATPase and V-PPase in leaves of the halophyte Suaeda salsa. J Exp Bot 52:2355–2365

    CAS  PubMed  Google Scholar 

  • Wang H, Wu Z, Han J et al (2012) Comparison of ion balance and nitrogen metabolism in old and young leaves of alkali-stressed rice plants. PLoS One 7(5):e37817

    PubMed Central  CAS  PubMed  Google Scholar 

  • Warr SRC, Reed RH, Chudek JA et al (1985) Osmotic adjustment in Spirulina platensis. Planta 163:424–429

    CAS  PubMed  Google Scholar 

  • Wegner LH, De Boer AH (1997) Properties of two outward-rectifying channels in root xylem parenchyma cells suggest a role in K1 homeostasis and long-distance signaling. Plant Physiol 115:1707–1719

    PubMed Central  CAS  PubMed  Google Scholar 

  • Weisany W, Sohrabi Y, Heidari G et al (2012) Changes in antioxidant enzymes activity and plant performance by salinity stress and zinc application in soybean (Glycine max L.). Plant Omics J 5(2):60–67

    CAS  Google Scholar 

  • Williamson JD, Stoop JMH, Massel MO et al (1995) Sequence analysis of a mannitol dehydrogenase cDNA from plants reveals a function for the pathogenesis-related protein EL13. Proc Natl Acad Sci U S A 92:7148–7152

    PubMed Central  CAS  PubMed  Google Scholar 

  • Winicov I, Button JD (1991) Accumulation of photosynthesis gene transcripts in response to sodium chloride by salt-tolerant alfalfa cells. Planta 183:478–483

    CAS  PubMed  Google Scholar 

  • Wu J, Seliskar DM, Gallagher JL (2005) The response of plasma membrane lipid composition in callus of the halophyte, Spartina patens, to salinity stress. Am J Bot 92:852–858

    CAS  PubMed  Google Scholar 

  • Wutipraditkul N, Waditee R, Incharoensakdi A et al (2005) Halotolerant cyanobacterium Aphanothece halophytica contains NapA-type Na+/H+ antiporters with novel ion specificity that are involved in salt tolerance at alkaline pH. Appl Environ Microbiol 71:4176–4184

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xiong L, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ 25:131–139

    CAS  PubMed  Google Scholar 

  • Xu G, Magen H, Tarchitzky J et al (2000) Advances in chloride nutrition of plants. Adv Agron 68:97–150

    CAS  Google Scholar 

  • Yahya A, Liljenberg C, Nilsson R et al (1995) Effects of pH and minerals nutrition supply on lipid composition and protein pattern of plasma membranes from sugar beet roots. J Plant Physiol 146:81–87

    CAS  Google Scholar 

  • Yamaguchi K, Takahashi Y, Berberich T et al (2006) The polyamine spermine protects against high salt stress in Arabidopsis thaliana. FEBS Lett 580:6783–6788

    CAS  PubMed  Google Scholar 

  • Zhang T, Gong H, Wen X et al (2010) Salt stress induces a decrease in excitation energy transfer from phycobilisomes to photosystem II but an increase to photosystem I in the cyanobacterium Spirulina platensis. J Plant Physiol 167(12):951–958

    CAS  PubMed  Google Scholar 

  • Zhu JK (2000) Genetic analysis of plant salt tolerance using Arabidopsis thaliana. Plant Physiol 124:941–948

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    CAS  PubMed  Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

    CAS  PubMed  Google Scholar 

  • Zhu JK, Shi J, Bressan RA et al (1993a) Expression of an Atriplex nummularia gene encoding a protein homologous to the bacterial molecular chaperone DnaJ. Plant Cell 5:341–349

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu JK, Shi J, Singh U (1993b) Enrichment of vitronectin and fibronectin like proteins in NaCl-adapted plant cells and evidence for their involvement in plasma membrane-cell wall adhesion. Plant J 3:637–646

    CAS  PubMed  Google Scholar 

  • Zhu J, Hasegawa PM, Bressan RA (1997) Molecular aspects of osmotic stress in plants. Crit Rev Plant Sci 16(3):253–277

    CAS  Google Scholar 

  • Zörb C, Herbst R, Forreiter C et al (2009) Short-term effects of salt exposure on the maize chloroplast protein pattern. Proteomics 9(17):4209–4220

    PubMed  Google Scholar 

Download references

Acknowledgements

L.C. Rai is thankful to DST for project and J.C. Bose National Fellowship. Chhavi Agrawal is thankful to DBT for SRF, Sonia Sen to CSIR for SRF, Shivam Yadav to UGC for JRF and Antra Chatterjee and Shweta Rai to DST and Shilpi Singh to DST for WOSA for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. C. Rai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Agrawal, C. et al. (2015). Signal Perception and Mechanism of Salt Toxicity/Tolerance in Photosynthetic Organisms: Cyanobacteria to Plants. In: Tripathi, B., Müller, M. (eds) Stress Responses in Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-13368-3_4

Download citation

Publish with us

Policies and ethics