Skip to main content

Abstract

It is now well-known that a curvilinear discretization of the geometry is most often required to benefit from the computational efficiency of high-order numerical schemes in simulations. In this article, we explain how appropriate curvilinear meshes can be generated. We pay particular attention to the problem of invalid (tangled) mesh parts created by curving the domain boundaries. An efficient technique that computes provable bounds on the element Jacobian determinant is used to characterize the mesh validity, and we describe fast and robust techniques to regularize the mesh. The methods presented in this article are thoroughly discussed in Ref. [1, 2], and implemented in the free mesh generation software Gmsh [4, 12].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Johnen, A., Remacle, J.-F., Geuzaine, C.: Geometrical validity of curvilinear finite elements. Journal of Computational Physics 233, 359–372 (2013)

    Article  MathSciNet  Google Scholar 

  2. Toulorge, T., Geuzaine, C., Remacle, J.-F., Lambrechts, J.: Robust untangling of curvilinear meshes. Journal of Computational Physics 254, 8–26 (2013)

    Article  MathSciNet  Google Scholar 

  3. Geuzaine, C., Remacle, J.-F.: Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering 79(11), 1309–1331 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Geuzaine, C., Remacle, J.-F.: Gmsh website (March 2014), http://geuz.org/gmsh

  5. Cockburn, B., Karniadakis, G., Shu, C.-W. (eds.): Discontinuous Galerkin Methods. LNCSE, vol. 11. Springer, Berlin (2000)

    MATH  Google Scholar 

  6. Kroll, N., Bieler, H., Deconinck, H., Couaillier, V., van der Ven, H., Sørensen, K. (eds.): ADIGMA. NNFM, vol. 113. Springer, Heidelberg (2010)

    Google Scholar 

  7. Bassi, F., Rebay, S.: High-order accurate discontinuous finite element solution of the 2D Euler equations. Journal of Computational Physics 138(2), 251–285 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dey, S., O’Bara, R.M., Shephard, M.S.: Curvilinear mesh generation in 3D. In: Proceedings of the 8th International Meshing Roundtable, pp. 407–417. John Wiley & Sons (1999)

    Google Scholar 

  9. Gargallo-Peiró, A., Roca, X., Peraire, J., Sarrate, J.: High-order mesh generation on CAD geometries. In: Proceedings of the VI International Conference on Adaptive Modeling and Simulation (ADMOS 2013), CIMNE, Barcelona (2013)

    Google Scholar 

  10. Xie, Z.Q., Sevilla, R., Hassan, O., Morgan, K.: The generation of arbitrary order curved meshes for 3D finite element analysis. Computational Mechanics 51(3), 361–374 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Sherwin, S.J., Peiró, J.: Mesh generation in curvilinear domains using high-order elements. International Journal for Numerical Methods in Engineering 53(1), 207–223 (2002)

    Article  MATH  Google Scholar 

  12. Abgrall, R., Dobrzynski, C., Froehly, A.: A method for computing curved 2D and 3D meshes via the linear elasticity analogy: preliminary results. Rapport de recherche RR-8061, INRIA (September 2012)

    Google Scholar 

  13. Lu, Q., Shephard, M., Tendulkar, S., Beall, M.: Parallel curved mesh adaptation for large scale high-order finite element simulations. In: Proceedings of the 21st International Meshing Roundtable, pp. 419–436. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  14. Persson, P.-O., Peraire, J.: Curved mesh generation and mesh refinement using lagrangian solid mechanics. In: Proceedings of the 47th AIAA Aerospace Sciences Meeting and Exhibit, Orlando (FL), USA, January 5-9 (2009)

    Google Scholar 

  15. Roca, X., Gargallo-Peiró, A., Sarrate, J.: Defining quality measures for high-order planar triangles and curved mesh generation. In: Quadros, W.R. (ed.) Proceedings of the 20th International Meshing Roundtable, pp. 365–383. Springer, Heidelberg (2012)

    Google Scholar 

  16. Luo, X.J., Shephard, M.S., O’Bara, R.M., Nastasia, R., Beall, M.W.: Automatic p-version mesh generation for curved domains. Engineering with Computers 20(3), 273–285 (2004)

    Article  Google Scholar 

  17. Sahni, O., Luo, X.J., Jansen, K.E., Shephard, M.S.: Curved boundary layer meshing for adaptive viscous flow simulations. Finite Elements in Analysis and Design 46(1-2), 132–139 (2010)

    Article  MathSciNet  Google Scholar 

  18. Remacle, J.-F., Shephard, M.S.: An algorithm oriented mesh database. International Journal for Numerical Methods in Engineering 58(2), 349–374 (2003)

    Article  MATH  Google Scholar 

  19. Dey, S., Shephard, M.S., Flaherty, J.E.: Geometry representation issues associated with p-version finite element computations. Computer Methods in Applied Mechanics and Engineering 150(1), 39–55 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sevilla, R., Fernández-Méndez, S., Huerta, A.: NURBS-enhanced finite element method (NEFEM). International Journal for Numerical Methods in Engineering 76(1), 56–83 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Taylor, R.L.: On completeness of shape functions for finite element analysis. International Journal for Numerical Methods in Engineering 4(1), 17–22 (1972)

    Article  MATH  Google Scholar 

  22. Lane, J.M., Riesenfeld, R.F.: A theoretical development for the computer generation and display of piecewise polynomial surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence 2(1), 35–46 (1980)

    Article  MATH  Google Scholar 

  23. Cohen, E., Schumacker, L.L.: Rates of convergence of control polygons. Computer Aided Geometric Design 2, 229–235 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  24. Freitag, L., Knupp, P., Munson, T., Shontz, S.: A comparison of optimization software for mesh shape-quality improvement problems. Technical report, Argonne National Lab., IL, US (2002)

    Google Scholar 

  25. Fiacco, A.V., McCormick, G.P.: Nonlinear programming: sequential unconstrained minimization techniques, vol. 4. Society for Industrial Mathematics (1990)

    Google Scholar 

  26. Waechter, A., Laird, C., Margot, F., Kawajir, Y.: Introduction to IPOPT: A tutorial for downloading, installing, and using IPOPT (2009)

    Google Scholar 

  27. Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization. Mathematical Programming 45(1), 503–528 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  28. Fletcher, R., Reeves, C.M.: Function minimization by conjugate gradients. The Computer Journal 7(2), 149–154 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  29. Bochkanov, S.: ALGLIB (December 2013), http://www.alglib.net

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Geuzaine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Geuzaine, C., Johnen, A., Lambrechts, J., Remacle, J.F., Toulorge, T. (2015). The Generation of Valid Curvilinear Meshes. In: Kroll, N., Hirsch, C., Bassi, F., Johnston, C., Hillewaert, K. (eds) IDIHOM: Industrialization of High-Order Methods - A Top-Down Approach. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 128. Springer, Cham. https://doi.org/10.1007/978-3-319-12886-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12886-3_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12885-6

  • Online ISBN: 978-3-319-12886-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics