Skip to main content

On Sliding-Block Codes

  • Chapter
  • First Online:
Transmitting and Gaining Data

Abstract

Sliding-block codes are non-block coding structures consisting of discrete time time-invariant possibly nonlinear filters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. R.L. Adler, Ergodic and mixing properties of infinite memory channels. Proc. Am. Math. Soc. 12, 924–930 (1961)

    Article  MATH  Google Scholar 

  2. R. Ahlswede, The weak capacity of averaged channels. Z. Wahrscheinlichkeitstheorie Verw. Geb. 11, 61–73 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  3. R. Ahlswede, Beiträge zur shannonschen informationstheorie im falle nichtstationärer Kanäle. Z. Wahrscheinlichkeitstheorie Verw. Geb. 10, 1–42 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  4. R. Ahlswede, A constructive proof of the coding theorem for discrete memoryless channels in case of complete feedback, in Sixth Prague Conference on Information Theory, Statistics Decision Functions and Random Processes, September 1971, Publishing House Czechosl. Academy of Sciences, pp. 1–22 (1973)

    Google Scholar 

  5. R. Ahlswede, P. Gács, Two contributions to information theory, topics in information theory (Second Colloquium, Keszthely, 1975). Colloq. Math. Soc. Janos Bolyai, Amst. 16, 17–40 (1977)

    Google Scholar 

  6. R. Ahlswede, I. Wegener, in Wiley-Interscience Series in Discrete Mathematics and Optimization 1987, ed. by R.L. Graham, J.K. Leenstra, R.E. Tarjan. Suchprobleme, Teubner Verlag, Stuttgart; Russian Edition with Appendix by Maljutov 1981, English Edition with Supplement of Recent Literature (1979)

    Google Scholar 

  7. R. Ahlswede, J. Wolfowitz, Channels without synchronization. Adv. Appl. Probab. 3, 383–403 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  8. T. Berger, J.K.Y. Lau, On binary sliding block codes. IEEE Trans. Inf. Theory 23(3), 343–353 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  9. D. Blackwell, Infinite codes for memoryless channels. Ann. Math. Stat. 30, 1242–1244 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  10. L. Breiman, On achieving channel capacity in finite-memory channels. Illinois J. Math. 4, 246–252 (1960)

    MATH  MathSciNet  Google Scholar 

  11. T.M. Cover, R.J. McEliece, E.C. Posner, Asynchronous multiple-access channel capacity. IEEE Trans. Inf. Theory 27(4), 409–413 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  12. R.L. Dobrushin, Shannon’s theorem for channels with synchronization errors, Problemy Peredachi Informatsii 3, 18–36 (1967) (Translated in Probl. Inf. Transm. 3, 31–36 (1967))

    Google Scholar 

  13. G.D. Forney Jr, Information Theory (Stanford University Course Notes, Winter, 1972)

    Google Scholar 

  14. R.M. Gray, Sliding-block source coding. IEEE Trans. Inf. Theory 21, 357–368 (1975)

    Article  MATH  Google Scholar 

  15. R.M. Gray, Entropy and Information Theory (Springer, New York, 1990)

    Book  MATH  Google Scholar 

  16. R.M. Gray, D.L. Neuhoff, D.S. Ornstein, Nonblock source coding with a fidelity criterion. Ann. Probab. 3(3), 478–491 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  17. R.M. Gray, D.L. Neuhoff, D.S. Ornstein, Process definitions of distortion-rate functions and source coding theorems. IEEE Trans. Inf. Theory 21(5), 524–532 (1975)

    Article  MATH  Google Scholar 

  18. R.M. Gray, D.S. Ornstein, Sliding-block joint source/noisy-channel coding theorems. IEEE Trans. Inf. Theory 22(6), 682–690 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  19. R.M. Gray, D.S. Ornstein, Block coding for discrete stationary d̄-continuous noisy channels. IEEE Trans. Inf. Theory 25(3), 292–306 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  20. R.M. Gray, D.S. Ornstein, R.L. Dobrushin, Block synchronization, sliding-block coding, invulnerable sources and zero error codes for discrete noisy channels. Ann. Probab. 8(4), 639–674 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  21. K. Jacobs, Die Übertragung diskreter Informationen durch periodische und fastperiodische Kanäle. Math. Ann. 137, 125–135 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  22. K. Jacobs, Informationstheorie (Seminarbericht, Göttingen, 1960)

    Google Scholar 

  23. K. Jacobs, Über die Struktur der mittleren Entropie. Math. Z. 78, 33–43 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  24. J.C. Kieffer, A general formula for the capacity of stationary nonanticipatory channels. Inf. Control 26, 381–391 (1974)

    Article  MathSciNet  Google Scholar 

  25. J.C. Kieffer, On sliding block coding for transmission of a source over a stationary nonanticipatory channel. Inf. Control 35(1), 1–19 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  26. J.C. Kieffer, Block coding for an ergodic source relative to a zero-one valued fidelity criterion. IEEE Trans. Inf. Theory 24(4), 432–438 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  27. J.C. Kieffer, On the transmission of Bernoulli sources over stationary channels. Ann. Probab. 8(5), 942–961 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  28. J.C. Kieffer, Block coding for weakly continuous channels. IEEE Trans. Inf. Theory 27(6), 721–727 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  29. T.T. Kadota, A.D. Wyner, Coding theorem for stationary, asymptotically memoryless, continuous-time channels. Ann. Math. Stat. 43, 1603–1611 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  30. J. Nedoma, The capacity of a discrete channel, in Transactions of the First Prague Conference on Information Theory, Statistics Decision Functions and Random Processes, pp. 143–181 (1957)

    Google Scholar 

  31. J. Nedoma, Über die ergodizität und r-Ergodizität stationärer wahrscheinlichkeitsmasse. Z. Wahrscheinlichkeitstheorie Verw. Geb. 2, 90–97 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  32. J. Nedoma, The synchronization for ergodic channels, in Transactions of the Third Prague Conference on Information Theory, Statistics Decision Functions and Random Processes, pp. 529–539 (1964)

    Google Scholar 

  33. D. Ornstein, An application of ergodic theory to probability theory. Ann. Probab. 1, 43–58 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  34. D. Ornstein, Ergodic Theory, Randomness, and Dynamical Systems (Yale University Press, New Haven, 1974)

    MATH  Google Scholar 

  35. K.R. Parthasarathy, Effective entropy rate and transmission of information through channels with additive random noise. Sankhyä Ser. A A25, 75–85 (1963)

    Google Scholar 

  36. E. Pfaffelhuber, Channels with asymptotically decreasing memory and anticipation. IEEE Trans. Inf. Theory 17, 379–385 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  37. R.A. Scholtz, Codes with synchronization capability. IEEE Trans. Inf. Theory 12, 135–140 (1966)

    Article  MathSciNet  Google Scholar 

  38. C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423, 623–656 (1948)

    Google Scholar 

  39. C.E. Shannon, The zero error capacity of a noisy channel. IRE Trans. Inf. Theory 2, 8–19 (1956)

    Article  MathSciNet  Google Scholar 

  40. P.C. Shields, The Theory of Bernoulli Shifts (University of Chicago Press, Chicago, 1973)

    MATH  Google Scholar 

  41. J.J. Stiffler, Theory of Synchronous Communication (Prentice-Hall, Englewood Cliffs, 1971)

    Google Scholar 

  42. I. Vajda, A synchronization method for totally ergodic channels, in Transactions of the Fourth Prague Conference on Information Theory, Statistics Decision Functions and Random Processes, pp. 611–625 (1965)

    Google Scholar 

  43. K. Winkelbauer, Communication channels with finite past history, in Transactions of the Second Prague Conference on Information Theory, Statistics Decision Function and Random Processes, pp. 685–831 (1960)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Deppe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ahlswede, R., Ahlswede, A., Althöfer, I., Deppe, C., Tamm, U. (2015). On Sliding-Block Codes. In: Ahlswede, A., Althöfer, I., Deppe, C., Tamm, U. (eds) Transmitting and Gaining Data. Foundations in Signal Processing, Communications and Networking, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-12523-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12523-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12522-0

  • Online ISBN: 978-3-319-12523-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics