Skip to main content

Reweighted l 2-Regularized Dual Averaging Approach for Highly Sparse Stochastic Learning

  • Conference paper
  • First Online:
Advances in Neural Networks – ISNN 2014 (ISNN 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8866))

Included in the following conference series:

Abstract

Recent advances in dual averaging schemes for primal-dual subgradient methods and stochastic learning revealed an ongoing and growing interest in making stochastic and online approaches consistent and tailored towards sparsity inducing norms. In this paper we focus on the reweighting scheme in the \(l_2\)-Regularized Dual Averaging approach which favors properties of a strongly convex optimization objective while approximating in a limit the \(l_0\)-type of penalty. In our analysis we focus on a regret and convergence criteria of such an approximation. We derive our results in terms of a sequence of strongly convex optimization objectives obtained via the smoothing of a sub-differential and non-smooth loss function, e.g. hinge loss. We report an empirical evaluation of the convergence in terms of the cumulative training error and the stability of the selected set of features. Experimental evaluation shows some improvements over the \(l_1\)-RDA method in the generalization error as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, New York (2004)

    Book  MATH  Google Scholar 

  2. Candès, E., Wakin, M., Boyd, S.: Enhancing sparsity by reweighted l1 minimization. Journal of Fourier Analysis and Applications 14(5), 877–905 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chartrand, R., Yin, W.: Iteratively reweighted algorithms for compressive sensing. In: IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2008, pp. 3869–3872 (March 2008)

    Google Scholar 

  4. Chen, X., Lin, Q., Peña, J.: Optimal regularized dual averaging methods for stochastic optimization. In: Bartlett, P.L., Pereira, F.C.N., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) NIPS, pp. 404–412 (2012)

    Google Scholar 

  5. Daubechies, I., DeVore, R., Fornasier, M., Güntürk, C.S.: Iteratively reweighted least squares minimization for sparse recovery. Comm. Pure Appl. Math. 63(1), 1–38 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Frank, A., Asuncion, A.: UCI machine learning repository (2010). http://archive.ics.uci.edu/ml

  7. Huang, K., King, I., Lyu, M.R.: Direct zero-norm optimization for feature selection. In: ICDM, pp. 845–850 (2008)

    Google Scholar 

  8. Lai, M.J., Liu, Y.: The null space property for sparse recovery from multiple measurement vectors. Applied and Computational Harmonic Analysis 30(3), 402–406 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Lai, M.J., Xu, Y., Yin, W.: Improved iteratively reweighted least squares for unconstrained smoothed \(l_q\) minimization. SIAM J. Numerical Analysis 51(2), 927–957 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  10. Lázaro, J.L., De Brabanter, K., Dorronsoro, J.R., Suykens, J.A.K.: Sparse LS-SVMs with \(l_0\)-norm minimization. In: ESANN, pp. 189–194 (2011)

    Google Scholar 

  11. Nelder, J.A., Mead, R.: A simplex method for function minimization. Computer Journal 7, 308–313 (1965)

    Article  MATH  Google Scholar 

  12. Nesterov, Y.: Primal-dual subgradient methods for convex problems. Mathematical Programming 120(1), 221–259 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Shalev-Shwartz, S., Singer, Y.: Logarithmic regret algorithms for strongly convex repeated games. Tech. rep., The Hebrew University (2007)

    Google Scholar 

  14. Shalev-Shwartz, S., Singer, Y., Srebro, N.: Pegasos: Primal Estimated sub-GrAdient SOlver for SVM. In: Proceedings of the 24th International Conference on Machine Learning, ICML 2007, New York, NY, USA, pp. 807–814 (2007)

    Google Scholar 

  15. Shalev-Shwartz, S., Tewari, A.: Stochastic methods for l1 regularized loss minimization. In: Proceedings of the 26th Annual International Conference on Machine Learning, ICML 2009, pp. 929–936. ACM, New York (2009)

    Google Scholar 

  16. Wipf, D.P., Nagarajan, S.S.: Iterative reweighted \(l_1\) and \(l_2\) methods for finding sparse solutions. J. Sel. Topics Signal Processing 4(2), 317–329 (2010)

    Article  Google Scholar 

  17. Xavier-De-Souza, S., Suykens, J.A.K., Vandewalle, J., Bollé, D.: Coupled simulated annealing. IEEE Trans. Sys. Man Cyber. Part B 40(2), 320–335 (2010)

    Google Scholar 

  18. Xiao, L.: Dual averaging methods for regularized stochastic learning and online optimization. J. Mach. Learn. Res. 11, 2543–2596 (2010)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vilen Jumutc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Jumutc, V., Suykens, J.A.K. (2014). Reweighted l 2-Regularized Dual Averaging Approach for Highly Sparse Stochastic Learning. In: Zeng, Z., Li, Y., King, I. (eds) Advances in Neural Networks – ISNN 2014. ISNN 2014. Lecture Notes in Computer Science(), vol 8866. Springer, Cham. https://doi.org/10.1007/978-3-319-12436-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12436-0_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12435-3

  • Online ISBN: 978-3-319-12436-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics