Skip to main content

Parametric Estimation of Lévy Processes

  • Chapter
  • First Online:
Lévy Matters IV

Part of the book series: Lecture Notes in Mathematics ((LEVY,volume 2128))

Abstract

The main purpose of this chapter is to present some theoretical aspects of parametric estimation of Lévy processes based on high-frequency sampling, with a focus on infinite activity pure-jump models. Asymptotics for several classes of explicit estimating functions are discussed. In addition to the asymptotic normality at several rates of convergence, a uniform tail-probability estimate for statistical random fields is given. As specific cases, we discuss method of moments for the stable Lévy processes in much greater detail, with briefly mentioning locally stable Lévy processes too. Also discussed is, due to its theoretical importance, a brief review of how the classical likelihood approach works or does not, beyond the fact that the likelihood function is not explicit.

AMS Subject Classification 2000:

Primary: 60F05, 62F12, 60G51, 60G52

Secondary: 60G18

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abramowitz, M., & Stegun, I. A. (Eds.). (1992). Handbook of mathematical functions with formulas, graphs, and mathematical tables. New York: Dover Publications. Reprint of the 1972 edition.

    Google Scholar 

  2. Adams, R. A. (1973). Some integral inequalities with applications to the imbedding of Sobolev spaces defined over irregular domains. Transactions of the American Mathematical Society, 178, 401–429.

    Article  MATH  MathSciNet  Google Scholar 

  3. Aït-Sahalia, Y., & Jacod, J. (2008). Fisher’s information for discretely sampled Lévy processes. Econometrica, 76(4), 727–761.

    Article  MATH  MathSciNet  Google Scholar 

  4. Aït-Sahalia, Y., & Jacod, J. (2012). Analyzing the spectrum of asset returns: Jump and volatility components in high frequency data. Journal of Economic Literature, 50(4), 1007–1050.

    Article  Google Scholar 

  5. Akritas, M. G. (1982). Asymptotic theory for estimating the parameters of a Lévy process. Annals of the Institute of Statistical Mathematics, 34(2), 259–280.

    Article  MATH  MathSciNet  Google Scholar 

  6. Akritas, M. G., & Johnson, R. A. (1981). Asymptotic inference in Lévy processes of the discontinuous type. Annals of Statistics, 9(3), 604–614.

    Article  MATH  MathSciNet  Google Scholar 

  7. Asmussen, S., & Rosiński, J. (2001). Approximations of small jumps of Lévy processes with a view towards simulation. Journal of Applied Probability, 38(2), 482–493.

    Article  MATH  MathSciNet  Google Scholar 

  8. Baeumer, B., & Meerschaert, M. M. (2010). Tempered stable Lévy motion and transient super-diffusion. Journal of Computational and Applied Mathematics, 233(10), 2438–2448.

    Article  MATH  MathSciNet  Google Scholar 

  9. Bar-Lev, S. K., Löpker, A., & Stadje, W. (2012). On the small-time behavior of subordinators. Bernoulli, 18(3), 823–835.

    Article  MATH  MathSciNet  Google Scholar 

  10. Barndorff-Nielsen, O. E. (1995). Normal inverse Gaussian processes and the modelling of stock returns. Research report 300, Department of Theoretical Statistics, Institute of Mathematics, University of Aarhus.

    Google Scholar 

  11. Barndorff-Nielsen, O. E. (1998). Processes of normal inverse Gaussian type. Finance and Stochastics, 2(1), 41–68.

    Article  MATH  MathSciNet  Google Scholar 

  12. Barndorff-Nielsen, O. E., Graversen, S. E., Jacod, J., Podolskij, M., & Shephard, N. (2006). A central limit theorem for realised power and bipower variations of continuous semimartingales. In From stochastic calculus to mathematical finance (pp. 33–68). Berlin: Springer.

    Chapter  Google Scholar 

  13. Barndorff-Nielsen, O. E., & Shephard, N. (2002). Normal modified stable processes. Theory of Probability and Mathematical Statistics, 65, 1–20.

    MathSciNet  Google Scholar 

  14. Barndorff-Nielsen, O. E., & Shephard, N. (2006). Power variation and time change. Theory of Probability and its Applications, 50(1), 1–15.

    Article  MATH  MathSciNet  Google Scholar 

  15. Basawa, I. V., & Scott, D. J. (1983). Asymptotic optimal inference for nonergodic models. Lecture notes in statistics (Vol. 17). New York: Springer.

    Google Scholar 

  16. Bertoin, J. (1996). Lévy processes. Cambridge tracts in mathematics (Vol. 121). Cambridge: Cambridge University Press.

    Google Scholar 

  17. Bertoin, J., & Doney, R. A. (1997). Spitzer’s condition for random walks and Lévy processes. Annales de l’Institut Henri Poincaré (B) Probability and Statistics, 33(2), 167–178.

    Article  MATH  MathSciNet  Google Scholar 

  18. Bibby, B., & Sørensen, M. (2003). Hyperbolic processes in finance. In Handbook of heavy tailed distributions in finance (pp. 211–248). Chichester: Elsevier.

    Chapter  Google Scholar 

  19. Borak, S., Härdle, W., & Weron, R. (2005). Stable distributions. In Statistical tools for finance and insurance (pp. 21–44). Berlin: Springer.

    Chapter  Google Scholar 

  20. Chambers, J. M., Mallows, C. L., & Stuck, B. W. (1976). A method for simulating stable random variables. Journal of the American Statistical Association, 71(354), 340–344.

    Article  MATH  MathSciNet  Google Scholar 

  21. Cont, R., & Mancini, C. (2011). Nonparametric tests for pathwise properties of semimartingales. Bernoulli, 17(2), 781–813.

    Article  MATH  MathSciNet  Google Scholar 

  22. Corcuera, J. M., Nualart, D., & Woerner, J. H. C. (2007). A functional central limit theorem for the realized power variation of integrated stable processes. Stochastic Analysis and Applications, 25(1), 169–186.

    Article  MATH  MathSciNet  Google Scholar 

  23. Cox, D. R., & Reid, N. (1987). Parameter orthogonality and approximate conditional inference. Journal of the Royal Statistical Society, Series B, 49(1), 1–39. With a discussion.

    Google Scholar 

  24. Cufaro Petroni, N. (2007). Mixtures in nonstable Lévy processes. Journal of Physics A, 40(10), 2227–2250.

    Article  MATH  MathSciNet  Google Scholar 

  25. David, H. A., & Nagaraja, H. N. (2003). Order statistics. Wiley series in probability and statistics (3rd ed.). Hoboken, NJ: Wiley-Interscience [John Wiley and Sons].

    Google Scholar 

  26. Doney, R. A. (2007). Fluctuation theory for Lévy processes. Lecture notes in mathematics (Vol. 1897). Berlin: Springer. Lectures from the 35th Summer School on Probability Theory held in Saint-Flour, July 6–23, 2005, Edited and with a foreword by Jean Picard.

    Google Scholar 

  27. DuMouchel, W. H. (1983). Estimating the stable index α in order to measure tail thickness: A critique. Annals of Statistics, 11(4), 1019–1031.

    MATH  MathSciNet  Google Scholar 

  28. Dvoretzky, A. (1977). Asymptotic normality of sums of dependent random vectors. In Multivariate analysis, IV (Proceedings of the fourth international symposium, Dayton, OH, 1975) (pp. 23–34). Amsterdam: North-Holland.

    Google Scholar 

  29. Figueroa-López, J. E. (2008). Small-time moment asymptotics for Lévy processes. Statistics and Probability Letters, 78(18), 3355–3365.

    Article  MATH  MathSciNet  Google Scholar 

  30. Figueroa-López, J. E. (2011). Central limit theorems for the non-parametric estimation of time-changed Lévy models. Scandinavian Journal of Statistics, 38(4), 748–765.

    Article  MATH  MathSciNet  Google Scholar 

  31. Gegler, A., & Stadtmüller, U. (2010). Estimation of the characteristics of a Lévy process. Journal of Statistical Planning and Inference, 140(6), 1481–1496.

    Article  MATH  MathSciNet  Google Scholar 

  32. Grigelionis, B. (1999). Processes of Meixner type. Lithuanian Mathematical Journal, 39(1), 33–41.

    Article  MATH  MathSciNet  Google Scholar 

  33. Grigoletto, M., & Provasi, C. (2009). Simulation and estimation of the Meixner distribution. Communications in Statistics - Simulation and Computation, 38(1–2), 58–77.

    MATH  MathSciNet  Google Scholar 

  34. Hájek, J. (1969/1970). A characterization of limiting distributions of regular estimates. Zeitschrift flir Wahrscheinlichkeitstheorie und verwandte Gebiete, 14, 323–330.

    Google Scholar 

  35. Hammerstein, E. A. v. (2010). Generalized hyperbolic distributions: Theory and applications to CDO pricing. Ph.D. thesis, University of Freiburg.

    Google Scholar 

  36. Ibragimov, I. A., & Linnik, Y. V. (1971). Independent and stationary sequences of random variables. Groningen: Wolters-Noordhoff Publishing. With a supplementary chapter by I. A. Ibragimov and V. V. Petrov, Translation from the Russian edited by J. F. C. Kingman.

    MATH  Google Scholar 

  37. Inagaki, N. (1970). On the limiting distribution of a sequence of estimators with uniformity property. Annals of the Institute of Statistical Mathematics, 22, 1–13.

    Article  MATH  MathSciNet  Google Scholar 

  38. Jacod, J. (2007). Asymptotic properties of power variations of Lévy processes. ESAIM: Probability and Statistics, 11, 173–196.

    Article  MATH  MathSciNet  Google Scholar 

  39. Jacod, J. (2009). Inference for stochastic processes. In Handbook of financial econometrics, applications (Vol 2, pp.197–239). Elsevier.

    Google Scholar 

  40. Jacod, J., & Shiryaev, A. N. (2003). Limit theorems for stochastic processes (2nd ed.). Berlin: Springer.

    Book  MATH  Google Scholar 

  41. Janicki, A., & Weron, A. (1994). Simulation and chaotic behavior of α-stable stochastic processes. Monographs and textbooks in pure and applied mathematics (Vol. 178). New York: Marcel Dekker.

    Google Scholar 

  42. Jing, B.-Y., Kong, X.-B., & Liu, Z. (2012). Modeling high-frequency financial data by pure jump processes. Annals of Statistics, 40(2), 759–784.

    Article  MATH  MathSciNet  Google Scholar 

  43. Jørgensen, B., & Knudsen, S. J. (2004). Parameter orthogonality and bias adjustment for estimating functions. Scandinavian Journal of Statistics, 31(1), 93–114.

    Article  MathSciNet  Google Scholar 

  44. Kabanov, J. M., Lipcer, R. Š., & Širjaev, A. N. (1979). Absolute continuity and singularity of locally absolutely continuous probability distributions. II. Matematicheskii Sbornik. Novaya Seriya, 108(150)(1), 32–61, 143.

    Google Scholar 

  45. Kallsen, J., & Shiryaev, A. N. (2003). Time change representation of stochastic integrals. Theory of Probability and its Applications, 46(3), 522–528.

    Article  MathSciNet  Google Scholar 

  46. Kawai, R. (2013). On singularity of fisher information matrix for stochastic processes under high frequency sampling. In Numerical mathematics and advanced applications 2011 (pp. 841–849). Berlin: Springer.

    Google Scholar 

  47. Kawai, R., & Masuda, H. (2011). On simulation of tempered stable random variates. Journal of Computational and Applied Mathematics, 235(8), 2873–2887.

    Article  MATH  MathSciNet  Google Scholar 

  48. Kawai, R., & Masuda, H. (2011). On the local asymptotic behavior of the likelihood function for Meixner Lévy processes under high-frequency sampling. Statistics and Probability Letters, 81(4), 460–469.

    Article  MATH  MathSciNet  Google Scholar 

  49. Kawai, R., & Masuda, H. (2013). Local asymptotic normality for normal inverse Gaussian Lévy processes with high-frequency sampling. ESAIM: Probability and Statistics, 17, 13–32.

    Article  MATH  MathSciNet  Google Scholar 

  50. Küchler, U., & Sørensen, M. (1997). Exponential families of stochastic processes. Springer series in statistics. New York: Springer.

    Google Scholar 

  51. Küchler, U., & Tappe, S. (2013). Tempered stable distributions and processes. Stochastic Processes and their Applications, 123(12), 4256–4293.

    Article  MATH  MathSciNet  Google Scholar 

  52. Kuruoğlu, E. E. (2001). Density parameter estimation of skewed α-stable distributions. IEEE Transactions on Signal Processing, 49(10), 2192–2201.

    Article  MathSciNet  Google Scholar 

  53. Le Cam, L., & Yang, G. L. (2000). Asymptotics in statistics. Springer series in statistics (2nd ed.). New York: Springer. Some basic concepts.

    Google Scholar 

  54. Liu, R. C., & Brown, L. D. (1993). Nonexistence of informative unbiased estimators in singular problems. Annals of Statistics, 21(1), 1–13.

    Article  MATH  MathSciNet  Google Scholar 

  55. Luschgy, H. (1992). Local asymptotic mixed normality for semimartingale experiments. Probability Theory and Related Fields, 92(2), 151–176.

    Article  MATH  MathSciNet  Google Scholar 

  56. Luschgy, H., & Pagès, G. (2008). Moment estimates for Lévy processes. Electronic Communications in Probability, 13, 422–434.

    Article  MATH  MathSciNet  Google Scholar 

  57. Mancini, C. (2004). Estimation of the characteristics of the jumps of a general Poisson-diffusion model. Scandinavian Actuarial Journal, 1, 42–52.

    Article  MathSciNet  Google Scholar 

  58. Masuda, H. (2009). Joint estimation of discretely observed stable Lévy processes with symmetric Lévy density. Journal of the Japan Statistical Society, 39(1), 49–75.

    Article  MathSciNet  Google Scholar 

  59. Masuda, H. (2009). Notes on estimating inverse-Gaussian and gamma subordinators under high-frequency sampling. Annals of the Institute of Statistical Mathematics, 61(1), 181–195.

    Article  MATH  MathSciNet  Google Scholar 

  60. Masuda, H. (2010). Approximate self-weighted LAD estimation of discretely observed ergodic Ornstein-Uhlenbeck processes. Electronic Journal of Statistics, 4, 525–565.

    Article  MATH  MathSciNet  Google Scholar 

  61. Masuda, H. (2010). On statistical aspects in calibrating a geometric skewed stable asset price model. In Recent advances in financial engineering 2009: proceedings of the KIER-TMU international workshop on financial engineering 2009 (pp. 181–202).

    Google Scholar 

  62. Masuda, H. (2013). Convergence of Gaussian quasi-likelihood random fields for ergodic Lévy driven SDE observed at high frequency. Annals of Statistics, 41(3), 1593–1641.

    Article  MATH  MathSciNet  Google Scholar 

  63. Nikias, C. L., & Shao, M. (1995). Signal processing with alpha-stable distributions and applications. New York: Wiley-Interscience.

    Google Scholar 

  64. Nolan, J. P. (1998). Parameterizations and modes of stable distributions. Statistics and Probability Letters, 38(2), 187–195.

    Article  MATH  MathSciNet  Google Scholar 

  65. Ogihara, T., & Yoshida, N. (2011). Quasi-likelihood analysis for the stochastic differential equation with jumps. Statistical Inference for Stochastic Processes, 14(3), 189–229.

    Article  MATH  MathSciNet  Google Scholar 

  66. Prakasa Rao, B. L. S. (1999). Statistical inference for diffusion type processes. Kendall’s library of statistics (Vol. 8). London: Edward Arnold.

    Google Scholar 

  67. Protter, P. E. (2005). Stochastic integration and differential equations. Stochastic modelling and applied probability (2nd ed., Vol. 21). Berlin: Springer. Second edition. Version 2.1, Corrected third printing.

    Google Scholar 

  68. Raible, S. (2000). Lévy processes in finance: Theory, numerics, and empirical facts. Ph.D. thesis, Universität Freiburg i. Br.

    Google Scholar 

  69. Rosiński, J. (2007). Tempering stable processes. Stochastic Processes and their Applications, 117(6), 677–707.

    Article  MATH  MathSciNet  Google Scholar 

  70. Rubin, H., & Tucker, H. G. (1959). Estimating the parameters of a differential process. Annals of Mathematical Statistics, 30, 641–658.

    Article  MATH  MathSciNet  Google Scholar 

  71. Samorodnitsky, G., & Taqqu, M. S. (1994). Stable non-Gaussian random processes. Stochastic modeling. New York: Chapman and Hall. Stochastic models with infinite variance.

    Google Scholar 

  72. Sato, K.-i. (1999). Lévy processes and infinitely divisible distributions. Cambridge studies in advanced mathematics (Vol. 68). Cambridge: Cambridge University Press. Translated from the 1990 Japanese original, Revised by the author.

    Google Scholar 

  73. Sato, K.-i. (2000). Density transformation in Lévy processes. MaPhySto Lecture Notes 7. http://www.maphysto.dk/publications/MPS-LN/2000/7.pdf.

  74. Schoutens, W., & Teugels, J. L. (1998). Lévy processes, polynomials and martingales. Communications in statistics. Stochastic models, 14(1–2), 335–349. Special issue in honor of Marcel F. Neuts.

    Google Scholar 

  75. Shimizu, Y. (2008). A practical inference for discretely observed jump-diffusions from finite samples. Journal of the Japan Statistical Society, 38(3), 391–413.

    Article  MATH  MathSciNet  Google Scholar 

  76. Shimizu, Y., & Yoshida, N. (2006). Estimation of parameters for diffusion processes with jumps from discrete observations. Statistical Inference for Stochastic Processes, 9(3), 227–277.

    Article  MATH  MathSciNet  Google Scholar 

  77. Sørensen, M. (1991). Likelihood methods for diffusions with jumps. In Statistical inference in stochastic processes. Probability: Pure and Applied (Vol. 6, pp. 67–105). New York: Dekker.

    Google Scholar 

  78. Sørensen, M. (2012). Estimating functions for diffusion-type processes. In Statistical methods for stochastic differential equations. Monographs on statistics and applied probability (Vol. 124, pp. 1–107). Boca Raton, FL: CRC Press.

    Google Scholar 

  79. Stoica, P., & Marzetta, T. L. (2001). Parameter estimation problems with singular information matrices. IEEE Transactions on Signal Processing, 49(1), 87–90.

    Article  MathSciNet  Google Scholar 

  80. Strasser, H. (1985). Mathematical theory of statistics. de Gruyter studies in mathematics (Vol. 7). Berlin: Walter de Gruyter & Co. Statistical experiments and asymptotic decision theory.

    Google Scholar 

  81. Sweeting, T. J. (1980). Uniform asymptotic normality of the maximum likelihood estimator. Annals of Statistics, 8(6), 1375–1381.

    Article  MATH  MathSciNet  Google Scholar 

  82. Todorov, V. (2013). Power variation from second order differences for pure jump semimartingales. Stochastic Processes and their Applications, 123(7), 2829–2850.

    Article  MATH  MathSciNet  Google Scholar 

  83. Todorov, V., & Tauchen, G. (2012). Realized Laplace transforms for pure-jump semimartingales. Annals of Statistics, 40(2), 1233–1262.

    Article  MATH  MathSciNet  Google Scholar 

  84. van der Vaart, A. W. (1998). Asymptotic statistics. Cambridge series in statistical and probabilistic mathematics (Vol. 3). Cambridge: Cambridge University Press.

    Google Scholar 

  85. Weron, R. (1996). On the chambers-mallows-stuck method for simulating skewed stable random variables. Statistics and Probability Letters, 28(2), 165–171. Correction of the Eq. (3.9) is available at http://mpra.ub.uni-muenchen.de/20761/.

  86. Woerner, J. H. C. (2001). Statistical analysis for discretely observed Lévy processes. Ph.D. thesis, University of Freiburg.

    Google Scholar 

  87. Woerner, J. H. C. (2003). Purely discontinuous lévy processes and power variation: Inference for integrated volatility and the scale parameter. 2003-MF-08 Working Paper Series in Mathematical Finance, University of Oxford.

    Google Scholar 

  88. Woerner, J. H. C. (2007). Inference in Lévy-type stochastic volatility models. Advances in Applied Probability, 39(2), 531–549.

    Article  MATH  MathSciNet  Google Scholar 

  89. Yoshida, N. (2011). Polynomial type large deviation inequalities and quasi-likelihood analysis for stochastic differential equations. Annals of the Institute of Statistical Mathematics, 63(3), 431–479.

    Article  MathSciNet  Google Scholar 

  90. Zeigler, R. K. (1950). A note on the asymptotic simultaneous distribution of the sample median and the mean deviation from the sample median. Annals of Mathematical Statistics, 21, 452–455.

    Article  MATH  MathSciNet  Google Scholar 

  91. Zhao, Z., & Wu, W. B. (2009). Nonparametric inference of discretely sampled stable Lévy processes. Journal of Econometrics, 153(1), 83–92.

    Article  MathSciNet  Google Scholar 

  92. Zolotarev, V. M. (1986). One-dimensional stable distributions. Translations of mathematical monographs (Vol. 65). Providence: American Mathematical Society. Translated from the Russian by H. H. McFaden, Translation edited by Ben Silver.

    Google Scholar 

Download references

Acknowledgements

I extend my thanks to Professor Jean Jacod and the anonymous referee for their detailed suggestions and comments, which not only brought some errors in the first draft to my attention but also led to substantial improvement in the exposition of this chapter. I am grateful to Professor Claudia Klüppelberg for her encouragement. My thanks also go to Sangji Kim, Yuma Uehara, Shoichi Eguchi, and Yusuke Shimizu for proofreading. Needless to say, all remaining errors are of my own. Some materials of this chapter are based on the joint papers with Dr. Reiichiro Kawai, to whom I thank for fruitful discussions during the works.

This work was partly supported by JSPS KAKENHI Grant Numbers 23740082, 26400204.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Masuda .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Masuda, H. (2015). Parametric Estimation of Lévy Processes. In: Lévy Matters IV. Lecture Notes in Mathematics(), vol 2128. Springer, Cham. https://doi.org/10.1007/978-3-319-12373-8_3

Download citation

Publish with us

Policies and ethics