Skip to main content

Evaluation of Protein Electrostatic Potential from Molecular Dynamics Simulations in the Presence of Exogenous Electric Fields: The Case Study of Myoglobin

  • Chapter
  • First Online:
Computational Electrostatics for Biological Applications
  • 1247 Accesses

Abstract

When studying proteins in solution it is apparent that electrostatic interactions play a role in folding, conformational stability, and other chemical-physical properties. Electrostatics considers the evaluation of the static electrical field that is formed between charged species once a rearrangement of their charge distributions has occurred due to the influence of each other and their local environment. A powerful tool used to follow the many interactions among the polar and/or charged residues is computer simulations, which can provide atomic-scale information on energetic and dynamic contributions of the bio-molecular structure. Here we use molecular dynamics (MD) simulations to map on a three-dimensional space the electrostatic interactions within the protein itself and of the protein with its aqueous environment. The method has been first tested on a simulation domain of water molecules and then applied to the myoglobin-water system. The presence of intense electric fields has also been considered and some representative results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kohel P (2006) Electrostatics calculations: latest methodological advances. Curr Opin Struct Biol 16:142–151

    Article  Google Scholar 

  2. Khan J, Stapleton JA, Pike D, Nanda V (2012) Electrostatics in protein engineering and design. In: Huseyin C (ed) Electrostatics. ISBN 978-953-51-0239-7. doi:10.5772/37875

  3. Dong F, Olsen B, Baker NA (2008) Computational methods for biomolecular electrostatics. Methods Cell Biol 84:843–870

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Sharp KA, Honig B (1990) Electrostatic interactions in macromolecules: theory and applications. Annu Rev Biophys Biophys Chem 19:301–332

    Article  CAS  PubMed  Google Scholar 

  5. Gilson M, Honig B (1988) Calculation of the total electrostatic energy of a macromolecular system. Solvation energies, binding energies and conformational analysis. Proteins: Struct Funct Genet 4:7–18

    Google Scholar 

  6. Warshel A, Sharma PK, Kato M et al (2006) Modeling electrostatic effects in proteins. Biochimica et Biophysica Acta 1764:1647–1676

    Article  CAS  PubMed  Google Scholar 

  7. Delemotte L, Tarek M (2012) Molecular dynamics simulations of lipid membrane electroporation. J Membr Biol 245:531–543

    Google Scholar 

  8. Delemotte L, Tarek M, Kleinb ML et al (2011) Intermediate states of the Kv1.2 voltage sensor from atomistic molecular dynamics simulations. PNAS 108(15):6109–6114

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Aksimentiev A, Schulten K (2005) Imaging a-hemolysin with molecular dynamics: ionic conductance, osmotic permeability, and the electrostatic potential map. Biophys J 88:3745–3761

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Gurtovenko AA, Vattulainen I (2009) Calculation of the electrostatic potential of lipid bilayers from molecular dynamics simulations: methodological issues. J Chem Phys 130:215107

    Article  PubMed  Google Scholar 

  11. Essmann U, Perera L, Berkowitz ML et al (1995) A smooth particle mesh Ewald method. J Chem Phys 103(19):8577–8593

    Article  CAS  Google Scholar 

  12. D\(^{\prime }\)Alessandro M, Aschi M, Paci M et al (2004) Theoretical modeling of enzyme reaction chemistry: the electron transfer of the reduction mechanism in CuZn superoxide dismutase. J Phys Chem B 108:16255–16260

    Google Scholar 

  13. Spezia R, Aschi M, Di Nola A et al (2002) Extension of the perturbed matrix method: application to a water molecule. Chem Phys Lett 365:450–456

    Article  CAS  Google Scholar 

  14. Park ES, Boxer SG (2002) Origins of the sensitivity of molecular vibrations to electric fields: carbonyl and nitrosyl stretches in model compounds and proteins. J Phys Chem B 106:5800–5805

    Google Scholar 

  15. Freedman KJ, Jurgens M, Prabhu A, Ahn CW, Jemth P et al (2011) Chemical, thermal, and electric field induced unfolding of single protein molecules studied using nanopores. Anal Chem 83:5137–5144

    Article  CAS  PubMed  Google Scholar 

  16. Apollonio F, Liberti M, Marracino P et al (2012) Electroporation mechanism: review of molecular models based on computer simulation. Proceedings of 6th European conference on antennas and propagation, EuCAP 6206719:356–358. doi:10.1109/EuCAP.2012.6206719

  17. Apollonio F, Liberti M, Paffi A et al (2013) Feasibility for microwaves energy to affect biological systems via nonthermal mechanisms: a systematic approach. IEEE Trans Microw Theory Tech 61(5):2031–2045

    Article  Google Scholar 

  18. Solomentsev GY, English NJ, Mooney DA (2010) Hydrogen bond perturbation in hen egg white lysozyme by external electromagnetic fields: a nonequilibrium molecular dynamics study. J Chem Phys 133:235102

    Article  PubMed  Google Scholar 

  19. Apollonio F, Liberti M, Amadei A et al (2008) Mixed quantum-classical methods for molecular simulations of biochemical reactions with microwave fields: the case study of myoglobin. IEEE Trans Microw Theory Tech 56(11):2511–2519

    Article  CAS  Google Scholar 

  20. Marracino P, Amadei A, Apollonio F et al (2011) Modeling of chemical reactions in micelle: water-mediated keto-enol interconversion as a case study. J Phys Chem B 115:8102–8111

    Article  CAS  PubMed  Google Scholar 

  21. Toschi F, Lugli F, Biscarini F et al (2009) Effects of electric field stress on a beta-amyloid peptide. J Phys Chem B 113:369–376

    Article  CAS  PubMed  Google Scholar 

  22. Pellegrino M, Apollonio F, Liberti M et al (2008) Molecular simulations of biochemical processes in presence of a MW signal. 2008 IEEE international symposium on antennas and propagation and USNC/URSI national radio science meeting, APS/URSI. doi:10.1109/APS.2008.4619666

  23. Hansson T, Oostenbrink C, van Gunsteren WF (2002) Molecular dynamics simulation. Curr Opin Struct Biol 12:190–196

    Article  CAS  PubMed  Google Scholar 

  24. Shen FW, Luo J, Zhu X et al (2007) Dopamine D1 receptor agonist and D2 receptor antagonist effects of the natural product (-)-stepholidine: molecular modeling and dynamics simulations. Bioph J 93:1431–1441

    Article  Google Scholar 

  25. Samsonowicz MR, Świslocka R, Regulska E et al (2007) Experimental and theoretical IR, Raman, NMR spectra of 2-, 3-, and 4-nitrobenzoic acids. Int J Quant Chem 107:480–494

    Article  CAS  Google Scholar 

  26. Treptow W, Maigret B, Chipot C et al (2004) Coupled motions between pore and voltage-sensor domains: a model for Shaker B, a voltage gated potassium channel. Biophys J 87:2365–2379

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Carpy A, Rusig I, Laguerre M (2001) Modelling drugs and receptors using potentials: examples in the GPCRs’ domain. SAR QSAR Environ Res 12:497–513

    Article  CAS  PubMed  Google Scholar 

  28. Mulholland AJ (2005) Modelling enzyme reaction mechanisms, specificity and catalysis. Drug Discov Today 10:1393–1402

    Article  CAS  PubMed  Google Scholar 

  29. Seminario JM, Zacarias AG, Derosa PA (2001) Theoretical analysis of complementary molecular memory devices. Lett J Phys Chem A 105(5):791–795

    CAS  Google Scholar 

  30. Amadei A, D’Abramo M, Di Nola A et al (2007) Theoretical study of intramolecular charge transfer in \(\uppi \)-conjugated oligomers. Chem Phys Lett 434:194–199

    Article  CAS  Google Scholar 

  31. Van Der Spoel D, Lindahl E, Hess B et al. (2005) GROMACS: fast, flexible, and free. J Comput Chem 26(16):1701–1718, doi:10.1002/jcc.20291

  32. English NJ, MacElroy JMD (2003) Molecular dynamics simulations of microwave heating of water. J Chem Phys 118:1589. doi:10.1063/1.1538595

  33. Frauenfelder H, McMahon BH, Fenimore PW (2003) Myoglobin: the hydrogen atom of biology and a paradigm of complexity. PNAS USA 100:8615–8617

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Berendsen HJC, Postma JPM, Gunsteren WFV et al (1981) In: Pullman B (ed) Intermolecular Forces. Reidel Publishing Company, Dordrecht

    Google Scholar 

  35. Berendsen HJC, Postma JPM, van Gunsteren WF et al (1984) J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  36. Evans DJ, Morriss GP (1990) Statistical mechanics of nonequilibrium liquids. Academic Press, London

    Google Scholar 

  37. Hess B, Bekker H, Berendsen HJC et al (1997) M J Comput Chem 18:1463–1472

    Article  CAS  Google Scholar 

  38. Darden TA, York DM, Pedersen LG (1993) J Chem Phys 98:10089

    Article  CAS  Google Scholar 

  39. Van Gunsteren WF, Billeter SR, Eising AA et al (1996) Biomolecular simulation: the GROMOS96 manual and user guide. Hochschlverlag AG an der ETH, Zurich

    Google Scholar 

  40. Marracino P, Apollonio F, Liberti M et al (2013) Effect of high exogenous electric pulses on protein conformation: myoglobin as a case study. J Phys Chem B 117(8):2273–2279. doi:10.1021/jp309857b

    Article  CAS  PubMed  Google Scholar 

  41. Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  PubMed  Google Scholar 

  42. Garate JA, English NJ, MacElroy JMD (2011) Human aquaporin 4 gating dynamics in dc and ac electric fields: a molecular dynamics study. J Chem Phys 134:055110

    Article  PubMed  Google Scholar 

  43. Marracino P, Paffi A, Reale R et al (2013) Technology of high-intensity electric-field pulses: a way to control protein unfolding. J Phys Chem Biophys 3:117. doi:10.4172/2161-0398.1000117

    Article  Google Scholar 

  44. Xiao S, Ni J, Wang S (2008) The bridging domain multiscale method and its high performance computing implementation. J Comput Theor Nanosci 5:1–10

    Article  Google Scholar 

  45. Hunter PJ, Borg TK (2003) Integration from proteins to organs: the physiome project. Nat Rev 4:237–243

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This activity is performed in the framework of the Joint IIT-Sapienza LAB on Life-NanoScience Project “Novel strategies for the imaging and treatment of brain tumors through targeting cancer stem cell-specific signaling pathways.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Apollonio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Marracino, P., Casciola, M., Liberti, M., Apollonio, F. (2015). Evaluation of Protein Electrostatic Potential from Molecular Dynamics Simulations in the Presence of Exogenous Electric Fields: The Case Study of Myoglobin. In: Rocchia, W., Spagnuolo, M. (eds) Computational Electrostatics for Biological Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-12211-3_13

Download citation

Publish with us

Policies and ethics