Skip to main content

Geometric Search and Geometric Processing

  • Chapter
  • First Online:
Digital and Discrete Geometry
  • 1710 Accesses

Abstract

In this chapter, we focus on cutting edge problems in geometric data processing. These problems have common properties and usually can be summarized as generally as: Given a set of n data points \(x_1,...,x_n\) in m-dimensional space,R m, how do we find the geometric structures of the sets or how do we use the geometric properties in real data processing? Geometric data representation, image segmentation, and object thinning are some of the most successful applications of discrete and digital geometry. Along with the fast development of wireless networking, geometric search, especially R-tree technology, has become a central method for quickly identifying and retrieving a geometric location. 3D thinning is one of the best applications developed through digital geometry by preserving topological structures while reducing pixels or voxels. The classic methods of geometric pattern recognition such as the k-means and k-nearest neighbor algorithms are also included. The newest topic in BigData and data science is concerned with these methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    VerticalNews reported a patent application by Canon Inc with the description on this. http://www.spclab.com/research/lambda/VerticalNewsReportsRelatedChen91a.pdf http://www.spclab.com/research/lambda/VerticalNewsReportsRelatedChen91a.pdf.

References

  1. S. Arya, T. Malamatos, and D. M. Mount. Space-time tradeoffs for approximate nearest neighbor searching. J. Assoc. Comput. Mach., 57:1–54, 2009.

    Article  MathSciNet  Google Scholar 

  2. M. Belkin, P. Niyogi, Laplacian Eigenmaps for Dimensionality Reduction and Data Representation, Neural Computation, June 2003; 15 (6):1373–1396.

    Article  MATH  Google Scholar 

  3. B. Bollobas, Random Graphs, Academic Press. 1985.

    Google Scholar 

  4. S. Brin and L. Page, The anatomy of a large-scale hypertextual Web search engine, Computer Networks and ISDN Systems 30: 107–117. 1998.

    Article  Google Scholar 

  5. G. Carlsson and A. Zomorodian, Theory of multidimensional persistence, Discrete and Computational Geometry, Volume 42, Number 1, July, 2009.

    Google Scholar 

  6. L. Cayton, Algorithms for manifold learning. Technical Report CS2008-0923, UCSD, 2005.

    Google Scholar 

  7. L. Chen, The λ-connected segmentation and the optimal algorithm for split-and-merge segmentation, Chinese J. Computers, 14(2), pp 321–331, 1991.

    Google Scholar 

  8. L. Chen, λ-Connectedness and Its Application to Image Segmentation, Recognition, and Reconstruction, University of Bedfordshire, U.K, July, 2001. (http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.427595)

  9. L. Chen, Discrete Surfaces and Manifolds: A theory of digital-discrete geometry and topology, 2004. SP Computing.

    Google Scholar 

  10. L. Chen, Digital Functions and Data Reconstruction, Springer, NY, 2013.

    Book  MATH  Google Scholar 

  11. L. Chen, and O. Adjei. lambda-Connected Segmentation and Fitting, Proceedings of IEEE conference on System, Man, and Cybernetics 2004. 3500–3506.

    Google Scholar 

  12. L. Chen, and Y. Rong, Digital topological method for computing genus and the Betti numbers, Topology and its Applications, Volume 157, Issue 12, 2010, Pages 1931–1936.

    Article  MathSciNet  MATH  Google Scholar 

  13. L Chen, H. Zhu and W. Cui, Very Fast Region-Connected Segmentation for Spatial Data: Case Study, IEEE conference on System, Man, and Cybernetics, 2006.

    Google Scholar 

  14. T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, MIT Press, 1993.

    Google Scholar 

  15. M. Demirbas, H. Ferhatosmanoglu, Peer-to-peer spatial queries in sensor networks, in 3rd IEEE Int. Conf. on Peer-to-Peer Computing, Linkoping, Sweden, Sept. 2003.

    Google Scholar 

  16. D. L. Donoho and C. Grimes. Hessian Eigenmaps: new locally linear embedding techniques for high-dimensional data. Technical Report TR-2003–08, Department of Statistics, Stanford University, 2003.

    Google Scholar 

  17. James D. Foley, Andries Van Dam, Steven K. Feiner and John F. Hughes, Computer Graphics: Principles and Practice. Addison-Wesley. 1995.

    Google Scholar 

  18. K. Fukunaga and L. D. Hostetler, The Estimation of the Gradient of a Density Function, with Applications in Pattern Recognition. IEEE Transactions on Information Theory, 21 (1): 32–40, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  19. R. Ghrist, Barcodes: the persistent topology of data, Bull. Amer. Math. Soc., 45(1), 61–75, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  20. R. C. Gonzalez, and R. Wood, Digital Image Processing, Addison-Wesley, Reading, MA, 1993.

    Google Scholar 

  21. J. Goodman, J. O’Rourke, Handbook of Discrete and Computational Geometry, CRC, 1997.

    Google Scholar 

  22. F. Harary, Graph theory, Addison-Wesley, Reading, Mass., 1969.

    Google Scholar 

  23. M. Hardt and A. Moitra. Algorithms and hardness for robust subspace recovery. In COLT, pages 354–375, 2013.

    Google Scholar 

  24. H. Homann, Implementation of a 3D thinning algorithm. Oxford University, Wolf- son Medical Vision Lab. 2007.

    Google Scholar 

  25. F. V. Jensen, Bayesian Networks and Decision Graphs, New York: Springer, 2001.

    Book  MATH  Google Scholar 

  26. T. Kanungo, D. M. Mount, N. Netanyahu, C. Piatko, R. Silverman, and A. Y. Wu, A Local Search Approximation Algorithm for k-Means Clustering, Computational Geometry: Theory and Applications, 28 (2004), 89–112.

    Google Scholar 

  27. R. Klette and A. Rosenfeld, Digital Geometry, Geometric Methods for Digital Picture Analysis, series in computer graphics and geometric modeling. Morgan Kaufmann, 2004.

    Google Scholar 

  28. T. C. Lee, R. L. Kashyap, and C. N. Chu. Building skeleton models via 3-D medial surface/axis thinning algorithms. Computer Vision, Graphics, and Image Processing, 56(6):462–478, 1994.

    Google Scholar 

  29. A. Levinshtein, Low and Mid-level Shape Priors For Image Segmentation, PhD Thesis, Department of Computer Science University of Toronto, 2010.

    Google Scholar 

  30. T. M. Mitchell, Machine Learning, McGraw Hill, 1997.

    Google Scholar 

  31. L. Page, S. Brin, R. Motwani, and T. Winograd, The PageRank Citation Ranking: Bringing Order to the Web. Technical Report. Stanford InfoLab. 1999.

    Google Scholar 

  32. T. Pavilidis, Algorithms for Graphics and Image Processing, Computer Science Press, Rockville, MD, 1982.

    Google Scholar 

  33. W. H. Press, et al. Numerical Recipes in C: The Art of Scientific Computing, 2nd Ed., Cambridge Univ Press, 1993.

    Google Scholar 

  34. X. Ren, J. Malik, Learning a classification model for segmentation, Proc. IEEE International Conference on Computer Vision, pp. 10–17, 2003.

    Google Scholar 

  35. A. Rosenfeld and A. C. Kak, Digital Picture Processing, 2nd ed., Academic Press, New York, 1982.

    Google Scholar 

  36. H. Samet, The Design and Analysis of Spatial Data Structures. Addison Wesley, Reading, MA, 1990.

    Google Scholar 

  37. L. K. Saul and S. T. Roweis. Think Globally, Fit Locally: Unsupervised Learning of Low Dimensional Manifolds. Journal of Machine Learning Research, v4, pp. 119–155, 2003.

    Google Scholar 

  38. J. Shi and J. Malik, Normalized cuts and image segmentation, IEEE Transactions on pattern analysis and machine intelligence, pp 888–905, Vol. 22, No. 8, 2000.

    Google Scholar 

  39. J. B. Tenenbaum, V. de Silva, J. C. Langford, A Global Geometric Framework for Nonlinear Dimensionality Reduction, Science 290, (2000), 2319–2323.

    Google Scholar 

  40. S. Theodoridis and K. Koutroumbas, Pattern Recognition, Academic Press, FL, 2003.

    Google Scholar 

  41. T. Y. Zhang, C. Y. Suen, A fast parallel algorithm for thinning digital patterns, Communications of the ACM, v. 27 n. 3, p. 236–239, 1984.

    Google Scholar 

  42. Z. Zhang and H. Zha, Principal Manifolds and Nonlinear Dimension Reduction via Local Tangent Space Alignment, SIAM Journal on Scientific Computing 26 (1) (2005), 313–338.

    Google Scholar 

  43. B. Zheng, W.-C. Lee, and D. L. Lee. Spatial Queries in Wireless Broadcast Systems. Wireless Networks, 10(6):723–736, 2004.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li M. Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chen, L. (2014). Geometric Search and Geometric Processing. In: Digital and Discrete Geometry. Springer, Cham. https://doi.org/10.1007/978-3-319-12099-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12099-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12098-0

  • Online ISBN: 978-3-319-12099-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics