Skip to main content

Integrating Brain Structure and Dynamics on Supercomputers

  • Conference paper
  • First Online:
Brain-Inspired Computing (BrainComp 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8603))

Included in the following conference series:

Abstract

Large-scale simulations of neuronal networks provide a unique view onto brain dynamics, complementing experiments, small-scale simulations, and theory. They enable the investigation of integrative models to arrive at a multi-scale picture of brain dynamics relating macroscopic imaging measures to the microscopic dynamics. Recent years have seen rapid development of the necessary simulation technology. We give an overview of design features of the NEural Simulation Tool (NEST) that enable simulations of spiking point neurons to be scaled to hundreds of thousands of processors. The performance of supercomputing applications is traditionally assessed using scalability plots. We discuss reasons why such measures should be interpreted with care in the context of neural network simulations. The scalability of neural network simulations on available supercomputers is limited by memory constraints rather than computational speed. This calls for future generations of supercomputers that are more attuned to the requirements of memory-intensive neuroscientific applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The cerebral cortex is the thin layer of cells on the outer surface of the vertebrate brain, responsible for high-level sensory, cognitive, and motor functions. We here refer to the cerebral cortex also simply as ‘cortex’.

References

  1. Gewaltig, M.-O., Diesmann, M.: NEST (NEural Simulation Tool). Scholarpedia 2(4), 1430 (2007)

    Article  Google Scholar 

  2. Potjans, T.C., Diesmann, M.: The cell-type specific cortical microcircuit: relating structure and activity in a full-scale spiking network model. Cereb. Cortex 24, 785–806 (2014)

    Article  Google Scholar 

  3. Markov, N.T., Ercsey-Ravasz, M.M., Ribeiro Gomes, A.R., Lamy, C., Magrou, L., Vezoli, J., Misery, P., Falchier, A., Quilodran, R., Gariel, M.A., Sallet, J., Gamanut, R., Huissoud, C., Clavagnier, S., Giroud, P., Sappey-Marinier, D., Barone, P., Dehay, C., Toroczkai, Z., Knoblauchi, K., Van Essen, D.C.: A weighted and directed interareal connectivity matrix for macaque cerebral cortex. Cereb. Cortex 24, 17–36 (2014)

    Article  Google Scholar 

  4. Meyer, H.S., Egger, R., Guest, J.M., Foerster, R., Reissl, S., Oberlaender, M.: Cellular organization of cortical barrel columns is whisker-specific. PNAS 110, 19113–19118 (2013)

    Article  Google Scholar 

  5. Collins, C.E., Airey, D.C., Young, N.A., Leitch, D.B., Kaas, J.H.: Neuron densities vary across and within cortical areas in primates. PNAS 107, 15927–15932 (2010)

    Article  Google Scholar 

  6. Herculano-Houzel, S.: The human brain in numbers: a linearly scaled-up primate brain. Front. Hum. Neurosci. 3, 31 (2009)

    Article  Google Scholar 

  7. Kerr, J.N.D., Greenberg, D., Helmchen, F.: Imaging input and output of neocortical networks in vivo. PNAS 102, 14063–14068 (2005)

    Article  Google Scholar 

  8. Greenberg, D.S., Houweling, A.R., Kerr, J.N.D.: Population imaging of ongoing neuronal activity in the visual cortex of awake rats. Nat. Neurosci. 11, 749–751 (2008)

    Article  Google Scholar 

  9. Shinomoto, S., Kim, H., Shimokawa, T., Matsuno, N., Funahashi, S., Shima, K., Fujita, I., Tamura, H., Doi, T., Kawano, K., Inaba, N., Fukushima, K., Kurkin, S., Kurata, K., Taira, M., Tsutsui, K.-I., Komatsu, H., Ogawa, T., Koida, K., Tanji, J., Toyama, K.: Relating neuronal firing patterns to functional differentiation of cerebral cortex. PLoS Comput. Biol. 5, e1000433 (2009)

    Article  Google Scholar 

  10. Hines, M., Carnevale, N.T.: The NEURON simulation environment. Neural Comput. 9, 1179–1209 (1997)

    Article  Google Scholar 

  11. Bower, J.M., Beeman, D.: The Book of GENESIS: Exploring realistic neural models with the GEneral NEural SImulation System. Springer, New York (1995)

    Book  MATH  Google Scholar 

  12. Stewart, T.C., Tripp, B., Eliasmith, C.: Python scripting in the Nengo simulator. Front. Neuroinf. 3, 7 (2009)

    Google Scholar 

  13. Goodman, D.F.M., Brette, R.: The Brian simulator. Front. Neurosci. 3, 192–197 (2009)

    Article  Google Scholar 

  14. Morrison, A., Straube, S., Plesser, H.E., Diesmann, M.: Exact subthreshold integration with continuous spike times in discrete time neural network simulations. Neural Comput. 19, 47–79 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hanuschkin, A., Kunkel, S., Helias, M., Morrison, A., Diesmann, M.: A general and efficient method for incorporating precise spike times in globally time-driven simulations. Front. Neuroinform. 4, 113 (2010)

    Google Scholar 

  16. Goddard, N.H., Hood, G.: Parallel GENESIS for large-scale modeling. In: Computational Neuroscience, pp. 911–917. Springer, New York (1997)

    Google Scholar 

  17. Howell, F.W., Dyhrfjeld-Johnsen, J., Maex, R., Goddard, N., de Schutter, E.: A large-scale model of the cerebellar cortex using PGENESIS. Neurocomputing 32, 1041–1046 (2000)

    Article  Google Scholar 

  18. Migliore, M., Cannia, C., Lytton, W.W., Markram, H., Hines, M.: Parallel network simulations with NEURON. J. Comput. Neurosci. 21, 119–223 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hines, M., Kumar, S., Schürmann, F.: Comparison of neuronal spike exchange methods on a Blue Gene/P supercomputer. Front. Comput. Neurosci. 5, 49 (2011)

    Article  Google Scholar 

  20. Djurfeldt, M., Lundqvist, M., Johansson, C., Rehn, M., Ekeberg, O., Lansner, A.: Brain-scale simulation of the neocortex on the IBM Blue Gene/L supercomputer. IBM J. Res. Dev. 52, 31–41 (2008)

    Article  Google Scholar 

  21. Hoang, R.V., Tanna, D., Bray, L.C.J., Dascalu, S.M., Harris Jr., F.C.: A novel CPU/GPU simulation environment for large-scale biologically realistic neural modeling. Front. Neuroinf. 7, 19 (2013)

    Google Scholar 

  22. Ananthanarayanan, R., Esser, S.K., Simon, H.D., Modha, D.S.: The cat is out of the bag: Cortical simulations with \(10^9\) neurons and \(10^{13}\) synapses. In: Supercomputing 09: Proceedings of the ACM/IEEE SC2009 Conference on High Performance Networking and Computing, pp. 1–12. IEEE, Portland (2009)

    Google Scholar 

  23. Preissl, R., Wong, T.M., Datta, P., Flickner, M., Singh, R., Esser, S.K., Risk, W.P., Simon, H.D., Modha, D.S.: Compass: a scalable simulator for an architecture for cognitive computing. In: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, pp. 54:1–54:11. IEEE Computer Society Press, Los Alamitos (2012)

    Google Scholar 

  24. Helias, M., Kunkel, S., Masumoto, G., Igarashi, J., Eppler, J.M., Ishii, S., Fukai, T., Morrison, A., Diesmann, M.: Supercomputers ready for use as discovery machines for neuroscience. Front. Neuroinform. 6, 26 (2012)

    Google Scholar 

  25. RIKEN BSI: Largest neuronal network simulation achieved using K computer. Press release, 2 August 2013

    Google Scholar 

  26. Eppler, J.M., Helias, M., Muller, E., Diesmann, M., Gewaltig, M.-O.: PyNEST: a convenient interface to the NEST simulator. Front. Neuroinf. 2, 12 (2009)

    Google Scholar 

  27. Zaytsev, Y.V., Morrison, A.: CyNEST: a maintainable Cython-based interface for the NEST simulator. Front. Neuroinf. 8, 23 (2014)

    Google Scholar 

  28. Kunkel, S., Potjans, T.C., Eppler, J.M., Plesser, H.E., Morrison, A., Diesmann, M.: Meeting the memory challenges of brain-scale simulation. Front. Neuroinform. 5, 35 (2012)

    Google Scholar 

  29. Henker, S., Partzsch, J., Schüffny, R.: Accuracy evaluation of numerical methods used in state-of-the-art simulators for spiking neural networks. J. Comput. Neurosci. 32, 309–326 (2012)

    Article  MathSciNet  Google Scholar 

  30. Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J.M., Diesmann, M., Morrison, A., Goodman, P.H., Harris Jr., F.C., Zirpe, M., Natschläger, T., Pecevski, D., Ermentrout, B., Djurfeldt, M., Lansner, A., Rochel, O., Vieville, T., Muller, E., Davison, A.P., El Boustani, S., Destexhe, A.: Simulation of networks of spiking neurons: a review of tools and strategies. J. Comput. Neurosci. 23, 349–398 (2007)

    Article  MathSciNet  Google Scholar 

  31. Zaytsev, Y.V., Morrison, A.: Increasing quality and managing complexity in neuroinformatics software development with continuous integration. Front. Neuroinf. 6, 31 (2012)

    Google Scholar 

  32. Davison, A., Brüderle, D., Eppler, J.M., Kremkow, J., Muller, E., Pecevski, D., Perrinet, L., Yger, P.: PyNN: a common interface for neuronal network simulators. Front. Neuroinf. 2, 11 (2008)

    Google Scholar 

  33. Diesmann, M.: The road to brain-scale simulations on K. BioSupercomputing Newsl. 8, 8 (2013)

    Google Scholar 

Download references

Acknowledgements

This work was supported by JUQUEEN grant JINB33 of the Jülich Supercomputing Centre, EU grants 269921 (BrainScaleS) and 604102 (Human Brain Project), the Helmholtz Alliance on Systems Biology, the Next-Generation Supercomputing Project of MEXT, and the Helmholtz Association in the Portfolio Theme Supercomputing and Modeling for the Human Brain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. van Albada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

van Albada, S.J., Kunkel, S., Morrison, A., Diesmann, M. (2014). Integrating Brain Structure and Dynamics on Supercomputers. In: Grandinetti, L., Lippert, T., Petkov, N. (eds) Brain-Inspired Computing. BrainComp 2013. Lecture Notes in Computer Science(), vol 8603. Springer, Cham. https://doi.org/10.1007/978-3-319-12084-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12084-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12083-6

  • Online ISBN: 978-3-319-12084-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics