Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 502 Accesses

Abstract

Clouds are a key component in the weather and climate studies. However, their representations in climate models are associated with high uncertainty. For example, some studies show that compared to observations of real clouds, models significantly enhance solar radiation reflected by low clouds. This finding has major implications for the cloud-climate feedback problem in models . A cloud classification scheme would be a valuable tool for illuminating the uncertainty of our models and algorithms and improving the accuracy of weather, climate, and precipitation studies. After classifying clouds into different classes, the precipitation estimation can be improved by integrating the classification scheme into the precipitation algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackerman, S., Frey, R., & Holz, R. (2009). The challenge of passive remote sensing of clouds from satellites over polar regions in winter. Fifth annual symposium on future operational environmental satellite systems- NPOESS and GOES-R. https://ams.confex.com/ams/89annual/techprogram/paper_150182.htm

  • AghaKouchak, A., Mehran, A., Norouzi, H., & Behrangi, A. (2012). Systematic and random error components in satellite precipitation data sets. Geophysical Research Letters, 39, L09406.

    Google Scholar 

  • AghaKouchak, A., & Mehran, A. (2013). Extended Contingency Table: Performance Metrics for Satellite Observations and Climate Model Simulations, Water Resources Research, 49, 7144‣7149, doi:10.1002/wrcr.20498.

    Google Scholar 

  • Bankert, R. L. (1994). Cloud classification of AVHRR imagery in maritime regions using a probabilistic neural network. Journal of Applied Meteorology, 33, 909–918.

    Article  Google Scholar 

  • Bankert, R. L., & Wade, R. H. (2007). Optimization of an instance-based GOES cloud classification algorithm. Journal of Applied Meteorology and Climatology, 46, 36–49.

    Article  Google Scholar 

  • Behrangi, A., Hsu, K., Imam, B., Sorooshian, S., & Kuligowski, R. (2009). Evaluating the utility of multi-spectral information in delineating the areal extent of precipitation. Journal of Hydrometeorology, 10(3), 684–700.

    Article  Google Scholar 

  • Capacci, D., & Conway, B. (2005). Delineation of precipitation areas from MODIS visible and infrared imagery with artificial neural networks. Meteorological Applications, 12, 291–305.

    Article  Google Scholar 

  • Falcone, A. K., & Azimi-Sadjadi, M. R. (2005). Multi-satellite cloud product generation over land and ocean using canonical coordinate features. OCEANS, 2005. Proceedings of MTS/IEEE OCEANS (Vol. 1. pp. 638–644). Piscataway: IEEE.

    Google Scholar 

  • Hong, K. L., Hsu, S. S., & Gao, X. (2004). Precipitation Estimation from Remotely Sensed Imagery Using an Artificial Neural Network Cloud Classification System.J. Appl. Meteorol, 43, 1834–1852.

    Google Scholar 

  • Hsu, K., Gupta, H., Gao, X., Sorooshian, S., & Imam, B. (2002). Self-organizing linear output map (SOLO): An artificial neural network suitable for hydrologic modeling and analysis. Water Resources Research, 38(12), 1–17.

    Article  Google Scholar 

  • Kohonen, T. (2006). Self-organizing neural projections. Neural Networks, 19(6), 723–733.

    Google Scholar 

  • Luo, G., Davis, P. A., Stowe, L. L., & McClain, E. P. (1995). A pixel-scale algorithm of cloud type, layer, and amount for AVHRR data. Part I: Nighttime. Journal of Atmospheric and Oceanic Technology, 12, 1013–1037.

    Article  Google Scholar 

  • McCollum, J. R., Krajewski, W. F., Ferraro, R. R. & Ba, M. B. (2002). Evaluation of biases of satellite rainfall estimation algorithms over the continental United States. Journal of Applied Meteorology, 41, 1065–1080.

    Article  Google Scholar 

  • Mehran, A., AghaKouchak, A. (2014). Capabilities of Satellite Precipitation datasets to Estimate Heavy Precipitation Rates at Different Temporal Accumulations, Hydrological Processes, 28, 2262–2270, doi:10.1002/hyp.9779.

    Google Scholar 

  • Platnick, S. A., King, M. D., Ackerman, S. A., Menzel, W. P., Baum, B. A., Riédi, J. C., & Frey, R. A. (2003). The MODIS cloud products: Algorithms and examples from Terra. IEEE Transactions on Geoscience and Remote Sensing, 41, 459–473. doi: 10.1109/TGRS.2002.808301.

    Article  Google Scholar 

  • Rossow, W. B., & Schiffer, R. A. (1999). Advances in understanding clouds from ISCCP. Bulletin of the American Meteorological Society, 80, 2261–2286.

    Article  Google Scholar 

  • Rozumalski, R. A. (2000). A quantitative assessment of the NESDIS Auto-Estimator. Weather and Forecasting, 15, 397–415.

    Article  Google Scholar 

  • Sorooshian, S., AghaKouchak, A., Arkin, P., Eylander, J., Foufoula-Georgiou, E., Harmon, R., Hendrickx, J., Imam, B., Kuligowski, R., Skahill, B., Skofronick-Jackson, G. (2011). Advanced Concepts on Remote Sensing of Precipitation at Multiple Scales, Bulletin of the American Meteorological Society, 92 (10), 1353–1357, doi: 10.1175/2011BAMS3158.1.

    Google Scholar 

  • Stephens, G. (2010). Is there a missing low cloud feedback in current climate models? GEWEX News, 20(1), 5–7.

    Google Scholar 

  • Stephens, G. L., et al. (2008). CloudSat mission: Performance and early science after the first year of operation. Journal of Geophysical Research, 113, D00A18. doi:10.1029/2008jd009982.

    Article  Google Scholar 

  • Tian, B., Azimi-Sadjadi, M. R., Vonder Haar, T. H., & Reinke, D. (2000). Temporal updating scheme for probabilistic neural network with application to satellite cloud classification. IEEE Transactions on Neural Networks, 11, 903–920.

    Article  Google Scholar 

  • Tovinkere, V. R., Penaloza, M., Logar, A., Lee, J., Weger, R. C., Berendes, T. A., & Welch, R. M. (1993). An intercomparison of artificial intelligence approaches for polar scene identification. Journal of Geophysical Research, 98, 5001–5016.

    Article  Google Scholar 

  • Wang, Z., & Sassen, K. (2001). Cloud type and macrophysical property retrieval using multiple remote sensors. Journal of Applied Meteorology, 40, 1665–1682.

    Article  Google Scholar 

  • Welch, R. M., Sengupta, S. K., Goroch, A. K., Rabindra, P., Rangaraj, N., & Navar, M. S. (1992). Polar cloud and surface classification using AVHRR imagery: An intercomparison of methods. Journal of Applied Meteorology, 31, 405–420.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasrin Nasrollahi .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nasrollahi, N. (2015). Cloud Classification and its Application in Reducing False Rain. In: Improving Infrared-Based Precipitation Retrieval Algorithms Using Multi-Spectral Satellite Imagery. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-12081-2_6

Download citation

Publish with us

Policies and ethics