Skip to main content

Part of the book series: SpringerBriefs in Pharmaceutical Science & Drug Development ((BRIEFSPSDD))

  • 597 Accesses

Abstract

Cyanobacteria are one of the most successful groups of organisms this planet has ever seen. During their long evolutionary history, they have undergone several structural and functional modifications. They had to adapt various environmental conditions and during this process they come up as one of the extremophilic organism. In this chapter, the diversity of cyanobacteria in various extreme habitats is discussed with examples of dominant species. We have discussed various adaptation strategies they follow for their survival. Cyanobacteria are able to survive in metabolically extreme environments, where the energy flow is low, by exploiting both the electron donor and the electron acceptor and are prolific producers of secondary metabolites, many of which show various bioactivities. We discussed the new pharmaceutical compounds found from them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhikary SP, Sahu JK (2000) Survival strategies of cyanobacteria occurring as crust in the rice fields under drought conditions. Ind J Microbiol 40:53–56

    Google Scholar 

  • Adhikary SP, Weckesser J, Jürgens UJ, Golecki JR, Borowia D (1986) Isolation and chemical characterization on the sheath from the cyanobacterium Chroococcus minutus SAG B. 41.79. J Gen Microbiol 132:2595–2599

    CAS  Google Scholar 

  • Balunas MJ, Linington RG, Tidgewell K, Fenner AM, Urena LD, Della Togna G et al (2010) Dragonamide E, a modified linear lipopeptide from lyngbya majuscula with antileishmanial activity. J Nat Prod 73:60–66

    CAS  PubMed Central  PubMed  Google Scholar 

  • Belnap J, Prasse R, Harper KT (2001) Influence of biological soil crust on soil environments and vascular plants. In: Benlap J, Lange OL (eds.) Biological soil crusts: structure, function, and management. Springer, Berlin, pp 281–300

    Google Scholar 

  • Billi D, Friedman EI, Hofer KG, Grilli Caiola M, Ocampo‐Friedmann R (2000) Ionization‐radiation resistance in the desiccation‐tolerant cyanobacterium Chroococcidiopsis. Appl Environ Microbiol 66:1489–1492

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boussiba S, Wu X, Zarka A (2000) Alkaliphilic cyanobacteria. In: Seckbach J (ed) Journey to diverse microbial worlds: adaptation to exotic environments. Kluwer Academic, Dordrecht, pp 209–224

    Google Scholar 

  • Braterman PS, Cairns-Smith AG, Sloper RW (1983) Photo-oxidation of hydrated Fe2+ significance for banded iron formations. Nature 303:163–163

    Google Scholar 

  • Brenowitz S, Castenholz RW (1997) Long‐term effects of UV and visible irradiance on natural populations of scytonemin containing cyanobacterium (Calothrix sp.). FEMS Microbiol Ecol 24:343–352

    CAS  Google Scholar 

  • Brock TD (1969) Microbial growth under extreme conditions. Symp Soc Gen Microbiol 19:15–41

    Google Scholar 

  • Brock TD (1973) Lower pH limit for the existence of blue‐green algae: evolutionary and ecological implications. Science 179(72):480–483

    CAS  PubMed  Google Scholar 

  • Brock TD (1978) Thermophilic Microorganisms and life at high temperature. Springer verlag, New York, pp 465

    Google Scholar 

  • Büdel B (1999) Ecology and diversity of rock inhabiting cyanobacteria in tropical regions. Eur J Phycol 34:361–370

    Google Scholar 

  • Burja AM, Banaigs EB, Abou-Mansour, Burgess JG, Wright PC (2001) Marine cyanobacteria-a prolific source of natural products. Tetrahedron 57:9347–9377

    CAS  Google Scholar 

  • Canini A, Leonardi D, Caiola MG (2001) Superoxide dismutase activity in the cyanobacterium Microcystis aeruginosa after surface bloom formation. New Phytol 152:107–116

    CAS  Google Scholar 

  • Castenholz RW (1969) Thermophilic blue‐green algae and the thermal environment. Bacteriol Rev 33:476–504

    CAS  PubMed Central  PubMed  Google Scholar 

  • Castenholz RW (1972) Low temperature acclimation and survival in thermophilic Oscillatoria terebriformis. In: Desikachary T.V. (ed.) Taxonomy and biology of blue‐green algae. University of Madras, India, pp 406–418

    Google Scholar 

  • Castenholz RW (1997) Multiple strategies for UV tolerance in cyanobacteria. Spectrum 10:10–16

    Google Scholar 

  • Chen M, Quinnell RG, Larkum AWD (2002) The major light-harvesting pigment protein of Acaryochloris marina. FEBS Lett 514:149–152

    CAS  PubMed  Google Scholar 

  • Chen M, Telfer A, Lin S, Pascal A, Larkum AWD, Barber J, Blankenship RE (2005) The nature of the photosystem II reaction centre in the chlorophyll d-containing prokaryote, Acaryochloris marina. Photochem Photobiol Sci 4:1060–1064

    CAS  PubMed  Google Scholar 

  • Chen M, Schliep M, Willows RD, Cai ZL, Neilan BA, Scheer H (2010). A red-shifted chlorophyll. Science 329(5997):1318–1319

    CAS  PubMed  Google Scholar 

  • Cockell CS, Knowland J (1999) Ultraviolet radiation screening compounds. Biol Rev 74:311–45

    CAS  PubMed  Google Scholar 

  • Cohen Y, Krumbein WE, Goldberg M, Shilo M (1977) Solar lake (Sinai). 1. Physical and chemical limnology. Limnol Oceanogr 22:597–608

    CAS  Google Scholar 

  • Crowe JH, Crowe LM (1992) Anhydrobiosis: a strategy for survival. Adv Space Res 12:239–247

    CAS  PubMed  Google Scholar 

  • De Philippis R Vincenzini M (1998) Exocellular polysaccharides from cyanobacteria and their possible applications. FEMS Microbiol Rev 22:151–175

    Google Scholar 

  • De Philippis R Sili C Paperi R Vincenzini M (2001) Exopolysaccharide‐producing cyanobacteria and their possible exploitation: a review. J Appl Phycol 13:293–299

    Google Scholar 

  • De Philippis R Paperi R Sili C Vincenzini M (2003) Assessment of the metal removal capability of two capsulated cyanobacteria Cyanospira capsulata and Nostoc PCC7936. J Appl Phycol 13:293–299

    Google Scholar 

  • Dillon JG, Castenholz RW (1999) Scytonemin, a cyanobacterial sheath pigment, protects against UVC radiation: implications for early photosynthetic life. J Phycol 35:673–681

    CAS  Google Scholar 

  • Ehling‐Schulz M, Scherer S (1999) UV protection in cyanobacteria. Eur J Phycol 34:329–338

    Google Scholar 

  • Ehling‐schulz M, Bilger W, Scherer S (1997) UV-B induced synthesis of photoprotective pigments and extra cellular polysaccharides in the terrestrial cyanobacteria Nostoc commune. J Bacteriol 179:1940–1945

    PubMed Central  PubMed  Google Scholar 

  • Ehling‐Schulz M, Schulz S, Wait R, Görg A, Scherer S (2002) The UV-B stimulon of the terrestrial cyanobacterium Nostoc commune comprises early shock proteins and late acclimation proteins. Mol Microbiol 46:827–843

    PubMed  Google Scholar 

  • Eker APM, Kooiman P, Hessels JKC, Yasui A (1990) DNA photoreactivating enzyme from the cyanobacterium Anacystis nidulans. J Biol Chem 265:8009–8015

    CAS  PubMed  Google Scholar 

  • Engene N, Gunasekera S, Gerwick WH, Paul VJ (2013) Phylogenetic inferences reveal large extent of novel biodiversity in chemically rich tropical marine cyanobacteria. Appl Environ Microbio 79:1882–1888

    CAS  Google Scholar 

  • Favre‐Bonvin J, Bernillon J, Salin N, Arpin N (1987) Biosynthesis of mycosporines: mycosporine glutaminol in Trichothecium roseum. Phytochemistry 26:2509–2514

    Google Scholar 

  • Fiore MF, Trevors JT (1994) Cell composition and metal tolerance in cyanobacteria. Biometals 7:83–81

    CAS  Google Scholar 

  • Friedmann EI, Lipkin Y, Ocampo‐Paus R (1967) Desert algae of the Negev (Israel). Phycologia 6:185–200

    Google Scholar 

  • Gao K, Yu H, Brown MT (2007) Solar PAR and UV radiation affect the physiology and morphology of the cyanobacterium Anabaena sp. PCC 7120. J Photochem Photobiol B Biol 89:117‐124

    Google Scholar 

  • Gao KS, Li P, Walanabe T, Helbling EW (2008) Combined effects of ultraviolet radiation and temperature on morphology, photosynthesis, and DNA of Arthrospira (Spirulina) platensis (Cyanophyta). J Phycol 44:777–786

    Google Scholar 

  • Garcia‐Pichel F, Castenholz RW (1994) On the significance of solar ultraviolet radiation for the ecology of microbial mats. In: Stal LJ, Caumette P (eds) Microbial mats, structure, development and environmental significance, NATO ASI series. Springer, Berlin, pp 77–84

    Google Scholar 

  • Garcia‐Pichel F, Mechling M, Castenholz RW (1994) Dial migrations of microorganisms within a benthic, hypersaline mat community. Appl Environ Microbiol 60:1500–1511

    PubMed Central  PubMed  Google Scholar 

  • Geoghegan CM, Houghton JA (1987) Molecular cloning and isolation of a cyanobacterial gene which increases the UV and methyl methanesulphonate survival of recA strains of Escherichia coli K12. J Gen Microbiol 133:119–126

    CAS  PubMed  Google Scholar 

  • Gerwick WH, Coates RC, Engene N, Gerwick LG, Grindberg R, Jones A, Sorrels C (2008) Giant marine cyanobacteria produce exciting potential pharmaceuticals. Microbe 3:277–284

    Google Scholar 

  • Goetz T, Windhoevel U, Boeger P, Sandmann G (1999) Protection of photosynthesis against ultraviolet‐B radiation by carotenoids in transformants of the cyanobacterium Synechococcus PCC7942. Plant Physiol 120:599–604

    Google Scholar 

  • Grant WD, Tindall BJ (1986) The alkaline saline environment. In: Herbert RA, Codd GA (eds) Microbes in extreme environments. Academic, London, pp 25–54

    Google Scholar 

  • Hagemann M, Erdmann N (1997) Environmental stresses. In: Rai AK (ed) Cyanobacterial nitrogen metabolism and environmental biotechnology. Springer, Heidelberg, pp 156-221 (Narosa Publishing House, New Delhi)

    Google Scholar 

  • Hagemann M, Effmert U, Kerstan T, Schoor A, Erdmann N (2001) Biochemical characterization of glucosylglycerol-phosphate synthase of Synechocystis sp. strain PCC 6803: comparison of crude, purified, and recombinant enzymes. Curr Microbiol 43:278–283

    CAS  PubMed  Google Scholar 

  • Heising S, Schink B (1998) Phototrophic oxidation of ferrous iron by a Rhodomicrobium vannieli strain. Microbiology 144:2263–2269

    CAS  PubMed  Google Scholar 

  • Helm RF, Hung Z, Edward D, Leeson H, Peery W, Potts M (2000) Structural characterization of the released polysaccharide of desiccation tolerant Nostoc commune DRH‐1. J Bacteriol 184:974–982

    Google Scholar 

  • Hill DR, Hladun SL, Scherer S, Potts M (1994) Water stress proteins of Nostoc commune (cyanobacteria) are secreted with UV-A/B absorbing pigments and associate with 1,4-b-D-xylanxylanohydrolase activity. J Biol Chem 269:7726–7734

    CAS  PubMed  Google Scholar 

  • Huber C, Wächtershäuser G (1997) Activated acetic acid by carbon fixation on (Fe, Ni)S under primordial conditions. Science 276:245–247

    CAS  PubMed  Google Scholar 

  • Javor BJ (1989) Hypersaline environments. Microbiology and biogeochemistry. Brock/springer series in contemporary bioscience. Springer, Berlin

    Google Scholar 

  • Jiang H, Qiu B (2005) Photosynthetic adaptation of a bloom-forming cyanobacterium Microcystis aeruginosa (cyanophyceae) to prolonged UV-B exposure. J Phycol 41:983–992

    Google Scholar 

  • Jones AC, Gu LC, Sorrels CM, Sherman DH, Gerwick WH (2009) New tricks from ancient algae: natural products biosynthesis in marine cyanobacteria. Curr Opin Chem Biol 13:216–223

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jungblut AD, Hawes L, Mountfory D, Hltzfeld B, Dietrich DR, Burns BP Neilan BA (2005) Diversity within cyanobacterial mat communities in variable salinity meltwater ponds of McMurdo Ice Shelf, Antarctica. Env Microbiol 7:519–529

    CAS  Google Scholar 

  • Karsten U, Garcia‐Pichel F (1996) Carotenoids and mycosporine‐like amino acid compounds in members of the genus Microcoleus (Cyanobacteria): a chemosystematic study. Syst Appl Microbiol 19:285–294

    Google Scholar 

  • Kehr JC, Gatte Picchi D, Dittmann E (2011) Natural product biosyntheses in cyanobacteria: a treasure trove of unique enzymes. Beilstein J Org Chem 7:1622–1635

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kovacik L (2000) Cyanobacteria and algae as agents of biodeterioration of stone substrata of historical buildings and other cultural monuments. In: Choi S, Suh M (eds) Proceedings of the New Millennium International forum on conservation of cultural property. Kongju National University, Kongju, Korea, pp 44–56

    Google Scholar 

  • Kratochvil D, Volesky B (1998) Advances in the biosorption of heavy metals. Trends Biotechnol 16:291–300

    CAS  Google Scholar 

  • Lemmon RM (1970) Chemical evolution. Chem Rev 70:95–109

    CAS  Google Scholar 

  • Lesser MP, Stochaj WR (1990) Photoadaptation and protection against active forms of oxygen in the symbiotic prokaryote prochloron-sp and its ascidian host. Appl Environ Microbiol 56:1530–1535

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li Y, Lin Y, Loughlin PC, Chen M (2014). Optimization and effects of different culture conditions on growth of Halomicronema hongdechloris–a filamentous cyanobacterium containing chlorophyll f. Front plant sci 5:67

    PubMed Central  PubMed  Google Scholar 

  • Mandal S, Rath J, Adhikary SP (2011) Adaptation strategies of the sheathed cyanobacterium Lyngbya majuscula to ultraviolet-B. Photochem Photobiol B Biol 102:115–122

    CAS  Google Scholar 

  • Mansour HA, Shoman SA, Kdodier MH (2011) Antiviral effect of edaphic cyanophytes on rabies and herpes-1 viruses. Acta Biol Hung 62:194–203

    PubMed  Google Scholar 

  • Medina RA, Goeger DE, Hills P, Mooberry SL, Huang N, Romero LI Coibamide A et al (2008) A potent antiproliferative cyclic depsipeptide from the panamanian marine cyanobacterium Leptolyngbya sp. J Am Chem Soc 130:6324

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miller SR, Wingard CE, Castenholz RW (1998) Effects of visible light and ultraviolet radiation on photosynthesis in a population of the hot spring cyanobacterium, Synechococcus sp., subjected to high temperature stress. Appl Environ Microbiol 64:3893–3899

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miyake C, Michihata F, Asada K (1991) Scavenging of hydrogen peroxide in prokaryotic and eukaryotic algae: acquisition of ascorbate peroxidase during the evolution of cyanobacteria. Plant Cell Physiol 32:33–43

    CAS  Google Scholar 

  • Miyashita H, Ikemoto H, Kurano N, Adachi K, Chihara M, Miyachi S (1996) Chlorophyll d as a major pigment. Nature 383:402–402

    CAS  Google Scholar 

  • Murata N, Nishida I (1987) Lipids of blue-green algae (cyanobacteria). In: Stumpf PK (ed) The biochemistry of plants. Academic, San Diego, pp 315–347

    Google Scholar 

  • Nägeli C (1849) Gattungen einzelliger Algen, physiologisch und systematisch bearbeitet Neue Denkschrift. AllgSchweiz Nat Ges 10:1‐138

    Google Scholar 

  • Neidhart FC, VanBogelen RA, Vaughn V (1984) The genetics and regulation of heat‐shock proteins. Annu Rev Genet 18:295–329

    Google Scholar 

  • Nishiyama Y, Yamamoto H, Allakhverdiev SI, Inaba M, Yokota A, Murata N (2001) Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery. EMBO J 20:5587–5594

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nübel U, Garcia‐Pichel F, Clavero E, Muyzer G (2000) Matching molecular diversity and ecophysiology of benthic cyanobacteria and diatoms in communities along a salinity gradient. Environ Microbiol 2:217–226

    PubMed  Google Scholar 

  • Nunnery JK, Mevers E, Gerwick WH (2010) Biologically active secondary metabolites from marine cyanobacteria. Curr Opin Biotechnol 21:787–793

    CAS  PubMed Central  PubMed  Google Scholar 

  • Olson JM (2001) Evolution of photosynthesis (1970) rexamined thirty years later. Photosynth Res 68:95–112

    CAS  PubMed  Google Scholar 

  • Oren A (2000) Salt and brines. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria: their diversity in time and space. 306. Kluwer Academic, Dordrecht, pp 281

    Google Scholar 

  • Pang Q, Hays JB (1991) UV-B‐inducible and temperature‐sensitive photoreactivation of cyclobutane pyrimidine dimers in Arabidopsis thaliana. Plant Physiol 95:536–554

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pattanaik B, Adhikary SP (2002) Blue‐green algal flora at some archaeological sites and monuments of India. Feddes Repert 113:289–300

    Google Scholar 

  • Pattanaik B, Schumann R, Karsten U (2007) Effects of ultraviolet radiation on cyanobacteria and their protective mechanisms. In Algae and cyanobacteria in extreme environments. Springer Netherlands. pp 29–45 (Excerpts used with permission),

    Google Scholar 

  • Pereira AR, Cao ZY, Engene N, Soria-Mercado IE, Murray TF, Gerwick WH, Palmyrolide A (2010) An unusually stabilized neuroactive macrolide from palmyra atoll cyanobacteria. Org Lett 12:4490–4493

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pierson BK, Olson JM (1989) Evolution of photosynthesis in anoxygenic photosynthetic procaryotes. In: Cohen Y, Rosenberg E (eds) Microbial mats, physiological ecology of benthic communities. American Society of Microbiology, Washington, DC, pp 402–427

    Google Scholar 

  • Post FJ (1977) The microbial ecology of the Great Salt Lake. Microb Ecol 3:143–165

    CAS  PubMed  Google Scholar 

  • Potts M, Friedmann EI (1981) Effects of water stress on cryptoendolithic cyanobacteria from hot dessert rocks. Arch Microbiol 130:267–271

    CAS  Google Scholar 

  • Proteau PJ, Gerwick WH, Garcia‐Pichel F, Castenholz R (1993) The structure of scytonemin, an ultraviolet sunscreen pigment from the sheaths of cyanobacteria. Experientia 49:825–829

    CAS  PubMed  Google Scholar 

  • Quesada A, Vincent WF, Lean DRS (1999) Community and pigment structure of Arctic cyanobacterial assemblages: the occurrence and distribution of UV‐absorbing compounds. Fems Microbiol Ecol 28:315–323

    CAS  Google Scholar 

  • Ramsing N, Prufert-Bebout L (1994) Motility of Microcoleus chthonoplastes subjected to different light intensities quantified by digital image analysis. Nato Asi Ser G Ecol Sci 35:183–183

    Google Scholar 

  • Rath J, Adhikary SP (2007) Response of the estuarine cyanobacterium Lyngbya aestuarii to UV-B radiation. J Appl Phycol 19:529–536

    CAS  Google Scholar 

  • Reed RH, Borowitzka LJ, Mackey MA, Chudak JA, Foster R, Warr SRC, Moore DJ, Stewart WDP (1986) Organic solute accumulation in osmotically stressed cyanobacteria. FEMS Microbiol Lett 39:51–56

    CAS  Google Scholar 

  • Reynolds CS, Oliver RL, Walsby AE (1987) Cyanobacterial dominance: the role of buoyancy regulation in dynamic lake environments. NZJ Mar Freshwater Res 21:379–390

    Google Scholar 

  • Richter FM, McKenzie DP (1981) On some consequences and possible causes of layered mantle convection. J Geophys Res 86:6133–6142

    Google Scholar 

  • Ritter D, Yopp JH (1993) Plasma membrane lipid composition of the halophilic cyanobacterium Aphanothece halophytica. Arch Microbiol 159:435–439

    CAS  Google Scholar 

  • Rudolph BR, Chandresekhar I, Gaber BP, Nagumo M (1990) Molecular modelling of saccharide-lipid interactions. Chem Phys Lipids 53:243–261

    CAS  Google Scholar 

  • Scherer S, Potts M (1989) Novel water stress protein from a desiccation tolerant cyanobacterium. J Biol Chem 264:12546–12553

    CAS  PubMed  Google Scholar 

  • Scherer S, Ernst A, Chen TW, Böger P (1984) Rewetting of drought resistant blue‐green algae: time course of water uptake and reappearance of respiration, photosynthesis and nitrogen fixation. Oecologia 62:418–423

    Google Scholar 

  • Schiewer S, Volesky B (1996) Modeling of multimetal ion exchange in biosorption. Environ Sci Technol 30:2921–2927

    CAS  Google Scholar 

  • Schilling JG (1973) Iceland mantle plume: geochemical study of Reykjanes ridge. Nature 242:565–571

    CAS  Google Scholar 

  • Schwarzer D, Finking R, Marahiel MA (2003) Nonribosomal peptides: from genes to products. Nat Prod Rep 20:275–287

    CAS  PubMed  Google Scholar 

  • Shibata H, Baba K, Ochiai H (1991) Near‐UV irradiation induces shock proteins in Anacystis nidulans R‐2; possible role of active oxygen. Plant Cell Physiol 32:77–776

    Google Scholar 

  • Simmons TL, Nogle LM, Media J, Valeriote FA, Mooberry SL, Gerwick WH (2009) Desmethoxymajusculamide C, a cyanobacterial depsipeptide with potent cytotoxicity in both cyclic and ring-opened forms. J Nat Prod 72:1011–1016

    CAS  PubMed Central  PubMed  Google Scholar 

  • Singh S, Kate BN, Banerjee UC (2005) Bioactive compounds from cyanobacteria and microalgae: an overview. Crit Rev Biotechnol 25:73–95

    CAS  PubMed  Google Scholar 

  • Sinha RP, Häder DP (1996) Response of a rice field cyanobacterium Anabaena sp. to physiological stressors. Env Exp Bot 36:147–155

    CAS  Google Scholar 

  • Sinha RP, Klisch M, Häder DP (1999) Induction of a mycosporine-like amino acid (MAA) in the rice-field cyanobacterium Anabaena sp. by UV irradiation. J Photochem Photobiol B Biol 52:59–64

    CAS  Google Scholar 

  • Sinha RP, Klisch M, Helbling EW, Häder D-P (2001) Induction of mycosporine-like amino acids (MAAs) in cyanobacteria by solar ultraviolet-B radiation. J Photochem Photobiol B Biol 60:129–135

    CAS  Google Scholar 

  • Sompong U, Hawkins PR, Besley C, Peerapornpisal Y (2005) The distribution of cyanobacteria across physical and chemical gradients in hot spring in northern Thailand. FEMS Microbiol Ecol 52:365–376

    CAS  PubMed  Google Scholar 

  • Sørensen KB, Canfield DE, Oren A (2004) Salt responses of benthic microbial communities in a solar saltern (Eilat, Israel). Appl Environ Microbiol 70:1608–1616

    PubMed Central  PubMed  Google Scholar 

  • Steinberg CEW, Schäfer H, Beisker W (1998) Do acid‐tolerant cyanobacteria exist? Acta Hydrochim Hydrobiol 26:13–19

    CAS  Google Scholar 

  • Tarko T, DuDa-ChoDak A, Kobus M (2012) Influence of growth medium composition on synthesis of bioactive compounds and antioxidant properties of selected strains of Arthrospira cyanobacteria. Czech J Food Sci 30:258–267

    CAS  Google Scholar 

  • Teruya T, Sasaki H, Fukazawa H, Suenaga K (2009) Bisebromoamide, a Potent Cytotoxic Peptide from the Marine Cyanobacterium Lyngbya sp.: isolation, stereostructure, and biological activity. Org Lett 11:5062–5065

    CAS  PubMed  Google Scholar 

  • Tomo T, Okubo T, Akimoto S, Yokono M, Miyashita H, Tsuchiya T, Noguchi T, Mimuro M (2007) Identification of the special pair of photosystem II in a chlorophyll d dominated cyanobacterium. Proc Natl Acad Sci U S A 104:7283–7288

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tomo T, Allakhverdiev SI, Mimuro M (2011) Constitution and energetics of photosystem I and photosystem II in the chlorophyll d-dominated cyanobacterium Acaryochloris marina. J Photochem Photobiol B 104:333–340

    CAS  PubMed  Google Scholar 

  • Tripathi SN, Srivastava P (2001) Presence of stable active oxygen scavenging enzymes superoxide dismutase, ascorbate peroxidase and catalase in a desiccation-tolerant cyanobacterium Lyngbya arboricola under dry state. Current Sci 81:197–200

    CAS  Google Scholar 

  • Tripathi A, Puddick J, Prinsep MR, Lee PPF, Tan LT (2010) Hantupeptins B and C, cytotoxic cyclodepsipeptides from the marine cyanobacterium Lyngbya majuscula. Phytochemistry 71:307–311

    CAS  PubMed  Google Scholar 

  • Tyystjärvi T, Herranen M, Aro E-M (2001) Regulation of translation elongation in cyanobacteria: membrane targeting of the ribosome nascent-chain complexes controls the synthesis of D1 protein. Mol Microbiol 40:476–468

    PubMed  Google Scholar 

  • Urrutia MM (1997) General bacteria sorption processes. In: Wase J, Forster C (eds) Biosorbents for metal ions. Taylor & Francis, London, pp 39–66

    Google Scholar 

  • Vincent WF (2000) Cyanobacterial dominance in the polar regions. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Kluwer Academic, Dordrecht, pp 321–340

    Google Scholar 

  • Vincent WF, Quesada A (1994) Ultraviolet radiation effects on cyanobacteria: implications for Antarctic microbial ecosystems. In: Weiler CS, Penhale PA (eds) Ultraviolet radiation in Antarctica: measurements and biological effects Antarctic research series vol 62. American Geophysical Union, Washington, DC, 111–124

    Google Scholar 

  • Volkmann M, Gorbushina AA, Kedar L, Aharon O (2006) Structure of euhalothece‐362, a novel red shifted mycosporine‐like amino acid, from a halophilic cyanobacterium (Euhalothece sp.). FEMS Microbiol Lett 258:50‐54

    Google Scholar 

  • Wada H, Murata N (1990) Temperature-induced changes in the fatty acids composition of the cyanobacterium, Synechocystis PCC 6803. Plant Physiol 92:1062–1069

    CAS  PubMed Central  PubMed  Google Scholar 

  • Walker JCG (1983) Possible limits on the composition of the Archaean ocean. Nature 302:518–520

    Google Scholar 

  • Ward DM, Castenholz RW (2000) Cyanobacteria in geothermal habitats. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria: their diversity in time and space. Kluwer Academic, Netherlands

    Google Scholar 

  • Weckesser J, Broll C, Adhikary SP, Jorgensu J (1987) 2-O-Methyl-~-xylosec ontaining sheath in the cyanobacterium Gloeothece sp. PCC 6501. Arch Microbiol 147:300303

    Google Scholar 

  • Welker M, Dohren HV (2006) Cyanobacterial peptides-nature’s own combinatorial biosynthesis. FEMS Microbiol Rev 30:530–563

    CAS  PubMed  Google Scholar 

  • White RS, Brown JW, Smallwood JR (1995) The temperature of the Iceland plume and the origin of outward-propagating V-shaped ridges. J Geol Soc Lond 152:1039–1045

    Google Scholar 

  • Wolfe‐Simon F, Grzebyk D, Schofield O, Falkowski PG (2005) The role and evolution of superoxide dismutases in algae. J Phycol 41:453–465

    Google Scholar 

  • Wu H, Gao K, Villafan˜e V, Watanabe T, Helbling EW (2005) Effects of solar UV radiation on morphology and photosynthesis of the filamentous cyanobacterium Arthrospira platensis. Appl Environ Microb 71:5004–5013

    CAS  Google Scholar 

  • Xiong S, Fan J, Kitazato K (2010) The antiviral protein cyanovirin-N: the current state of its production and applications. Appl Microbiol Biotechnol 86:805–812

    CAS  PubMed  Google Scholar 

  • Yakoot M, Salem A (2012) Spirulina platensis versus silymarin in the treatment of chronic hepatitis C virus infection. A pilot randomized, comparative clinical trial. BMC Gastroenterol 12:32

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang H, Lee E, Kim H (1997) Spirulina platensis inhibits anaphylactic reaction. Life Sci 61:1237–1244

    CAS  PubMed  Google Scholar 

  • Ma Z, Gao K (2009) Photoregulation of morphological structure and its physiological relevance in the cyanobacterium Arthrospira (Spirulina) platensis. Planta 230:329–337

    CAS  PubMed  Google Scholar 

  • Zheng W, Chen C, Cheng Q, Wang Y, Chu C (2006) Oral administration of exopolysaccharide from Aphanothece halophytica (chroococcales) significantly inhibits influ enza virus (H1N1)-induced pneumonia in mice. Int Im munopharmacol 6:1093–1099

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sikha Mandal .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mandal, S., Rath, J. (2015). Introduction. In: Extremophilic Cyanobacteria For Novel Drug Development. SpringerBriefs in Pharmaceutical Science & Drug Development. Springer, Cham. https://doi.org/10.1007/978-3-319-12009-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12009-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12008-9

  • Online ISBN: 978-3-319-12009-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics