Skip to main content

Transcriptome in Human Mycoses

  • Chapter
  • First Online:
Transcriptomics in Health and Disease

Abstract

Mycoses are infectious diseases caused by fungi, which incidence has increased in recent decades due to the increasing number of immunocompromised patients and improved diagnostic tests. As eukaryotes, fungi share many similarities with human cells, making it difficult to design drugs without side effects. Commercially available drugs act on a limited number of targets, and has been reported fungal resistance to commonly used antifungal drugs. Therefore, elucidating the pathogenesis of fungal infections, the fungal strategies to overcome the hostile environment of the host, and the action of antifungal drugs is essential for developing new therapeutic approaches and diagnostic tests. Large-scale transcriptional analyses using microarrays and RNA sequencing (RNA-seq), combined with improvements in molecular biology techniques, have improved the study of fungal pathogenicity. Such techniques have provided insights into the infective process by identifying molecular strategies used by the host and pathogen during the course of human mycoses. In this chapter, the latest discoveries about the transcriptome of major human fungal pathogens will be discussed. Genes that are essential for host-pathogen interactions, immune response, invasion, infection, antifungal drug response and resistance will be highlighted. Finally, their importance to the discovery of new molecular targets for antifungal drugs will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aimanianda V, Bayry J, Bozza S et al (2009) Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature 460(7259):1117–1121

    CAS  PubMed  Google Scholar 

  • Barelle CJ, Priest CL, Maccallum DM et al (2006) Niche-specific regulation of central metabolic pathways in a fungal pathogen. Cell Microbiol 8(6):961–971

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barker KS, Park H, Phan QT et al (2008) Transcriptome profile of the vascular endothelial cell response to Candida albicans. J Infect Dis 198(2):193–202

    CAS  PubMed  Google Scholar 

  • Bedoya SK, Lam B, Lau K et al (2013) Th17 cells in immunity and autoimmunity. Clin Dev Immunol 2013:986789

    PubMed Central  PubMed  Google Scholar 

  • Biondo C, Midiri A, Gambuzza M et al (2008) IFN-alpha/beta signaling is required for polarization of cytokine responses toward a protective type 1 pattern during experimental cryptococcosis. J Immunol 181(1):566–573

    CAS  PubMed  Google Scholar 

  • Biondo C, Signorino G, Costa A et al (2011) Recognition of yeast nucleic acids triggers a host-protective type I interferon response. Eur J Immunol 41(7):1969–1979

    CAS  PubMed  Google Scholar 

  • Brock M (2009) Fungal metabolism in host niches. Curr Opin Microbiol 12(4):371–376

    CAS  PubMed  Google Scholar 

  • Brown AJ, Haynes K, Quinn J (2009) Nitrosative and oxidative stress responses in fungal pathogenicity. Curr Opin Microbiol 12(4):384–391

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brown GD, Denning DW, Gow NA et al (2012) Hidden killers: human fungal infections. Sci Transl Med 4(165):165rv113

    Google Scholar 

  • Bruns S, Seidler M, Albrecht D et al (2010) Functional genomic profiling of Aspergillus fumigatus biofilm reveals enhanced production of the mycotoxin gliotoxin. Proteomics 10(17):3097–3107

    CAS  PubMed  Google Scholar 

  • Burmester A, Shelest E, Glockner G et al (2011) Comparative and functional genomics provide insights into the pathogenicity of dermatophytic fungi. Genome Biol 12(1):R7

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cairns T, Minuzzi F, Bignell E (2010) The host-infecting fungal transcriptome. FEMS Microbiol Lett 307(1):1–11

    CAS  PubMed  Google Scholar 

  • Cambier L, Weatherspoon A, Defaweux V et al (2014) Assessment of the cutaneous immune response during Arthroderma benhamiae and A. vanbreuseghemii infection using an experimental mouse model. Br J Dermatol 170(3):625–633

    CAS  PubMed  Google Scholar 

  • Cenci E, Mencacci A, Casagrande A et al (2001) Impaired antifungal effector activity but not inflammatory cell recruitment in interleukin-6-deficient mice with invasive pulmonary aspergillosis. J Infect Dis 184(5):610–617

    CAS  PubMed  Google Scholar 

  • Cervelatti EP, Fachin AL, Ferreira-Nozawa MS et al (2006) Molecular cloning and characterization of a novel ABC transporter gene in the human pathogen Trichophyton rubrum. Med Mycol 44(2):141–147

    CAS  PubMed  Google Scholar 

  • Chen Y, Toffaletti DL, Tenor JL et al (2014) The Cryptococcus neoformans transcriptome at the site of human meningitis. MBio 5(1):e01087–e01013

    PubMed Central  PubMed  Google Scholar 

  • Conti HR, Shen F, Nayyar N et al (2009) Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis. J Exp Med 206(2):299–311

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cornet M, Gaillardin C (2014) pH signaling in human fungal pathogens: a new target for antifungal strategies. Eukaryot Cell 13(3):342–352

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cortez KJ, Lyman CA, Kottilil S et al (2006) Functional genomics of innate host defense molecules in normal human monocytes in response to Aspergillus fumigatus. Infect Immun 74(4):2353–2365

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coste AT, Karababa M, Ischer F et al (2004) TAC1, transcriptional activator of CDR genes, is a new transcription factor involved in the regulation of Candida albicans ABC transporters CDR1 and CDR2. Eukaryot Cell 3(6):1639–1652

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cowen LE (2009) Hsp90 orchestrates stress response signaling governing fungal drug resistance. PLoS Pathog 5(8):e1000471

    PubMed Central  PubMed  Google Scholar 

  • da Silva Ferreira ME, Malavazi I, Savoldi M et al (2006) Transcriptome analysis of Aspergillus fumigatus exposed to voriconazole. Curr Genet 50(1):32–44

    PubMed  Google Scholar 

  • Davis DA (2009) How human pathogenic fungi sense and adapt to pH: the link to virulence. Curr Opin Microbiol 12(4):365–370

    CAS  PubMed  Google Scholar 

  • De Backer MD, Ilyina T, Ma XJ et al (2001) Genomic profiling of the response of Candida albicans to itraconazole treatment using a DNA microarray. Antimicrob Agents Chemother 45(6):1660–1670

    CAS  PubMed Central  PubMed  Google Scholar 

  • de Jesús-Berríos M, Liu L, Nussbaum JC et al (2003) Enzymes that counteract nitrosative stress promote fungal virulence. Curr Biol 13(22):1963–1968

    CAS  PubMed  Google Scholar 

  • Decken K, Kohler G, Palmer-Lehmann K et al (1998) Interleukin-12 is essential for a protective Th1 response in mice infected with Cryptococcus neoformans. Infect Immun 66(10):4994–5000

    CAS  PubMed Central  PubMed  Google Scholar 

  • Deepe GS Jr (2000) Immune response to early and late Histoplasma capsulatum infections. Curr Opin Microbiol 3(4):359–362

    CAS  PubMed  Google Scholar 

  • Denning DW (2003) Echinocandin antifungal drugs. Lancet 362(9390):1142–1151

    CAS  PubMed  Google Scholar 

  • Dhamgaye S, Bernard M, Lelandais G et al (2012) RNA sequencing revealed novel actors of the acquisition of drug resistance in Candida albicans. BMC Genomics 13:396

    CAS  PubMed Central  PubMed  Google Scholar 

  • Diao YJ, Zhao R, Deng XM et al (2009) Transcriptional profiles of Trichophyton rubrum in response to itraconazole. Med Mycol 47(3):237–247

    CAS  PubMed  Google Scholar 

  • Fachin AL, Contel EPB, Martinez-Rossi NM (2001) Effect of sub-MICs of antimycotics on expression of intracellular esterase of Trichophyton rubrum. Med Mycol 39(1):129–133

    CAS  PubMed  Google Scholar 

  • Fachin AL, Ferreira-Nozawa MS, Maccheroni W et al (2006) Role of the ABC transporter TruMDR2 in terbinafine, 4-nitroquinoline N-oxide and ethidium bromide susceptibility in Trichophyton rubrum. J Med Microbiol 55(8):1093–1099

    CAS  PubMed  Google Scholar 

  • Fan W, Kraus PR, Boily MJ et al (2005) Cryptococcus neoformans gene expression during murine macrophage infection. Eukaryot Cell 4(8):1420–1433

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ferreira-Nozawa MS, Silveira HCS, Ono CJ et al. (2006) The pH signaling transcription factor PacC mediates the growth of Trichophyton rubrum on human nail in vitro. Med Mycol 44(7):641–645

    CAS  PubMed  Google Scholar 

  • Fradin C, Kretschmar M, Nichterlein T et al (2003) Stage-specific gene expression of Candida albicans in human blood. Mol Microbiol 47(6):1523–1543

    CAS  PubMed  Google Scholar 

  • Fradin C, De Groot P, MacCallum D et al (2005) Granulocytes govern the transcriptional response, morphology and proliferation of Candida albicans in human blood. Mol Microbiol 56(2):397–415

    CAS  PubMed  Google Scholar 

  • Fradin C, Mavor AL, Weindl G et al (2007) The early transcriptional response of human granulocytes to infection with Candida albicans is not essential for killing but reflects cellular communications. Infect Immun 75(3):1493–1501

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gautam P, Shankar J, Madan T et al (2008) Proteomic and transcriptomic analysis of Aspergillus fumigatus on exposure to amphotericin B. Antimicrob Agents Chemother 52(12):4220–4227

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gibbons JG, Beauvais A, Beau R et al (2012) Global transcriptome changes underlying colony growth in the opportunistic human pathogen Aspergillus fumigatus. Eukaryot Cell 11(1):68–78

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gomez P, Hackett TL, Moore MM et al (2011) Functional genomics of human bronchial epithelial cells directly interacting with conidia of Aspergillus fumigatus. BMC Genomics 11:358

    Google Scholar 

  • Heddergott C, Bruns S, Nietzsche S et al (2012) The Arthroderma benhamiae hydrophobin HypA mediates hydrophobicity and influences recognition by human immune effector cells. Eukaryot Cell 11(5):673–682

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hu G, Cheng PY, Sham A et al (2008) Metabolic adaptation in Cryptococcus neoformans during early murine pulmonary infection. Mol Microbiol 69(6):1456–1475

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ibrahim-Granet O, Dubourdeau M, Latge JP et al (2008) Methylcitrate synthase from Aspergillus fumigatus is essential for manifestation of invasive aspergillosis. Cell Microbiol 10(1):134–148

    CAS  PubMed  Google Scholar 

  • Idnurm A, Giles SS, Perfect JR et al (2007) Peroxisome function regulates growth on glucose in the basidiomycete fungus Cryptococcus neoformans. Eukaryot Cell 6(1):60–72

    CAS  PubMed Central  PubMed  Google Scholar 

  • Idnurm A, Walton FJ, Floyd A et al (2009) Identification of ENA1 as a virulence gene of the human pathogenic fungus Cryptococcus neoformans through signature-tagged insertional mutagenesis. Eukaryot Cell 8(3):315–326

    CAS  PubMed Central  PubMed  Google Scholar 

  • Inglis DO, Berkes CA, Hocking Murray DR et al (2010) Conidia but not yeast cells of the fungal pathogen Histoplasma capsulatum trigger a type I interferon innate immune response in murine macrophages. Infect Immun 78(9):3871–3882

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jung WH, Hu G, Kuo W et al. (2009) Role of ferroxidases in iron uptake and virulence of Cryptococcus neoformans. Eukaryot Cell 8(10):1511–1520

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kane PM (2007) The long physiological reach of the yeast vacuolar H+-ATPase. J Bioenerg Biomembr 39(5–6):415–421

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim HS, Choi EH, Khan J et al (2005) Expression of genes encoding innate host defense molecules in normal human monocytes in response to Candida albicans. Infect Immun 73(6):3714–3724

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kretschmer M, Wang J, Kronstad JW (2012) Peroxisomal and mitochondrial beta-oxidation pathways influence the virulence of the pathogenic fungus Cryptococcus neoformans. Eukaryot Cell 11(8):1042–1054

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lambou K, Lamarre C, Beau R et al (2010) Functional analysis of the superoxide dismutase family in Aspergillus fumigatus. Mol Microbiol 75(4):910–923

    CAS  PubMed  Google Scholar 

  • Lim CS, Rosli R, Seow HF et al (2011) Transcriptome profiling of endothelial cells during infections with high and low densities of C. albicans cells. Int J Med Microbiol 301(6):536–546

    CAS  PubMed  Google Scholar 

  • Liu TT, Lee RE, Barker KS et al (2005) Genome-wide expression profiling of the response to azole, polyene, echinocandin, and pyrimidine antifungal agents in Candida albicans. Antimicrob Agents Chemother 49(6):2226–2236

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu TT, Znaidi S, Barker KS et al (2007) Genome-wide expression and location analyses of the Candida albicans Tac1p regulon. Eukaryot Cell 6(11):2122–2138

    CAS  PubMed Central  PubMed  Google Scholar 

  • Livonesi MC, Souto JT, Campanelli AP et al (2008) Deficiency of IL–12p40 subunit determines severe paracoccidioidomycosis in mice. Med Mycol 46(7):637–646

    CAS  PubMed  Google Scholar 

  • Lorenz MC, Fink GR (2001) The glyoxylate cycle is required for fungal virulence. Nature 412 (6842):83–86

    CAS  PubMed  Google Scholar 

  • Lorenz MC, Bender JA, Fink GR (2004) Transcriptional response of Candida albicans upon internalization by macrophages. Eukaryot Cell 3(5):1076–1087

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lupo P, Chang YC, Kelsall BL et al (2008) The presence of capsule in Cryptococcus neoformans influences the gene expression profile in dendritic cells during interaction with the fungus. Infect Immun 76(4):1581–1589

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maranhão FCA, Paião FG, Martinez-Rossi NM (2007) Isolation of transcripts over-expressed in human pathogen Trichophyton rubrum during growth in keratin. Microbial Pathog 43(4):166–172

    Google Scholar 

  • Martin R, Moran GP, Jacobsen ID et al (2011) The Candida albicans-specific gene EED1 encodes a key regulator of hyphal extension. PLoS One 6(4):e18394

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martinez-Rossi NM, Peres NTA, Rossi A (2008) Antifungal resistance mechanisms in dermatophytes. Mycopathologia 166(5–6):369–383

    PubMed  Google Scholar 

  • Martinez-Rossi NM, Persinoti GF, Peres NTA et al (2012) Role of pH in the pathogenesis of dermatophytoses. Mycoses 55(5):381–387

    CAS  PubMed  Google Scholar 

  • Mayer FL, Wilson D, Hube B (2013) Candida albicans pathogenicity mechanisms. Virulence 4(2):119–128

    PubMed Central  PubMed  Google Scholar 

  • McDonagh A, Fedorova ND, Crabtree J et al (2008) Sub-telomere directed gene expression during initiation of invasive aspergillosis. PLoS Pathog 4(9):e1000154

    PubMed Central  PubMed  Google Scholar 

  • Missall TA, Lodge JK, McEwen JE (2004) Mechanisms of resistance to oxidative and nitrosative stress: implications for fungal survival in mammalian hosts. Eukaryot Cell 3(4):835–846

    CAS  PubMed Central  PubMed  Google Scholar 

  • Monod M (2008) Secreted proteases from dermatophytes. Mycopathologia 166(5–6):285–294

    PubMed  Google Scholar 

  • Morschhauser J, Barker KS, Liu TT et al (2007) The transcription factor Mrr1p controls expression of the MDR1 efflux pump and mediates multidrug resistance in Candida albicans. PLoS Pathog 3(11):e164

    PubMed Central  PubMed  Google Scholar 

  • Morton CO, Varga JJ, Hornbach A et al (2011) The temporal dynamics of differential gene expression in Aspergillus fumigatus interacting with human immature dendritic cells in vitro. PLoS One 6(1):e16016

    CAS  PubMed Central  PubMed  Google Scholar 

  • Muller V, Viemann D, Schmidt M et al (2007) Candida albicans triggers activation of distinct signaling pathways to establish a proinflammatory gene expression program in primary human endothelial cells. J Immunol 179(12):8435–8445

    PubMed  Google Scholar 

  • Mullick A, Elias M, Harakidas P et al (2004) Gene expression in HL60 granulocytoids and human polymorphonuclear leukocytes exposed to Candida albicans. Infect Immun 72(1):414–429

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nett J, Lincoln L, Marchillo K et al (2007) Beta-1,3 glucan as a test for central venous catheter biofilm infection. J Infect Dis 195(11):1705–1712

    CAS  PubMed  Google Scholar 

  • Nobile CJ, Solis N, Myers CL et al (2008) Candida albicans transcription factor Rim101 mediates pathogenic interactions through cell wall functions. Cell Microbiol 10(11):2180–2196

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nobile CJ, Fox EP, Nett JE et al (2012) A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell 148(1–2):126–138.

    CAS  PubMed Central  PubMed  Google Scholar 

  • O’Meara TR, Norton D, Price MS et al (2010) Interaction of Cryptococcus neoformans Rim101 and protein kinase A regulates capsule. PLoS Pathog 6(2):e1000776

    PubMed Central  PubMed  Google Scholar 

  • O’Meara TR, Xu W, Selvig KM et al (2013) The Cryptococcus neoformans Rim101 transcription factor directly regulates genes required for adaptation to the host. Mol Cell Biol 34(4):673–684

    PubMed  Google Scholar 

  • Ok M, Latge JP, Baeuerlein C et al (2009) Immune responses of human immature dendritic cells can be modulated by the recombinant Aspergillus fumigatus antigen Aspf1. Clin Vaccine Immunol 16(10):1485–1492

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oosthuizen JL, Gomez P, Ruan J et al (2011) Dual organism transcriptomics of airway epithelial cells interacting with conidia of Aspergillus fumigatus. PLoS One 6(5):e20527

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paião FG, Segato F, Cursino-Santos JR et al (2007) Analysis of Trichophyton rubrum gene expression in response to cytotoxic drugs. FEMS Microbiol Lett 271(2):180–186

    PubMed  Google Scholar 

  • Peres NTA, Maranhao FCA, Rossi A et al (2010a) Dermatophytes: host-pathogen interaction and antifungal resistance. An Bras Dermatol 85(5):657–667

    Google Scholar 

  • Peres NTA, Sanches PR, Falcão JP et al (2010b) Transcriptional profiling reveals the expression of novel genes in response to various stimuli in the human dermatophyte Trichophyton rubrum. BMC Microbiol 10:39–48

    Google Scholar 

  • Petzold EW, Himmelreich U, Mylonakis E et al (2006) Characterization and regulation of the trehalose synthesis pathway and its importance in the pathogenicity of Cryptococcus neoformans. Infect Immun 74(10):5877–5887

    CAS  PubMed Central  PubMed  Google Scholar 

  • Prigneau O, Porta A, Poudrier JA et al (2003) Genes involved in beta-oxidation, energy metabolism and glyoxylate cycle are induced by Candida albicans during macrophage infection. Yeast 20(8):723–730

    CAS  PubMed  Google Scholar 

  • Ramirez MA, Lorenz MC (2007) Mutations in alternative carbon utilization pathways in Candida albicans attenuate virulence and confer pleiotropic phenotypes. Eukaryot Cell 6(2):280–290

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rogers PD, Barker KS (2002) Evaluation of differential gene expression in fluconazole-susceptible and -resistant isolates of Candida albicans by cDNA microarray analysis. Antimicrob Agents Chemother 46(11):3412–3417

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rogers PD, Barker KS (2003) Genome-wide expression profile analysis reveals coordinately regulated genes associated with stepwise acquisition of azole resistance in Candida albicans clinical isolates. Antimicrob Agents Chemother 47(4):1220–1227

    CAS  PubMed Central  PubMed  Google Scholar 

  • Romani L (2011) Immunity to fungal infections. Nat Rev Immunol 11(4):275–288

    CAS  PubMed  Google Scholar 

  • Rossi A, Cruz AHS, Santos RS et al (2013) Ambient pH sensing in filamentous fungi: pitfalls in elucidating regulatory hierarchical signaling networks. IUBMB Life 65(11):930–935

    CAS  PubMed  Google Scholar 

  • Rude TH, Toffaletti DL, Cox GM et al (2002) Relationship of the glyoxylate pathway to the pathogenesis of Cryptococcus neoformans. Infect Immun 70(10):5684–5694

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sanguinetti M, Posteraro B, Fiori B et al (2005) Mechanisms of azole resistance in clinical isolates of Candida glabrata collected during a hospital survey of antifungal resistance. Antimicrob Agents Chemother 49(2):668–679

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schobel F, Ibrahim-Granet O, Ave P, Latge JP, Brakhage AA, and Brock M (2007) Aspergillus fumigatus does not require fatty acid metabolism via isocitrate lyase for development of invasive aspergillosis. Infect Immun 75:1237–1244

    CAS  PubMed  Google Scholar 

  • Segato F, Nozawa SR, Rossi A et al (2008) Over-expression of genes coding for proline oxidase, riboflavin kinase, cytochrome c oxidase and an MFS transporter induced by acriflavin in Trichophyton rubrum. Med Mycol 46(2):135–139

    CAS  PubMed  Google Scholar 

  • Shapiro RS, Robbins N, Cowen LE (2011) Regulatory circuitry governing fungal development, drug resistance, and disease. Microbiol Mol Biol Rev 75(2):213–267

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shiraki Y, Ishibashi Y, Hiruma M et al (2006) Cytokine secretion profiles of human keratinocytes during Trichophyton tonsurans and Arthroderma benhamiae infections. J Med Microbiol 55(Pt 9):1175–1185

    CAS  PubMed  Google Scholar 

  • Silva SS, Tavares AHFP, Passos-Silva DG et al (2008) Transcriptional response of murine macrophages upon infection with opsonized Paracoccidioides brasiliensis yeast cells. Microbes Infect 10(1):12–20

    CAS  PubMed  Google Scholar 

  • Silva MG, Schrank A, Bailao EF et al (2011) The homeostasis of iron, copper, and zinc in Paracoccidioides brasiliensis, Cryptococcus neoformans var. grubii, and Cryptococcus gattii: a comparative analysis. Front Microbiol 2:49

    CAS  PubMed Central  PubMed  Google Scholar 

  • Silveira HCS, Gras DE, Cazzaniga RA et al (2010) Transcriptional profiling reveals genes in the human pathogen Trichophyton rubrum that are expressed in response to pH signaling. Microb Pathog 48(2):91–96

    CAS  PubMed  Google Scholar 

  • Silver PM, Oliver BG, White TC (2004) Role of Candida albicans transcription factor Upc2p in drug resistance and sterol metabolism. Eukaryot Cell 3(6):1391–1397

    CAS  PubMed Central  PubMed  Google Scholar 

  • Singh SD, Robbins N, Zaas AK et al (2009) Hsp90 governs echinocandin resistance in the pathogenic yeast Candida albicans via calcineurin. PLoS Pathog 5(7):e1000532

    PubMed Central  PubMed  Google Scholar 

  • Souto JT, Figueiredo F, Furlanetto A et al (2000) Interferon-gamma and tumor necrosis factor-alpha determine resistance to Paracoccidioides brasiliensis infection in mice. Am J Pathol 156(5):1811–1820

    CAS  PubMed Central  PubMed  Google Scholar 

  • Staib P, Zaugg C, Mignon B et al (2010) Differential gene expression in the pathogenic dermatophyte Arthroderma benhamiae in vitro versus during infection. Microbiology 156(Pt 3):884–895

    CAS  PubMed  Google Scholar 

  • Steen BR, Zuyderduyn S, Toffaletti DL et al (2003) Cryptococcus neoformans gene expression during experimental cryptococcal meningitis. Eukaryot Cell 2(6):1336–1349

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sugui JA, Kim HS, Zarember KA et al (2008) Genes differentially expressed in conidia and hyphae of Aspergillus fumigatus upon exposure to human neutrophils. PLoS One 3(7):e2655

    PubMed Central  PubMed  Google Scholar 

  • Sun N, Fonzi W, Chen H et al (2013) Azole susceptibility and transcriptome profiling in Candida albicans mitochondrial electron transport chain complex I mutants. Antimicrob Agents Chemother 57(1):532–542

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tavares AH, Derengowski LS, Ferreira KS et al (2012) Murine dendritic cells transcriptional modulation upon Paracoccidioides brasiliensis infection. PLoS Negl Trop Dis 6(1):e1459

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thewes S, Kretschmar M, Park H et al (2007) In vivo and ex vivo comparative transcriptional profiling of invasive and non-invasive Candida albicans isolates identifies genes associated with tissue invasion. Mol Microbiol 63(6):1606–1628

    CAS  PubMed  Google Scholar 

  • Tierney L, Linde J, Muller S et al (2012) An Interspecies regulatory network inferred from simultaneous RNA-seq of Candida albicans invading innate immune cells. Front Microbiol 3:85

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vediyappan G, Rossignol T, d’Enfert C (2010) Interaction of Candida albicans biofilms with antifungals: transcriptional response and binding of antifungals to beta-glucans. Antimicrob Agents Chemother 54(5):2096–2111

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vermes A, Guchelaar HJ, Dankert J (2000) Flucytosine: a review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions. J Antimicrob Chemother 46(2):171–179

    CAS  PubMed  Google Scholar 

  • Viriyakosol S, Singhania A, Fierer J et al (2013) Gene expression in human fungal pathogen Coccidioides immitis changes as arthroconidia differentiate into spherules and mature. BMC Microbiol 13:121

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wachtler B, Wilson D, Haedicke K et al (2011) From attachment to damage: defined genes of Candida albicans mediate adhesion, invasion and damage during interaction with oral epithelial cells. PLoS One 6(2):e17046

    PubMed Central  PubMed  Google Scholar 

  • Walker LA, Maccallum DM, Bertram G et al (2009) Genome-wide analysis of Candida albicans gene expression patterns during infection of the mammalian kidney. Fungal Genet Biol 46(2):210–219

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63

    CAS  PubMed Central  PubMed  Google Scholar 

  • Westermann AJ, Gorski SA, Vogel J (2012) Dual RNA-seq of pathogen and host. Nat Rev Microbiol 10(9):618–630

    CAS  PubMed  Google Scholar 

  • White TC, Holleman S, Dy F et al (2002) Resistance mechanisms in clinical isolates of Candida albicans. Antimicrob Agents Chemother 46(6):1704–1713

    CAS  PubMed Central  PubMed  Google Scholar 

  • Woodfolk JA, Platts-Mills TA (1998) The immune response to dermatophytes. Res Immunol 149(4–5):436–445

    CAS  PubMed  Google Scholar 

  • Yu L, Zhang W, Liu T et al (2007a) Global gene expression of Trichophyton rubrum in response to PH11B, a novel fatty acid synthase inhibitor. J Appl Microbiol 103(6):2346–2352

    Google Scholar 

  • Yu L, Zhang W, Wang L et al (2007b) Transcriptional profiles of the response to ketoconazole and amphotericin B in Trichophyton rubrum. Antimicrob Agents Chemother 51(1):144–153

    Google Scholar 

  • Zakikhany K, Naglik JR, Schmidt-Westhausen A et al (2007) In vivo transcript profiling of Candida albicans identifies a gene essential for interepithelial dissemination. Cell Microbiol 9(12):2938–2954

    CAS  PubMed  Google Scholar 

  • Zaugg C, Monod M, Weber J, Harshman K, Pradervand S, Thomas J et al. (2009) Gene expression profiling in the human pathogenic dermatophyte Trichophyton rubrum during growth on proteins. Eukaryot Cell 8:241–250

    CAS  PubMed  Google Scholar 

  • Zhang W, Yu L, Yang J et al (2009) Transcriptional profiles of response to terbinafine in Trichophyton rubrum. Appl Microbiol Biotechnol 82(6):1123–1130

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Brazilian funding agencies FAPESP (Grant No. 2008/58634-7), CNPq, CAPES and FAEPA. NTAP was supported by postdoctoral fellowships from FAPESP (2009/08411-4) and CNPq (503809/2012-8), GFP was supported by ­postdoctoral fellowships from FAPESP (2012/22232-8 and 2013/19195-6) and EASL by postdoctoral fellowships from FAPESP (2011/08424-9) and CNPq (150980/2013-2).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Peres, N., Persinoti, G., Lang, E., Rossi, A., Martinez-Rossi, N. (2014). Transcriptome in Human Mycoses. In: Passos, G. (eds) Transcriptomics in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-11985-4_13

Download citation

Publish with us

Policies and ethics