Skip to main content

Two-Timing, Geometric, and Multi-scale Methods

  • Chapter
  • First Online:
Historical Developments in Singular Perturbations

Abstract

The Brooklyn native Julian Cole (1925–1999) got his Ph.D. in aeronautics at Caltech in 1949 with Hans Liepmann (a German émigre of 1939) as his advisor. He remained on the Caltech faculty until 1968 where he maintained active contact with Kaplun, Lagerstrom and others in aeronautics, applied mathematics and industry, attempting to understand singular perturbations more deeply and to apply its growing methodology. Then he moved to UCLA and, ultimately, Rensselaer. He and his Jerusalem-born student Jerry Kevorkian , who spent his academic career at the University of Washington, developed and applied asymptotic methods involving two- (i.e. multi-) time or multiple scales in the early 1960s (cf. the obituary of Cole by Bluman et al. [48]). Related approaches were made by the Soviet Kuzmak [273], the Australian Mahony [305], and the American Cochran [89], among others, but Cole and Kevorkian had the dominant long-term impact. The previously cited work of Lomov is also recommended reading, as is the paper by Levey and Mahony [286]. The monograph Perturbation Methods in Applied Mathematics , Cole [92], considered singular perturbations in a broad applied math setting, where both the development of the underlying techniques and significant and diverse applications were included. The book approaches matching using intermediate limits and presumes a corresponding overlap of inner and outer domains. The examples used are generally very instructive and quite nontrivial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.J. Ablowitz, Nonlinear Dispersive Waves: Asymptotic Analysis and Solitons (Cambridge University Press, Cambridge, 2011)

    Google Scholar 

  2. S.B. Ai, Multi-bump solutions to Carrier’s problem. J. Math. Anal. Appl. 277, 405–422 (2003)

    MATH  MathSciNet  Google Scholar 

  3. V.M. Alekseev, An estimate for the solutions of ordinary differential equations. Vestn. Moskov. Univ. Ser. I Mat. Mech. 2, 28–36 (1961)

    Google Scholar 

  4. C.M. Andersen, J.F. Geer, Power series solutions for the frequency and period of the limit cycle of the van der Pol equation. SIAM J. Appl. Math. 42, 678–693 (1982)

    MATH  MathSciNet  Google Scholar 

  5. I. Andrianov, J. Awrejcewicz, L.I. Manevitch, Asymptotical Mechanics of Thin-Walled Structures (Springer, Berlin, 2004)

    Google Scholar 

  6. V.I. Arnold, V.V. Kozlov, A.I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, 2nd edn. (Springer, Berlin, 1997)

    MATH  Google Scholar 

  7. J. Awrejcewicz, V.A. Krysko, Introduction to Asymptotic Methods (Chapman and Hall/CRC, Boca Raton, FL, 2006)

    MATH  Google Scholar 

  8. N.S. Bakhvalov, G.P. Panasenko, Homogenisation: Averaging Processes in Periodic Media: Mathematical Problems in the Mechanics of Composite Materials (Kluwer, Dordrecht, 1989)

    MATH  Google Scholar 

  9. N.S. Bakhvalov, G.P. Panasenko, A.L. Štaras, The averaging method for partial differential equations (homogenization) and its applications, in Partial Differential Equations V, ed. by Yu.V. Egorov, M.A. Shubin (Springer, Berlin, 1999), pp. 211–247

    Google Scholar 

  10. J. Barrow-Green, Poincaré and the Three Body Problem, vol. 11 of History of Mathematics (Amer. Math. Soc, Providence, RI, 1997)

    Google Scholar 

  11. R. Bellman, Introduction to Matrix Analysis, 2nd edn. (McGraw-Hill, New York, 1970)

    MATH  Google Scholar 

  12. C.M. Bender, S.A. Orszag, Advanced Mathematical Methods for Scientists and Engineers (McGraw-Hill, New York, 1978)

    MATH  Google Scholar 

  13. A. Bensoussan, J.-L. Lions, G. Papanicolaou, Asymptotic Methods in Periodic Media (North-Holland, Amsterdam, 1978)

    Google Scholar 

  14. G. Bluman et al., Julian D. Cole. Not. Am. Math. Soc. 47(4), 466–473 (2000)

    MATH  MathSciNet  Google Scholar 

  15. N.N. Bogoliubov, Yu. A. Mitropolsky, Asymptotic Methods in the Theory of Nonlinear Oscillations (Gordon and Breach, New York, 1961)

    Google Scholar 

  16. B. Braaksma, Phantom ducks and models of excitability. J. Dyn. Differ. Equ. 4, 485–513 (1992)

    MATH  MathSciNet  Google Scholar 

  17. A.W. Bush, Perturbation Methods for Engineers and Scientists (CRC Press, Boca Raton, FL, 1992)

    MATH  Google Scholar 

  18. P.F. Byrd, M.D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists (Springer, Berlin, 1954)

    Google Scholar 

  19. M. Canalis-Durand, Formal expansion of van der Pol equation canard solutions are Gevrey, in Dynamic Bifurcations, ed. by E. Benoît, vol. 1493 of Lecture Notes in Math. (Springer, Berlin, 1991), pp. 29–39

    Google Scholar 

  20. G. Carrier, C. Pearson, Ordinary Differential Equations (Blaisdell, Waltham, MA, 1968)

    MATH  Google Scholar 

  21. G.F. Carrier, Singular perturbation theory and geophysics. SIAM Rev. 12, 175–193 (1970)

    Google Scholar 

  22. L. Cesari, Asymptotic Behavior and Stability Problems in Ordinary Differential Equations, 2nd edn. (Springer, Berlin, 1963)

    MATH  Google Scholar 

  23. I. Chang, Thread of the Silkworm (Basic Books, New York, 1995)

    Google Scholar 

  24. P.B. Chapman, A Short Course in a Method for Solving Dynamical Systems and Other Related Problems (Unpublished)

    Google Scholar 

  25. E. Charpentier, E. Ghys, A. Lesne (eds.), The Scientific Legacy of Poincaré (Amer. Math. Soc., Providence, RI, 2010)

    Google Scholar 

  26. L.-Y. Chen, N. Goldenfeld, Y. Oono, Renormalization group theory for global asymptotic analysis. Phys. Rev. Lett. 73, 1311–1315 (1994)

    MathSciNet  Google Scholar 

  27. L.-Y. Chen, N. Goldenfeld, Y. Oono, Renormalization group and singular perturbations: Multiple-scales, boundary layers, and reductive perturbation theory. Phys. Rev. E 54(1), 376–394 (1996)

    Google Scholar 

  28. H. Cheng, The renormalized two-scale method. Stud. Appl. Math 113, 381–387 (2004)

    MATH  MathSciNet  Google Scholar 

  29. H. Chiba, Simplified renormalizaton group method for ordinary differential equations. J. Differ. Equ. 246, 1991–2019 (2009)

    Google Scholar 

  30. H. Chiba, Extension and unification of singular perturbation methods for ODEs based on the renormalization group method. SIAM J. Dyn. Syst. 8, 1066–1115 (2009)

    MATH  MathSciNet  Google Scholar 

  31. J.A. Cochran, Problems in Singular Perturbation Theory, PhD thesis, Stanford University, Stanford, CA, 1962

    Google Scholar 

  32. J.D. Cole, Perturbation Methods in Applied Mathematics (Blaisdell, Waltham, MA, 1968)

    MATH  Google Scholar 

  33. C. Comstock, The Poincaré-Lighthill perturbation technique and its generalizations. SIAM Rev. 14, 433–446 (1972)

    MATH  MathSciNet  Google Scholar 

  34. V.T. Coppola, R.H. Rand, Averaging using elliptic functions: approximations of limit cycles. Acta Mech. 81, 125–142 (1990)

    MATH  MathSciNet  Google Scholar 

  35. J. Cronin, Mathematical Aspects of Hodgkin-Huxley Neuron Theory (Cambridge University Press, Cambridge, 1987)

    Google Scholar 

  36. J. Cronin, Analysis of cellular oscillations, in Analyzing Multiscale Phenomena Using Singular Perturbation Methods, ed. by J. Cronin and R.E. O’Malley, Jr. (Amer. Math. Soc., Providence, RI, 1999), pp. 133–150

    Google Scholar 

  37. L. Debnath, Sir James Lighthill and Modern Fluid Dynamics (Imperial College Press, London, 2008)

    Google Scholar 

  38. R E.L. De Ville, A. Harkin. M. Holzer, K. Josić, T.J. Kaper, Analysis of a renormalization group method and normal form theory for perturbed ordinary differential equations. Phys. D 237(8), 1029–1052 (2008)

    Google Scholar 

  39. F. Diener, M. Diener, Nonstandard Analysis in Practice (Springer, Berlin, 1995)

    MATH  Google Scholar 

  40. F.W. Dorr, S.V. Parter, L.F. Shampine, Applications of the maximum principle to singular perturbation problems. SIAM Rev. 15, 43–88 (1973)

    MATH  MathSciNet  Google Scholar 

  41. Weinan E., Principles of Multiscale Modeling (Cambridge University Press, Cambridge, 2011)

    MATH  Google Scholar 

  42. W. Eckhaus, Relaxation oscillations including a standard chase on French ducks, in Asymptotic Analysis II, vol. 985 of Lecture Notes in Math, ed. by F. Verhulst (Springer, Berlin, 1983), pp. 449–494

    Google Scholar 

  43. S.-I. Ei, K. Fujii, T. Kunihiro, Renormalization-group method for reduction of evolution equations; invariant manifolds and envelopes. Ann. Phys. 280, 236–298 (2000)

    MATH  MathSciNet  Google Scholar 

  44. G.B. Ermentrout, D.H. Terman, Mathematical Foundations of Neuroscience (Springer, New York, 2010)

    MATH  Google Scholar 

  45. N.D. Fowkes, J.P.O. Silberstein, John Mahony, 1929–1992. Hist. Record Aust. Sci. 10, 265–291 (1995)

    Google Scholar 

  46. P. Germain, My discovery of mechanics. In G.A. Maugin, R. Drouot, and F. Sidoroff (eds.), Continuum Thermomechanics: the Art and Science of Modelling Material Behaviour (Kluwer, Dordrecht, 2000), pp. 1–24

    Google Scholar 

  47. N. Goldenfeld, The renormalization group far from equilibrium: Singular perturbations, pattern formation, and hydrodynamics. Talk, University of Washington, 2010

    Google Scholar 

  48. J. Grasman, Asymptotic Methods for Relaxation Oscillations and Applications (Springer, New York, 1987)

    MATH  Google Scholar 

  49. J. Gray, Henri Poincaré: A Scientific Biography (Princeton University Press, Princeton, NJ, 2012)

    Google Scholar 

  50. W.M. Greenlee, R.E. Snow, Two-timing on the half line for damped oscillator equations. J. Math. Anal. Appl. 51, 394–428 (1975)

    MATH  MathSciNet  Google Scholar 

  51. J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer, New York, 1983)

    MATH  Google Scholar 

  52. S.P. Hastings, J.B. McLeod, Classical Methods in Ordinary Differential Equations: with Applications to Boundary Value Problems (Amer. Math. Soc, Providence, 2012)

    Google Scholar 

  53. E.J. Hinch, Perturbation Methods (Cambridge University Press, Cambridge, 1991)

    MATH  Google Scholar 

  54. M.H. Holmes, Introduction to Perturbation Methods, 2nd edn. (Springer, New York, 2013)

    MATH  Google Scholar 

  55. G. Israel, Technical innovation and new mathematics: van der Pol and the birth of nonlinear dynamics, in Technological Concepts and Mathematical Models in the Evolution of Modern Engineering Systems, ed. by M. Lucertini, A.M. Gasca, F. Nicolò (Birkhäuser Verlag, Basel, 2004), pp. 52–78

    Google Scholar 

  56. E.M. de Jager, Jiang Furu, The Theory of Singular Perturbations (Elsevier, Amsterdam, 1996)

    Google Scholar 

  57. R.S. Johnson, Singular Perturbation Theory: Mathematical and Analytical Techniques with Applications to Engineering (Springer, New York, 2005)

    Google Scholar 

  58. D.W. Jordan, P. Smith, Nonlinear Ordinary Differential Equations, 4th edn. (Oxford University Press, Oxford, 2007)

    Google Scholar 

  59. S. Kaplun, Low Reynolds number flow past a circular cylinder. J. Math. Mech. 6, 595–603 (1957)

    MATH  MathSciNet  Google Scholar 

  60. W.L. Kath, Slowly-varying phase planes and boundary-layer theory. Stud. Appl. Math. 72, 221–239 (1985)

    MATH  MathSciNet  Google Scholar 

  61. J. Kevorkian, The two-variable expansion procedure for the approximate solution of certain nonlinear differential equations, in Space Mathematics, Part III, vol. 7 of Lectures in Applied Mathematics, ed. by J.B. Rosser (Amer. Math. Soc., Providence, RI, 1966), pp. 206–275

    Google Scholar 

  62. J. Kevorkian, J.D. Cole, Perturbation Methods in Applied Mathematics (Springer, New York, 1981)

    MATH  Google Scholar 

  63. J. Kevorkian, J.D. Cole, Multiple Scale and Singular Perturbation Methods (Springer, New York, 1996)

    MATH  Google Scholar 

  64. E. Kirkinis, Secular series and renormalization group for amplitude equations. Phys. Rev. E 78(1), 032104 (2008)

    Google Scholar 

  65. E. Kirkinis, The renormalization group: A perturbation method for the graduate curriculum. SIAM Rev. 54, 374–388 (2012)

    MATH  MathSciNet  Google Scholar 

  66. I. Kovacic, M.J. Brennan (eds.), The Duffing Equation: Nonlinear Oscillators and their Behaviour (Wiley, Chichester, 2011)

    Google Scholar 

  67. N.M. Krylov, N.N. Bogoliubov, Introduction to Nonlinear Mechanics (Princeton University Press, Princeton, 1947)

    Google Scholar 

  68. T. Kunihiro, A geometric formulation of the renormalization group method for global analysis. Prog. Theor. Phys. 94(4), 503–514 (1995)

    MathSciNet  Google Scholar 

  69. T. Kunihiro, Renormalization-group resummation of a divergent series of the perturbation wave functions of quantum systems. Prog. Theor. Phys. Supplement No. 131, 459–470 (1998)

    Google Scholar 

  70. G.E. Kuzmak, Asymptotic solutions of nonlinear second order differential equations with variable coefficients. J. Appl. Math. Mech. 23, 730–744 (1959)

    MATH  MathSciNet  Google Scholar 

  71. P.A. Lagerstrom, Matched Asymptotic Expansions (Springer, New York, 1988)

    MATH  Google Scholar 

  72. J.L. Lagrange, Analytical Mechanics (Kluwer, Dordrecht, 1997). Translated from the French edition of 1811

    MATH  Google Scholar 

  73. C.G. Lange, On spurious solutions of singular perturbation problems. Stud. Appl. Math. 68, 227–257 (1983)

    MATH  MathSciNet  Google Scholar 

  74. H.C. Levey, J.J. Mahony, Resonance in almost linear systems. J. Inst. Math. Appl. 4, 282–294 (1968)

    MATH  Google Scholar 

  75. N. Levinson, Perturbations of discontinuous solutions of nonlinear systems of differential equations. Acta Math. 82, 71–106 (1951)

    MathSciNet  Google Scholar 

  76. M.J. Lighthill, A technique for rendering approximate solutions to physical problems uniformly valid. Phil. Mag. 40, 1179–1201 (1949)

    MATH  MathSciNet  Google Scholar 

  77. R. Lutz, M. Goze, Nonstandard Analysis: A Practical guide with Applications, vol. 881 of Lecture Notes in Math (Springer, Berlin, 1981)

    Google Scholar 

  78. A.D. MacGillivray, R.J. Braun, G. Tanoglu, Perturbation analysis of a problem of Carrier’s. Stud. Appl. Math. 104, 293–311 (2000)

    MATH  MathSciNet  Google Scholar 

  79. J.J. Mahony, An expansion method for singular perturbation problems. J. Aust. Math. Soc. 2, 440–463 (1961–1962)

    MathSciNet  Google Scholar 

  80. R.M.M. Mattheij, S.W. Rienstra, J.H.M. ten Thije Boonkkamp, Partial Differential Equations: Modeling, Analysis, Computation (SIAM, Philadelphia, 2005)

    Google Scholar 

  81. N. Minorsky, Introduction to Nonlinear Mechanics (J. W. Edwards, Ann Arbor, MI, 1947)

    Google Scholar 

  82. E.F. Mischenko, N.Kh. Rozov, Differential Equations with Small Parameters and Relaxation Oscillations (Plenum, New York, 1980)

    Google Scholar 

  83. J.A. Morrison, Comparison of the modified method of averaging and the two-variable expansion procedure. SIAM Rev. 8, 66–85 (1966)

    MATH  MathSciNet  Google Scholar 

  84. M.P. Mortell, R.E. O’Malley, Jr., A. Pokrovskii, V. Sobolev (eds.), Singular Perturbations and Hysteresis (SIAM, Philadelphia, 2005)

    MATH  Google Scholar 

  85. B. Mudavanhu, R.E. O’Malley, Jr., A new renormalization method for the asymptotic solution of weakly nonlinear vector systems. SIAM J. Appl. Math. 63, 373–397 (2002)

    MATH  MathSciNet  Google Scholar 

  86. B. Mudavanhu, R.E. O’Malley, Jr., D.B. Williams, Working with multiscale asymptotics: Solving weakly nonlinear oscillator equations on long-time intervals. J. Eng. Math. 53, 301–336 (2005)

    MATH  MathSciNet  Google Scholar 

  87. J.A. Murdock, Perturbations: Theory and Methods (Wiley-Interscience, New York, 1991)

    MATH  Google Scholar 

  88. J.A. Murdock, Some fundamental issues in multiple scale theory. Appl. Anal. 53, 157–173 (1994)

    MATH  MathSciNet  Google Scholar 

  89. J.A. Murdock, L.-C. Wang, Validity of the multiple scale method for very long intervals. Z. Angew. Math. Phys. 47, 760–789 (1996)

    MATH  MathSciNet  Google Scholar 

  90. A.H. Nayfeh, Perturbation Methods (Wiley, New York, 1973)

    MATH  Google Scholar 

  91. A.H. Nayfeh, Problems in Perturbation (Wiley, New York, 1985)

    MATH  Google Scholar 

  92. A.H. Nayfeh, Resolving controversies in the application of the method of multiple scales and the generalized method of averaging. Nonlinear Dyn. 40, 61–102 (2005)

    MATH  MathSciNet  Google Scholar 

  93. A.H. Nayfeh, The Method of Normal Forms, 2nd, updated and enlarged edn. (Wiley-VCH, Weinheim, 2011)

    Google Scholar 

  94. A.H. Nayfeh, D.T. Mook, Nonlinear Oscillations (Wiley-Interscience, New York, 1979)

    MATH  Google Scholar 

  95. R.E. O’Malley, Jr., A boundary value problem for certain nonlinear second order differential equations with a small parameter. Arch. Ration. Mech. Anal. 29, 66–74 (1968)

    MATH  MathSciNet  Google Scholar 

  96. R.E. O’Malley, Jr., Topics in singular perturbations. Adv. Math. 2, 365–470 (1968)

    MATH  MathSciNet  Google Scholar 

  97. R.E. O’Malley, Jr., Introduction to Singular Perturbations (Academic Press, New York, 1974)

    MATH  Google Scholar 

  98. R.E. O’Malley, Jr., Phase plane solutions to some singular perturbation problems. J. Math. Anal. Appl. 54, 170–218 (1976)

    MathSciNet  Google Scholar 

  99. R.E. O’Malley, Jr., E. Kirkinis, Two-timing and matched asymptotic expansions for singular perturbation problems. Eur. J. Appl. Math. 22, 613–629 (2011)

    MATH  MathSciNet  Google Scholar 

  100. R.E. O’Malley, Jr., E. Kirkinis, Variation of parameters and the renormalization group method. Stud. Appl. Math. 133, (2014)

    Google Scholar 

  101. Y. Oono, The Nonlinear World: Conceptual Analysis and Phenomenology (Springer, Tokyo, 2013)

    Google Scholar 

  102. C.-H. Ou, R. Wong, Shooting method for nonlinear singularly perturbed boundary value problems. Stud. Appl. Math. 112, 161–200 (2004)

    MATH  MathSciNet  Google Scholar 

  103. T.J. Pedley, James Lighthill and his contributions to fluid mechanics. Ann. Rev. Fluid Mech. 33, 1–41 (2001)

    MathSciNet  Google Scholar 

  104. L.M. Perko, Higher-order averaging and related methods for perturbed periodic and quasi-periodic systems. SIAM J. Appl. Math. 17, 698–724 (1969)

    MATH  MathSciNet  Google Scholar 

  105. H. Poincaré, Les Méthodes Nouvelles de la Mécanique Céleste I., II (Gauthier-Villars, Paris, 1892, 1893)

    Google Scholar 

  106. H. Pollard, Celestial Mechanics (Mathematical Association of America, Washington, DC, 1976)

    MATH  Google Scholar 

  107. R.H. Rand, Lecture notes on nonlinear vibrations. http://www.math.cornell.edu/~rand/randdocs, version 53, 2012

  108. J.W. Baron Rayleigh (F.R.S. Strutt), The Theory of Sound, Volumes I and II bound as one. (Dover, New York, 1945)

    Google Scholar 

  109. A.J. Roberts, Modelling Emergent Dynamics in Complex Systems (to appear)

    Google Scholar 

  110. S. Rosenblat, Asymptotically equivalent singular perturbation problems. Stud. Appl. Math. 55, 249–280 (1976)

    MATH  MathSciNet  Google Scholar 

  111. A.M. Samoilenko, N. N. Bogoliubov and non-linear mechanics. Russ. Math. Surv. 49(5), 109–154 (1994)

    Google Scholar 

  112. J.A. Sanders, F. Verhulst, J. Murdock, Averaging Methods in Nonlinear Dynamical Systems, 2nd edn. (Springer, New York, 2007)

    MATH  Google Scholar 

  113. W. Sarlet, On a common derivation of the averaging method and the two-timescale method. Celest. Mech. 17, 299–311 (1978)

    MATH  MathSciNet  Google Scholar 

  114. S.S. Sastry, C.A. Desoer, Jump behavior of circuits and systems. IEEE Trans. Circuits and Systems, 28(12), 1109–1124 (1981)

    MATH  MathSciNet  Google Scholar 

  115. J.W. Searl, Extensions of a theorem of Erdélyi. Arch. Ration. Mech. Anal. 50, 127–138 (1973)

    MATH  MathSciNet  Google Scholar 

  116. Y. Sibuya, K. Takahasi, On the differential equation \((x +\epsilon u)\frac{du} {dx} + q(x)u - r(x) = 0\). Funkcialaj Ekvacioj 9, 71–81 (1966)

    Google Scholar 

  117. C.G. Small, Expansions and Asymptotics for Statistics (CRC Press, Boca Raton, FL, 2010)

    MATH  Google Scholar 

  118. D.R. Smith, The multivariable method in singular perturbation analysis. SIAM Rev. 17, 221–273 (1975)

    MATH  MathSciNet  Google Scholar 

  119. D.R. Smith, Singular-Perturbation Theory: An Introduction with Applications (Cambridge University Press, Cambridge, 1985)

    MATH  Google Scholar 

  120. J.J. Stoker, Nonlinear Vibrations in Mechanical and Electrical Systems (Interscience, New York, 1950)

    MATH  Google Scholar 

  121. A. Stubhaug, Gösta Mittag-Leffler: A Man of Conviction (Springer, Heidelberg, 2010)

    Google Scholar 

  122. G.G. Szpiro, Poincaré’s Prize: The Hundred-Year Quest to Solve One of Math’s Greatest Puzzles (Penguin, New York, 2008)

    Google Scholar 

  123. G.F.J. Temple, 100 Years of Mathematics: A Personal Viewpoint (Springer, New York, 1981)

    Google Scholar 

  124. H.-S. Tsien, The Poincaré-Lighthill-Kuo method. Adv. Appl. Mech. 4, 281–349 (1956)

    Google Scholar 

  125. F. Verhulst, Perturbation theory from Lagrange to van der Pol. Nieuw Archief voor Wiskunde 2, 428–438 (1984)

    MATH  MathSciNet  Google Scholar 

  126. F. Verhulst, Methods and Applications of Singular Perturbations: Boundary Layers and Multiple Timescale Dynamics (Springer, New York, 2005)

    Google Scholar 

  127. F. Verhulst, Henri Poincaré, Impatient Genius (Springer, New York, 2012)

    MATH  Google Scholar 

  128. F. Verhulst, Profits and pitfalls of timescales in asymptotics. SIAM Rev. 56, (2014)

    Google Scholar 

  129. M.J. Ward, Eliminating indeterminacy in singularly perturbed boundary value problems with translation invariant potentials, Stud. Appl. Math. 87, 95–134 (1992)

    MATH  MathSciNet  Google Scholar 

  130. D. Willett, On a nonlinear boundary value problem with a small parameater multiplying the highest derivative. Arch. Ration. Mech. Anal. 23, 276–287 (1966)

    MATH  MathSciNet  Google Scholar 

  131. R. Wong, Y. Zhao, On the number of solutions to Carrier’s problem. Stud. Appl. Math. 120, 213–245 (2008)

    MATH  MathSciNet  Google Scholar 

  132. S.L. Woodruff, The use of an invariance condition in the solution of multiple-scale singular perturbation problems: Ordinary differential equations. Stud. Appl. Math. 90, 225–248 (1993)

    MATH  MathSciNet  Google Scholar 

  133. S.L. Woodruff, A uniformly-valid asymptotic solution to a matrix system of ordinary differential equations and a proof of validity. Stud. Appl. Math. 94, 393–413 (1995)

    MATH  MathSciNet  Google Scholar 

  134. R.Kh. Zeytounian, Navier-Stokes-Fourier Equations: A Rational Asymptotic Modeling Point of View (Springer, Heidelberg, 2012)

    Google Scholar 

  135. M. Ziane, On a certain renormalization group method. J. Math. Phys. 41, 3290–3299 (2000)

    MATH  MathSciNet  Google Scholar 

  136. G.M. Ziegler, Do I Count? Stories from Mathematics (CRC Press, Boca Raton, FL, 2014)

    MATH  Google Scholar 

  137. A.K. Zvonkin, M.A. Shubin, Nonstandard analysis and singular perturbations of ordinary differential equations. Russ. Math. Surv. 39(2), 69–131 (1984)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

O’Malley, R.E. (2014). Two-Timing, Geometric, and Multi-scale Methods. In: Historical Developments in Singular Perturbations. Springer, Cham. https://doi.org/10.1007/978-3-319-11924-3_5

Download citation

Publish with us

Policies and ethics