Skip to main content

Models of Experimental Sporotrichosis and Immune Response Against Sporothrix schenckii

  • Chapter
Sporotrichosis

Abstract

Antifungal host responses can vary depending on the site of infection, fungal pathogen, fungal morphotype (yeast versus hyphae), and immune status of the host. Variation in the virulence of individual Sporothrix schenckii strains and the immune status of the host may both contribute to the variety in the clinical manifestations of sporotrichosis. However, the factors involved in the pathogenesis of sporotrichosis and the mechanisms determining S. schenckii virulence remain unclear. Classic murine models of sporotrichosis display a characteristic transitory state of depressed cell-mediated immunity during the disease’s acute phase, which has been suggested to result from the nitric oxide–induced T-cell apoptosis and loss of responsiveness to mitogens. In sporotrichosis, recognition of the S. schenckii lipid components, through Toll-like receptor (TLR)-4 or via an inflammasome-dependent pathway, seems to drive inflammation, whereas the TLR2-mediated recognition of the fungus’s exoantigen may serve as an escape mechanism, although the S. schenckii internalization by TLR2−/− macrophages is almost completely abrogated, in vitro at least. Finally, both in vitro and in vivo studies have suggested the adaptive immune response against S. schenckii to be of a mixed Th1/Th17 pattern, with a predominance of Th17 and Th1/Th17 mixed cells over Th1 cells. In this chapter we discuss the current understanding of the immune mechanisms triggered by S. schenckii sensu strictu, along with the animal models used so far to study this pathogen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelsadik A, Trad A (2011) Toll-like receptors on the fork roads between innate and adaptive immunity. Hum Immunol 72:1188–1193

    Article  CAS  PubMed  Google Scholar 

  • Alegranci P, Ribeiro LCA, Ferreira, LS et al (2013) The predominance of alternatively activated macrophages following challenge with cell wall peptide-polysaccharide after prior infection with Sporothrix schenckii. Mycopathologia (1975 Print) 176:57–65

  • Arrillaga-Moncrieff I, Capilla J, Mayayo E et al (2009) Different virulence levels of the species of Sporothrix in a murine model. Clin Microbiol Infect 15(7):651–655

    Article  CAS  PubMed  Google Scholar 

  • Artis D, Spits H (2015) The biology of innate lymphoid cells. Nature 517(7534):293–301

    Article  CAS  PubMed  Google Scholar 

  • Bao Y, Cao X (2014) The immune potential and immunopathology of cytokine-producing B cell subsets: a comprehensive review. J Autoimmun 55:10–23

    Article  CAS  PubMed  Google Scholar 

  • Bates ML, Reid WW, White JD (1976) Duality of pathways in the oxidation of ergosterol to its peroxide in vivo. J Chem Soc Chem Comm 44–45

    Google Scholar 

  • Blaylock MG, Cuthbertson BH, Galley H et al (1998) The effect of nitric oxide and peroxynitrite on apoptosis in human polymorphonuclear leukocytes. Free Radic Biol Med 25(6):748–752

    Article  CAS  PubMed  Google Scholar 

  • Bogdan C (2001) Nitric oxide and the immune response. Nat Immunol 2:907–916

    Article  CAS  PubMed  Google Scholar 

  • Bourgeois C, Kuchler K (2012) Fungal pathogens-a sweet and sour treat for toll-like receptors. Front Cell Infect Microbiol 2:142

    Article  PubMed Central  PubMed  Google Scholar 

  • Brereton CF, Blander JM (2010) Responding to infection and apoptosis - a task for TH17 cells. Ann N Y Acad Sci 1209:56–67

    Article  CAS  PubMed  Google Scholar 

  • Brown GD (2011) Innate antifungal immunity: the key role of phagocytes. Annu Rev Immunol 29:1–21

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brüne B, Von knethen A, Sandau KB (1998) Nitric oxide and its role in apoptosis. Eur J Pharmacol 26:261–272

    Article  Google Scholar 

  • Carlos IZ (1989) Contribuição ao estudo da infecção sistêmica pelo fungo Sporothrix schenckii em camundongos. Avaliação do processo infeccioso e seu inter-relacionamento com a resposta imune celular. Ribeirão Preto School of Medicine of Ribeirão Preto – USP (Thesis – Doctor) 104pp

    Google Scholar 

  • Carlos IZ, Sgarbi DBG, Angluster J et al (1992) Detection of cellular immunity with the soluble antigen of the fungus Sporothrix schenckii in the systemic form of the disease. Mycopathologia 117:139–144

    Article  CAS  PubMed  Google Scholar 

  • Carlos IZ, Zini MMC, Sgarbi DBG et al (1994) Disturbances in the production of interleukin-1 and tumor necrosis factor in disseminated murine sporotrichosis. Mycopathologia 27:189–194

    Article  Google Scholar 

  • Carlos IZ, Sgarbi DBG, Placeres MCP (1999) Host organism defense by peptide-polysaccharide extracted from the fungus Sporothrix schenckii. Mycopathologia 144:9–14

    Article  CAS  Google Scholar 

  • Carlos IZ, Sgarbi DBG, Santos GC et al (2003) Sporothrix schenckii lipid inhibits macrophage phagocytosis: involvement of nitric oxide and tumor necrosis factor-α. Scand J Immunol 57:214–220

    Article  CAS  PubMed  Google Scholar 

  • Carlos IZ, Sassá MF, Placeres MCP et al (2009) Current research on the immune response to experimental sporotrichosis. Mycopathologia 168:1–10

    Article  CAS  PubMed  Google Scholar 

  • Charalanpos A, Roilides E (2005) Cytokines and fungal infections. J Hematol 129:583–596

    Google Scholar 

  • Charoenvit Y, Taylor RL (1979) Experimental sporotrichosis in Syrian hamsters. Infect Immun 23(2):366–372

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen GH, McDonald RA, Wells JC et al (2005) The gamma interferon receptor is required for the protective pulmonary inflammatory response to Cryptococcus neoformans. Infect Immun 73:1788–1796

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clark RA (1999) Activation of the neutrophil respiratory burst oxidase. Infect Dis 179(Suppl 2):S309–S317

    Article  CAS  Google Scholar 

  • Cua DJ, Tato CM (2010) Innate IL-17-producing cells: the sentinels of the immune system. Nat Rev Immunol 10(7):479–489

    Article  CAS  PubMed  Google Scholar 

  • D’Alessandro T, Prasain J, Benton MR et al (2003) Polyphenols, inflammatory response, and cancer prevention: chlorination of isoflavones by human neutrophils. J Nutr 133:3773S–3777S

    PubMed  Google Scholar 

  • Dai X, Sayama K, Tohyama M et al (2011) Mite allergen is a danger signal for the skin via activation of inflammasome in keratinocytes. J Allergy Clin Immunol 127(3):806–814

    Article  CAS  PubMed  Google Scholar 

  • Davis BK, Wen H, Ting JP (2011) The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev immunol 29:707–735

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dickerson CL, Taylor RL, Drutz DJ (1983) Susceptibility of congenitally athymic (Nude) mice to sporotrichosis. Infect Immun 40(1):417–420

    PubMed Central  CAS  PubMed  Google Scholar 

  • Eigler A, Greten TF, Sinha B et al (1997) Endogenous adenosine curtails lipopolysaccharide-stimulated tumour necrosis factor synthesis. Scand J Immunol 45:132–139

    Article  CAS  PubMed  Google Scholar 

  • Fernandes KSS, Mathews HL, Lopes-Bezerra ML (1999) Differences in virulence of Sporothrix schenckii conidia related to culture conditions and cell-wall components. J Med Microbiol 48:195–203

    Article  CAS  PubMed  Google Scholar 

  • Fernandes KSS, Neto EH, Brito MMS et al (2008) Detrimental role of endogenous nitric oxide in host defense against Sporothrix schenckii. Immunology 123:469–479

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fernández-Silva F, Capilla J, Mayayo E et al (2012) Virulence of Sporothrix luriei in a murine model of disseminated infection. Mycopathologia 173(4):245–249

    Article  PubMed  Google Scholar 

  • Ferreira LS, Gonçalves AC, Portuondo DL et al (2015) Optimal clearance of Sporothrix schenckii requires an intact Th17 response in a mouse model of systemic infection. Immunobiology. doi:10.1016/j.imbio.2015.02.009

    Google Scholar 

  • Funcht DM, Fukao T, Bogdan C et al (2001) IFN-gamma production by antigen-presenting cells: mechanisms emerge. Trends Immunol 22:556–560

    Article  Google Scholar 

  • Galluzzi L, Vitale I, Abrams JM (2012) Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ 19(1):107–120

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gocke AR, Cravens PD, Ben LH et al (2007) T-bet regulates the fate of Th1 and Th17 lymphocytes in autoimmunity. J Immunol 78(3):1341–1348

    Article  Google Scholar 

  • Gonçalves AC, Maia DCG, Ferreira LS et al (2015) Involvement of major components from Sporothrix schenckii cell wall in the caspase-1 activation, nitric oxide and cytokines production during experimental sporotrichosis. Mycopathologia 179(1-2):21–30

    Article  PubMed  CAS  Google Scholar 

  • Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3:23–35

    Article  CAS  PubMed  Google Scholar 

  • Gorfu G, Cirelli KM, Melo MB et al (2014) Dual role for inflammasome sensors NLRP1 and NLRP3 in murine resistance to Toxoplasma gondii. mBio 5:1113–1117

    Article  CAS  Google Scholar 

  • Green LC, Wagner DA, Glogowski J et al (1982) Analysis of nitrate, nitrite and 15N in biological fluids. Anal Biochem 126:131–136

    Article  CAS  PubMed  Google Scholar 

  • Gross O, Poeck H, Bscheider M (2009) Syk kinase signaling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature 459:433–436

    Article  CAS  PubMed  Google Scholar 

  • Guo L, Junttila IS, Paul WE (2012) Cytokine-induced cytokine production by conventional and innate lymphoid cells. Trends Immunol 33:598–606

    Article  CAS  PubMed  Google Scholar 

  • Guzman-Beltran S, Perez-Torres A, Coronel-Cruz C et al (2012) Phagocytic receptors on macrophages distinguish between different Sporothrix schenckii morphotypes. Microbes Infect 14:1093–1101

    Article  CAS  PubMed  Google Scholar 

  • Hamad M (2012) Innate and adaptive antifungal immune responses: partners on an equal footing. Mycoses 55:205–217

    Article  CAS  PubMed  Google Scholar 

  • Hamilton TA, Becton DL, Somers SD (1985) Interferon-gamma modulates protein kinase C activity in murine peritoneal macrophages. J Biol Chem 260:1378–1381

    CAS  PubMed  Google Scholar 

  • Hao N, Lu M, Fan Y et al (2012) Macrophages in tumor microenvironments and the progression of tumors. Clin Dev Immunol 2012:11, 948098

    Article  CAS  Google Scholar 

  • Hernández-Santos N, Gaffen SL (2012) Th17 cells in immunity to Candida albicans. Cell Host Microbe 11(5):425–435

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hise AG, Tomalka J, Ganesan S et al (2009) An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans. Cell Host Microbe 5:487–497

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang G, Wang Y, Chi H (2012) Regulation of TH17 cell differentiation by innate immune signals. Cell Mol Immunol 9(4):287–295

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ito M, Yanagi Y, Ichinohe T (2012) Encephalomyocarditis virus viroporin 2B activates NLRP3 inflammasome. PLoS Pathog 8(8):1002857

    Article  CAS  Google Scholar 

  • Kanetsuma F, Carbonell LM (1970) Cell wall glucans of the yeast and mycelial forms of Paracoccidioides brasiliensis. J Bacteriol 101:675–680

    Google Scholar 

  • Kanneganti TD, Ozoren N, Body-Malapel M et al (2007) Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature 440:223–236

    Google Scholar 

  • Kauffmann CA (1999) Sporotrichosis. Clin Infect Dis 29:231–236

    Article  Google Scholar 

  • Kazanas N (1986) Foodborne Sporothrix schenckii: infectivity for mice by intraperitoneal and intragastric inoculation with conidia. Mycopathologia 95:3–16

    Article  CAS  PubMed  Google Scholar 

  • Kolb JP, Paul-Eugene N, Damais C et al (1994) Interleukin-4 stimulates cGMP production by IFN-gamma-activated human monocytes. Involvement of the nitric oxide synthase pathway. J Biol Chem 269:9811–9816

    CAS  PubMed  Google Scholar 

  • Korn T, Bettelli E, Oukka M et al (2009) IL-17 and Th17 Cells. Annu Rev Immunol 27:485–517

    Article  CAS  PubMed  Google Scholar 

  • Kozel TR (1995) Virulence factors of Cryptococcus neoformans. Trends Microbiol 3:295–299

    Article  CAS  PubMed  Google Scholar 

  • Kroemer G, Galluzzi L, Vandenabeele P et al (2009) Nomenclature Committee on Cell Death 2009. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16(1):3–11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kumar H, Kawai T, Akira S (2011) Pathogen recognition by the innate immune system. Int Rev Immunol 30:16–34

    Article  CAS  PubMed  Google Scholar 

  • Labbé K, Saleh M (2008) Cell death in the host response to infection. Cell Death Differ 15:1339–1349

    Article  PubMed  CAS  Google Scholar 

  • Lamkanfi M, Dixit VM (2014) Mechanisms and functions of inflammasomes. Cell 157:1013–1022

    Article  CAS  PubMed  Google Scholar 

  • Laskin JD, Heck DE, Laskin DL (1994) Multifunctional role of nitric oxide in inflammation. Trends Endocrinol Metab 5:377–382

    Article  CAS  PubMed  Google Scholar 

  • Laubach VE, Shesely EG, Smithies O (1995) Mice lacking inducible nitric oxide synthase are not resistant to lipopolysaccharide-induced death. Proc Natl Acad Sci U S A 92:10688–10692

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee M, Yea SS (2000) Hydrogen peroxide inhibits the immune response to lipopolysaccharide by attenuating signaling through c-Jun N-terminal kinase and p38 associated with protein kinase C. Immunopharmacology 48:165–172

    Article  CAS  PubMed  Google Scholar 

  • Lei PC, Yoshiike T, Yaguchi H et al (1993) Histopathological studies of Sporothrix schenckii-inoculated mice. Possible functions of polymorphonuclear leukocytes in normal and immunocompromised (congenitally athymic nude) mice. Mycopathologia 122(2):89–93

    Article  CAS  PubMed  Google Scholar 

  • Lima-Junior DS, Costa DL, Carregaro V et al (2013) Inflammasome-derived IL-1β production induces nitric oxide-mediated resistance to Leishmania. Nat Med 19:909–915

    Article  CAS  PubMed  Google Scholar 

  • Lurie HI (1971) Sporotrichosis. Human infection with fungi actinomycetes and algae. In: Handbuch der Speziellen Pathologischen. Anatomie und Histologie. RD Baker, Berlin, pp 614–675

    Google Scholar 

  • Maia DCG, Sassá MF, Placeres MCP (2006) Influence of Th1/Th2 cytokines and nitric oxide murine systemic infection induced by Sporothrix schenckii. Mycopathologia 161:11–19

    Article  CAS  PubMed  Google Scholar 

  • Malireddi RK, Kanneganti TD (2013) Role of type I interferons in inflammasome activation, cell death, and disease during microbial infection. Front Cell Infect Microbiol 3:77

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mantovani A, Sica A, Sozzani S et al (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25:677–686

    Article  CAS  PubMed  Google Scholar 

  • Mao L, Zhang L, Li H (2014) Pathogenic fungus Microsporum canis activates the NLRP3 inflammasome. Infect Immun 82:882–892

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Martinez FO, Helming L, Gordon S (2009) Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 27:451–483

    Article  CAS  PubMed  Google Scholar 

  • McKenzie AN, Spits H, Eberl G (2014) Innate lymphoid cells in inflammation and immunity. Immunity 41(3):366–374

    Article  CAS  PubMed  Google Scholar 

  • Mencacci A, Torosantucci A, Spaccapelo R et al (1994) A mannoprotein constituent of Candida albicans that elicits different levels of delayed-type hypersensitivity, cytokine production, and anticandidal protection in mice. Infect Immun 62:5353–5360

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mencacci A, Cenci E, Bacci A et al (2000) Cytokines in candidiasis and aspergillosis. Curr Pharm Biotechnol 1:235–251

    Article  CAS  PubMed  Google Scholar 

  • Miranda LH, Conceição-Silva F, Quintella LP et al (2013) Feline sporotrichosis: histopathological profile of cutaneous lesions and their correlation with clinical presentation. Comp Immunol Microbiol Infect Dis 36(4):425–432

    Article  PubMed  Google Scholar 

  • Monari C, Pericolini E, Bistoni G et al (2005) Cryptococcus neoformans capsular glucuronoxylomannan induces expression of Fas ligand in macrophages. J Immunol 174:3461–3468

    Article  CAS  PubMed  Google Scholar 

  • Moreira JAS, Freitas DFS, Lamas CC (2015) The impact of sporotrichosis in HIV-infected patients: a systematic review. Infection 43(3):267–276

    Article  PubMed  Google Scholar 

  • Moretti J, Blander JM (2014) Insights into phagocytosis-coupled activation of pattern recognition receptors and inflammasomes. Curr Opin Immunol 26:100–110

    Article  CAS  PubMed  Google Scholar 

  • Munder M, Mallo M, Eichmann K et al (1998) Murine macrophages secrete interferon γ upon combined stimulation with interleukin (IL)-12 and IL-18: a novel pathway of autocrine macrophage activation. J Exp Med 187:2103–2108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nascimento RC, Almeida SR (2005) Humoral immune response against soluble and fractionate antigens in experimental sporotrichosis. FEMS Immunol Med Microbiol 43:241–247

    Article  CAS  PubMed  Google Scholar 

  • Navarre WW, Zychlinsky A (2000) Pathogen-induced apoptosis of macrophages: a common end for different pathogenic strategies. Cell Microbiol 2(4):265–273

    Article  CAS  PubMed  Google Scholar 

  • Negrini TC, Ferreira LS, Arthur RA et al (2013) Role of TLR-2 and fungal surface antigens on innate immune response against Sporothrix schenckii. Immunol Invest 42:36–48

    Article  CAS  Google Scholar 

  • Ohteki T, Fukao T, Suzue K (1999) Interleukin-12-dependent interferon γ production by CD8α + lymphoid dendritic cells. J Exp Med 189:1981–1986

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Okuda Y, Sakoda S, Shimaoka M, Yanagihara T (1996) Nitric oxide induces apoptosis in mouse splenic T lymphocytes. Immunol Lett 52:135–138

    Article  CAS  PubMed  Google Scholar 

  • Paiva-Oliveira EL, Silva AC, da Silva RM et al (2012) Inflammasome and its clinical impact: literature review. Revista de Ciências Médicas e Biológicas 11:96–102

    CAS  Google Scholar 

  • Palladino MA, Bahjat FR, Theodorakis EA et al (2003) Anti TNF-α therapies: the next generation. Nat Rev Drug Disc 2:736–746

    Article  CAS  Google Scholar 

  • Parslow TG, Bainton DF (1997) Innate immunity. In: Medical immunology. Appleton & Lange, Stamford, CT, pp 25–42

    Google Scholar 

  • Philpott DJ, Yamaoka S, Israel A (2000) Invasive Shigella flexneri activates NF-Kappa B through a lipopolysaccharide – dependent innate intracellular response and leads to IL-8 expression in epithelial cells. J Immunol 165:903–914

    Article  CAS  PubMed  Google Scholar 

  • Pick E, Keisari Y (1980) A simple colorimetric method for measurement of hydrogen peroxide by cells in culture. J Immunol Methods 38:61–70

    Article  Google Scholar 

  • Pierini R, Perret M, Djebali S, Juruj C et al (2014) ASC controls IFN-γ levels in an IL-18-dependent manner in caspase-1-deficient mice infected with Francisella novicida. J Immunol 191:3847–3857

    Article  CAS  Google Scholar 

  • Pluddemann A, Mukhopadhyay S, Gordon S (2011) Innate immunity to intracellular pathogens: macrophage receptors and responses to microbial entry. Immunol Rev 240:11–24

    Article  CAS  PubMed  Google Scholar 

  • Puddu P, Fantuzzi L, Borghi P et al (1997) IL-12 induces IFN-γ expression and secretion in mouse peritoneal macrophages. J Immunol 159:3490–3497

    CAS  PubMed  Google Scholar 

  • Rajan JV, Rodriquez D, Miao EA et al (2011) The NLRP3 inflammasome detects encephalomyocarditis virus and vesicular stomatitis virus infection. J Virol 85:4167–4172

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ramasarma T (1990) H2O2 has a role in cellular regulation. Indian J Biochem Biophys 27:269–274

    CAS  PubMed  Google Scholar 

  • Robinson BW, Mclemore TL, Crystal RG (1985) Gamma interferon is spontaneously released by alveolar macrophages and lung T lymphocytes in patients with pulmonary sarcoidosis. J Clin Invest 75:1488–1495

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Romani L (2011) Immunity to fungal infections. Nat Rev Immunol 11(4):275–288

    Article  CAS  PubMed  Google Scholar 

  • Said-Sadier N, Padilla E, Langsley G et al (2010) Aspergillus fumigatus stimulates the NLRP3 inflammasome through a pathway requiring ROS production and the Syk tyrosine kinase. PLoS One 5(4):e10008

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sargi SCMMO, Dalalio JV, Visentainer RC et al (2012) Production of TNF-α, nitric oxide and hydrogen peroxide by macrophages from mice with paracoccidioidomycosis that were fed a linseed oil-enriched diet. Mem Inst Oswaldo Cruz 107(3):303–309

    Article  CAS  PubMed  Google Scholar 

  • Sasada M, Jonhston RB (1980) Macrophage microbicidal activity: correlation between phagocytosis-associated oxidative metabolism and killing of Candida by macrophages. J Exp Med 152:85–98

    Google Scholar 

  • Sasai M, Yamamoto M (2013) Pathogen recognition receptors: ligands and signaling pathways by Toll-like receptors. Int Rev Immunol 32(2):116–133

    Article  CAS  PubMed  Google Scholar 

  • Sassá MF, Saturi AET, Ferreira LS et al (2009) Response of macrophages Toll-like receptor 4 to a Sporothirx schenckii lipid extract during experimental sporotrichosis. Immunology (Oxford Print) 128:301–309

    Google Scholar 

  • Sassá MF, Ribeiro LCA, Ferreira LS et al (2012) Immune response against Sporothrix schenckii in TLR-4-deficient mice. Mycopathologia 174:21–30

    Article  PubMed  CAS  Google Scholar 

  • Schaffner A, Davis CE, Schaffner T et al (1986) In vitro susceptibility of fungi to killing by neutrophil granulocytes discriminates between primary pathogenicity and opportunism. J Clin Invest 78:511–524

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Scott EN, Muchmore HG (1989) Immunoblot analysis of antibody responses to Sporothrix schenckii. J Clin Microbiol 27:300–304

    PubMed Central  CAS  PubMed  Google Scholar 

  • Segal BH (2007) Role of macrophages in host defense against aspergillosis and strategies for immune augmentation. Oncologist 12:7–13

    CAS  PubMed  Google Scholar 

  • Sgarbi DB, da Silva AJ, Carlos IZ et al (1997) Isolation of ergosterol peroxide and its reversion to ergosterol in the pathogenic fungus Sporothrix schenckii. Mycopathologia 139:9–14

    Article  CAS  PubMed  Google Scholar 

  • Shimada K, Crother TR, Karlin J et al (2011) Caspase-1 dependent IL-1β secretion is critical for host defense in a mouse model of Chlamydia pneumoniae lung infection. PLoS One 6(6)

    Google Scholar 

  • Shimonaka H, Noguchi T, Kawai K et al (1975) Immunochemical studies on the human pathogen Sporothrix schenckii: effects of chemical and enzymatic modification of the antigenic compounds upon immediate and delayed reactions. Infect Immun 11:1187–1194

    PubMed Central  CAS  PubMed  Google Scholar 

  • Siraishi A, Nakagaki K, Arai T (1992) Role of cell-mediated immunity in the resistance to experimental sporotrichosis in mice. Mycopathologia 120:15–21

    Article  Google Scholar 

  • Song DH, Lee JO (2012) Sensing of microbial molecular patterns by Toll-like receptors. Immunol Rev 250(1):216–229

    Article  PubMed  CAS  Google Scholar 

  • Steele C, Wormley FL Jr (2012) Immunology of fungal infections: lessons learned from animal models. Curr Opin Microbiol 15(4):413–419

    Article  PubMed  Google Scholar 

  • Strowig T, Henao-Mejia J, Elinav E et al (2012) Inflammasomes in health and disease. Nature 481:278–286

    Article  CAS  PubMed  Google Scholar 

  • Svennerholm L, Fredman P (1980) A procedure for the quantitative isolation of brain gangliosides. Biochim Biophys Acta 17:97–109

    Article  Google Scholar 

  • Tachibana T, Matsuyama T, Mitsuyama M (1999) Involvement of CD4+ T cells and macrophages in acquired protection against infection with Sporothrix schenckii in mice. Med Mycol 37:397–404

    Article  CAS  PubMed  Google Scholar 

  • Takao S, Smith EH, Wang D et al (1996) The role of reactive oxygen metabolites in murine peritoneal macrophage phagocytosis and phagocytic killing. Am J Physiol 40:C1278–C1284

    Google Scholar 

  • Tavares AH, Magalhães KG, Almeida RD et al (2013) NLRP3 inflammasome activation by Paracoccidioides brasiliensis. PLoS Negl Trop Dis 7:e2595

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Taylor EL, Megson IL, Haslett C et al (2003) Nitric oxide: a key regulator of myeloid inflammatory cell apoptosis. Cell Death Differ 10(4):418–430

    Article  CAS  PubMed  Google Scholar 

  • Uenotsuchi T, Takeuchi S et al (2006) Differential induction of Th1-prone immunity by human dendritic cells activated with Sporothrix schenckii of cutaneous and visceral origins to determine their different virulence. Int Immunol 18(12):1637–1646

    Article  CAS  PubMed  Google Scholar 

  • Underhill DM, Ozinsky A (2002) Phagocytosis of microbes: complexity in action. Annu Rev Immunol 20:825–852

    Article  CAS  PubMed  Google Scholar 

  • van de Veerdonk FL, Marijnissen RJ, Kullberg BJ et al (2009a) The macrophage mannose receptor induces IL-17 in response to Candida albicans. Cell Host Microbe 5:329–340

    Article  PubMed  CAS  Google Scholar 

  • van de Veerdonk FL, Gresnigt MS, Kullberg BJ et al (2009b) Th17 responses and host defense against microorganisms: an overview. BMB Rep 42(12):776–787

    Article  PubMed  Google Scholar 

  • van de Veerdonk FL, Netea MG, Dinarello CA et al (2011) Inflammasome activation and IL-1b and IL-18 processing during infection. Trends Immunol 32:110–116

    Article  PubMed  CAS  Google Scholar 

  • van der Veen RC (2001) Nitric oxide and T helper cell immunity. Int Immunopharmacol 1:1491–1500

    Article  PubMed  Google Scholar 

  • Vazquez MI, Catalan-Dibene J, Zlotnik A (2015) B cells responses and cytokine production are regulated by their immune microenvironment. Cytokine. doi:10.1016/j.cyto.2015.02.007

    PubMed  Google Scholar 

  • Vera-Cabrera L, Salinas-Carmona MC, Waksman N et al (2012) Host defenses in subcutaneous mycoses. Clin Dermatol 30(4):382–388

    Article  PubMed  Google Scholar 

  • Verdan FF, Faleiros JC, Ferreira LS et al (2012) Dendritic cell are able to differentially recognize Sporothrix schenckii antigens and promote Th1/Th17 response in vitro. Immunobiology 8:788–794

    Article  CAS  Google Scholar 

  • Villena SN, Pinheiro RO, Pinheiro CS et al (2008) Capsular polysaccharides galactoxylomannan and glicuronoxylomannan from Cryptococcus neoformans induce macrophage apoptosis mediated by Fas ligand. Cell Microbiol 10(6):1274–1285

    Article  CAS  PubMed  Google Scholar 

  • Voll RE, Herrmann M, Roth EA et al (1997) Immunosuppressive effects of apoptotic cells. Nature 390:350–351

    Article  CAS  PubMed  Google Scholar 

  • Wellington M, Koselny K, Sutterwala FS et al (2014) Candida albicans triggers NLRP3-mediated pyroptosis in macrophages. Eukaryot Cell 13:329–340

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wu-Hsieh BA, Chen W, Lee H-J (1998) Nitric oxide synthase expression in macrophages of Histoplasma capsulatum-infected mice is associated with splenocyte apoptosis and unresponsiveness. Infect Immun 68(11):5520–5526

    Google Scholar 

  • Yang CS, Shin DM, Jo EK et al (2012) The role of NLR-related protein 3 inflammasome in host defense and inflammatory diseases. Int Neurourol J 16:2–12

    Article  PubMed Central  PubMed  Google Scholar 

  • Zeng W, Wang X, Xu P et al (2015) Molecular imaging of apoptosis: from micro to macro. Theranostics 20:559–582

    Article  CAS  Google Scholar 

  • Zhu J, Yamane H, Paul WE (2010) Differentiation of effector CD4 T cell populations. Annu Rev Immunol 28:445–489

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zumsteg U, Frigerio S, Holländer GA (2000) Nitric oxide production and Fas surface expression mediate two independent pathways of cytokine-induced murine β-cell damage. Diabetes 49:39–47

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the staff of the Clinical Immunology Laboratory from the Araraquara’s School of Pharmaceutical Sciences, UNESP, for support in carrying out the tests cited in this chapter. These studies were supported by Fundação de Apoio à Pesquisa do Estado de São Paulo (FAPESP), SP, Brazil, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brazil, and Programa Professor Visitante (PVE/CAPES) (Grant 07610130).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iracilda Zeppone Carlos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Carlos, I.Z., Ferreira, L.S., Gonçalves, A.C. (2015). Models of Experimental Sporotrichosis and Immune Response Against Sporothrix schenckii . In: Zeppone Carlos, I. (eds) Sporotrichosis. Springer, Cham. https://doi.org/10.1007/978-3-319-11912-0_7

Download citation

Publish with us

Policies and ethics