Skip to main content

Part of the book series: Terrestrial Environmental Sciences ((TERENVSC))

Abstract

The classical advection-dispersion equation of a conservative solute in porous media can be written as [1]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Bear. Hydraulics of groundwater. McGraw-Hill, New York, 1979.

    Google Scholar 

  2. K. Ito. On stochastical differential equations. American Mathematical Society, 4:289–302, 1951.

    Google Scholar 

  3. W. Kinzelbach. Groundwater Modelling. Elsevier, Amsterdam, 1986.

    Google Scholar 

  4. A.F.B. Tompson and L.W. Gelhar. Numerical simulation of solute transport in three-dimensional, randomly heterogeneous porous media. Water Resour. Res., 26(10):2541–2562, 1990.

    Google Scholar 

  5. E.M. LaBolle, G.E. Fogg, and A.F.B. Tompson. Random-walk simulation of transport in heterogeneous porous media: Local mass-conservation problem and implementation methods. Water Resour. Res., 32(3):583–593, 1996.

    Google Scholar 

  6. W. Kinzelbach. The random-walk method in pollutant transport simulation. NATO ASI Ser, Ser. (C224):227–246, 1988.

    Google Scholar 

  7. H. Hoteit, R. Mose, A. Younes, F. Lehmann, and Ph. Ackerer. Three-dimensional modeling of mass transfer in porous media using the mixed hybrid finite elements and the random-walk methods. Mathe. Geology, 34(4):435–456, 2002.

    Google Scholar 

  8. T. Harter and S. Wagner. Colloid transport and filtration of Cryptosporidium parvum in sandy soils and aquifer sediments. Environ. Sci. Technol., 34:62–70, 2000.

    Google Scholar 

  9. M. van Genuchten. Analytical solutions for chemical transport with simultaneous adsorption, zero-order production and first order decay. Jour. of Hydrol., 49:213–233, 1981.

    Google Scholar 

  10. W.P. Johnson, K.A. Blue, and B.E. Logan. Modeling bacterial detachment during transport through porous media as a residence-time-dependent process. Water Resour. Res., 31:2649–2658, 1995.

    Google Scholar 

  11. A. Ogata and R.B. Banks. A solution of the differential equation of longitudinal dispersion in porous media. Technical report, USGS, Washington, D.C., 1961.

    Google Scholar 

  12. A.E. Hassan and M.M. Mohamed. On using particle tracking methods to simulate transport in single-continuum and dual continua porous media. Jour. of Hydrol., 275:242–260, 2003.

    Google Scholar 

  13. S. Whitaker. Advances in theory of fluid motion in porous media. Ind. Eng. Chem., 61(12):14–28, 1969.

    Google Scholar 

  14. F.A.L. Dullien and M.I.S. Azzam. Flow rate - pressure gradient measurements in periodically nonuniform capillary tubes. A. I. Ch. E. J., 19:222–229, 1973.

    Google Scholar 

  15. P. Forchheimer. Wasserbewegung durch Boden. Zeitschrift des Vereines Deutscher Ingenieur, 1901.

    Google Scholar 

  16. S. Ergun and A. A. Orning. Fluid flow through randomly packed columns and fluidized beds. Ind. & Engng. Chem., 41(6):1179–1184, 1949.

    Google Scholar 

  17. T.H. Chilton and A.P. Colburn. Pressure drop in packed tubes. Ind. & Engng. Chem., 23(8):913–919, 1931.

    Google Scholar 

  18. M. Balhoff, A. Mikelic, and M. Wheeler. Polynomial filtration laws for low reynolds number flows through porous media. Transport in Porous Media, 81:35–60, 2010.

    Google Scholar 

  19. D.W. Ruth and H. Ma. On the derivation of the forchheimer equation by means of the averaging theorem. Transport in Porous Media, 7:255–264, 1992.

    Google Scholar 

  20. G.H. Fancher and J.A. Lewis. Flow of simple fluids through porous materials. Ind. & Engng. Chem., 25(10):1139–1147, 1933.

    Google Scholar 

  21. L. Jr. Green and P. Duwez. Fluid flow through porous metals. J. Appl. Mech., pages 39–45, 1951.

    Google Scholar 

  22. S. Ergun. Fluid flow through packed columns. Chem. Engng. Prog., 48(2):89–94, 1952.

    Google Scholar 

  23. S.M. Hassanizadeh and W.G. Gray. High velocity flow in porous media. Transport Porous Media, 2:521–531, 1987.

    Google Scholar 

  24. A.R. Piggott and D. Elsworth. Laboratory assessment of the equivalent apertures of a rock fracture. Geophysical Research Letters, 20(13):1387–1390, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanyuan Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sun, Y., Park, CH., Pichot, G., Taron, J. (2015). Random Walk Particle Tracking. In: Kolditz, O., Shao, H., Wang, W., Bauer, S. (eds) Thermo-Hydro-Mechanical-Chemical Processes in Fractured Porous Media: Modelling and Benchmarking. Terrestrial Environmental Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-11894-9_6

Download citation

Publish with us

Policies and ethics