Skip to main content

Multi-sensor Acceleration-Based Action Recognition

  • Conference paper
  • First Online:
Image Analysis and Recognition (ICIAR 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8815))

Included in the following conference series:

Abstract

In this paper, a framework to recognize human actions from acceleration data is proposed. An important step for an accurate recognition is the pre-processing of input data and the following classification by the machine learning algorithm. In this paper, we suggest to combine Dynamic Time Warping (DTW) with Random Forest. The intention of using DTW is to pre-process the data to eliminate outliers and to align the time series. Many applications require more than one inertial sensor for an accurate prediction of actions. In this paper, nine inertial sensors are deployed to ensure an accurate recognition of actions. Further, sensor fusion approaches are introduced and the most promising strategy is shown. The proposed framework is evaluated on a self-recorded dataset consisting of six human actions. Each action was performed three times by 20 subjects. The dataset is publicly available for download.

This work has been partially funded by the ERC within the starting grant Dynamic MinVIP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aggarwal, J., Ryoo, M.: Human activity analysis: A review. ACM Computing Surveys 43(3), 16:1–16:43 (2011)

    Article  Google Scholar 

  2. Amit, Y., Geman, D.: Shape quantization and recognition with randomized trees. Neural Computation 9(7), 1545–1588 (1997)

    Article  Google Scholar 

  3. Avci, A., Bosch, S., Marin-Perianu, M., Marin-Perianu, R., Havinga, P.: Activity recognition using inertial sensing for healthcare, wellbeing and sports applications: A survey. In: 2010 23rd International Conference on Architecture of Computing Systems (ARCS) (2010)

    Google Scholar 

  4. Bellman, R., Kalaba, R.: On adaptive control processes. IRE Transactions on Automatic Control 4(2), 1–9 (1959)

    Article  Google Scholar 

  5. Breiman, L.: Bagging predictors. Machine Learning 24, 123–140 (1996)

    MathSciNet  MATH  Google Scholar 

  6. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  7. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Chapman & Hall, New York (1984)

    MATH  Google Scholar 

  8. Brock, H., Schmitz, G., Baumann, J., Effenberg, A.O.: If motion sounds: Movement sonification based on inertial sensor data. In: 9th Conference of the International Sports Engineering Association (ISEA). Elsevier (January 2012)

    Google Scholar 

  9. Brückner, H.P., Nowosielski, R., Kluge, H., Blume, H.: Mobile and wireless inertial sensor platform for motion capturing in stroke rehabilitation sessions. In: 2013 5th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI), pp. 14–19 (2013)

    Google Scholar 

  10. Brückner, H.P., Wielage, M., Blume, H.: Intuitive and interactive movement sonification on a heterogeneous risc/dsp platform. In: The 18th Annual International Conference on Auditory Display (2012)

    Google Scholar 

  11. Chambers, G., Venkatesh, S., West, G., Bui, H.: Hierarchical recognition of intentional human gestures for sports video annotation. In: Proceedings of the 16th International Conference on Pattern Recognition (2002)

    Google Scholar 

  12. Cutti, A., Ferrari, A., Garofalo, P., Raggi, M., Cappello, A., Ferrari, A.: ‘outwalk’: a protocol for clinical gait analysis based on inertial and magnetic sensors. Medical and Biological Engineering and Computing 48(1), 17–25 (2010)

    Article  Google Scholar 

  13. Deng, H., Runger, G., Tuv, E., Martyanov, V.: A time series forest for classification and feature extraction. Information Sciences 239, 142–153 (2013)

    Article  MathSciNet  Google Scholar 

  14. Ha, T.H., Saber-Sheikh, K., Moore, A.P., Jones, M.P.: Measurement of lumbar spine range of movement and coupled motion using inertial sensors-a protocol validity study. Manual Therapy 18(1), 87–91 (2013)

    Article  Google Scholar 

  15. Ho, T.K.: Random decision forests. In: Proceedings of the Third International Conference on Document Analysis and Recognition. IEEE (1995)

    Google Scholar 

  16. Ho, T.K.: The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(8), 832–844 (1998)

    Article  Google Scholar 

  17. Karantonis, D., Narayanan, M., Mathie, M., Lovell, N., Celler, B.: Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring. IEEE Transactions on Information Technology in Biomedicine 10(1), 156–167 (2006)

    Article  Google Scholar 

  18. Lebel, K., Boissy, P., Hamel, M., Duval, C.: Inertial measures of motion for clinical biomechanics: Comparative assessment of accuracy under controlled conditions - effect of velocity. PLoS ONE 8(11) (2013)

    Google Scholar 

  19. Murphy, R.R.: Dempster-shafer theory for sensor fusion in autonomous mobile robots. IEEE Transactions on Robotics and Automation 14(2), 197–206 (1998)

    Article  Google Scholar 

  20. Myers, C., Rabiner, L., Rosenberg, A.: Performance tradeoffs in dynamic time warping algorithms for isolated word recognition. IEEE Transactions on Acoustics, Speech and Signal Processing 28(6), 623–635 (1980)

    Article  MATH  Google Scholar 

  21. van den Noort, J.C., Ferrari, A., Cutti, A.G., Becher, J.G., Harlaar, J.: Gait analysis in children with cerebral palsy via inertial and magnetic sensors. Medical & Biological Engineering & Computing, 1–10 (2013)

    Google Scholar 

  22. Olsen, E., Haubro Andersen, P., Pfau, T.: Accuracy and precision of equine gait event detection during walking with limb and trunk mounted inertial sensors. Sensors (2012)

    Google Scholar 

  23. Parel, I., Cutti, A., Fiumana, G., Porcellini, G., Verni, G., Accardo, A.: Ambulatory measurement of the scapulohumeral rhythm: Intra- and inter-operator agreement of a protocol based on inertial and magnetic sensors. Gait and Posture 35(4), 636–640 (2012)

    Article  Google Scholar 

  24. Pfau, T., Starke, S.D., Tröster, S., Roepstorff, L.: Estimation of vertical tuber coxae movement in the horse from a single inertial measurement unit. The Veterinary Journal (2013)

    Google Scholar 

  25. Poppe, R.: A survey on vision-based human action recognition. Image and Vision Computing 28(6), 976–990 (2010)

    Article  Google Scholar 

  26. Rakthanmanon, T., Campana, B., Mueen, A., Batista, G., Westover, B., Zhu, Q., Zakaria, J., Keogh, E.: Searching and mining trillions of time series subsequences under dynamic time warping. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 262–270. ACM (2012)

    Google Scholar 

  27. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Transactions on Acoustics, Speech and Signal Processing 26(1), 43–49 (1978)

    Article  MATH  Google Scholar 

  28. Scheuermann, B., Schlosser, M., Rosenhahn, B.: Efficient pixel-grouping based on dempster’s theory of evidence for image segmentation. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part I. LNCS, vol. 7724, pp. 745–759. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  29. Schuldt, C., Laptev, I., Caputo, B.: Recognizing human actions: a local svm approach. In: Proceedings of the 17th International Conference on Pattern Recognition (ICPR) (2004)

    Google Scholar 

  30. Senin, P.: Dynamic time warping algorithm review, Honolulu, USA (2008)

    Google Scholar 

  31. Shafer, G.: A mathematical theory of evidence, vol. 1. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  32. Starrs, P., Chohan, A., Fewtrell, D., Richards, J., Selfe, J.: Biomechanical differences between experienced and inexperienced wheelchair users during sport. Prosthetics and Orthotics International 36(3), 324–331 (2012)

    Article  Google Scholar 

  33. Tautges, J., Krüger, B., Zinke, A., Weber, A.: Reconstruction of human motions using few sensors

    Google Scholar 

  34. Wang, S., Yang, J., Chen, N., Chen, X., Zhang, Q.: Human activity recognition with user-free accelerometers in the sensor networks. In: International Conference on Neural Networks and Brain, ICNN B (2005)

    Google Scholar 

  35. Wu, H., Siegel, M., Stiefelhagen, R., Yang, J.: Sensor fusion using dempster-shafer theory [for context-aware hci]. In: Proceedings of the 19th IEEE Instrumentation and Measurement Technology Conference, IMTC 2002, vol. 1, pp. 7–12. IEEE (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Baumann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Baumann, F., Schulz, I., Rosenhahn, B. (2014). Multi-sensor Acceleration-Based Action Recognition. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2014. Lecture Notes in Computer Science(), vol 8815. Springer, Cham. https://doi.org/10.1007/978-3-319-11755-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11755-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11754-6

  • Online ISBN: 978-3-319-11755-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics