Skip to main content

Nanoemulsion in Drug Targeting

  • Chapter
  • First Online:
Targeted Drug Delivery : Concepts and Design

Part of the book series: Advances in Delivery Science and Technology ((ADST))

Abstract

Nanoemulsions are the versatile drug carriers with the combined benefits of a lipophilic carrier and nanoscale. It can be used for a range of purposes, i.e., from bioavailability enhancement to MDR modulation. In recent time it has also been investigated for its potential in drug targeting. The drug targeting through nanoemulsion can be due to the virtue of its physicochemical properties or imparted by surface modification. Nanoemulsions can be used for local targeting such as skin, lymphatic system, and lungs. Such targeting is due to size, surface charge, or lipophilicity of nanoemulsion but sometimes novel targeting ligands are also employed. The systemic targeting by nanoemulsions largely exploits EPR mechanism. However, ligand based targeting and in more recent targeting using physical stimuli is also getting popular. Apart from drug delivery, targeted nanoemulsions can also be unveiled for diagnostic purposes such as carrying radio contrast media for longer time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Solans C, Izquierdo P, Nolla J, Azemar N, Garcia-Celma MJ (2005) Nano-emulsions. Curr Opin Colloid Interface Sci 10:102–110

    CAS  Google Scholar 

  2. Anton N, Vandamme TF (2011) Nano-emulsions and micro-emulsions: clarifications of the critical differences. Pharm Res 28:978–985

    CAS  PubMed  Google Scholar 

  3. Lovelyn C, Attama AA (2011) Current state of nanoemulsions in drug delivery. J Biomater Nanobiotechnol 2:626–639

    CAS  Google Scholar 

  4. Tiwari SB, Amiji MM (2006) Nanoemulsion formulations for tumor-targeted delivery. In: Amiji MM (ed) Nanotechnology for cancer therapy. Taylor and Francis Group, New York, pp 723–39

    Google Scholar 

  5. Sahoo S, Labhasetwar V (2003) Nanotech approach to drug delivery and imaging. Drug Discov Today 8:1112–1120

    CAS  PubMed  Google Scholar 

  6. Mehra NK, Mishra V, Jain NK (2013) Receptor-based targeting of therapeutics. Ther Deliv 4:369–394

    CAS  PubMed  Google Scholar 

  7. Biasis J, ClinB LP (1987) Microemulsions: Structure and Dynamics. CRC, Boca Raton

    Google Scholar 

  8. Azeem A, Khan ZI, Aqil M, Ahmad FJ, Khar RK, Talegaonkar S (2009) Microemulsions as a surrogate carrier for dermal drug delivery. Drug Dev Ind Pharm 35:525–547

    CAS  PubMed  Google Scholar 

  9. Talegaonkar S, Akhter S, Jain GK, Ahmad FJ, Khar RK, Jain N, Khan ZI (2008) Investigation of nanoemulsion system for transdermal delivery of domperidone: ex-vivo and in vivo studies. Curr Nanosci 4:381–390

    Google Scholar 

  10. Karim A, Gokhale R, Cole M, Sherman J, Yeramian P, Bryant M, Franke H (1994) HIV protease inhibitor SC-52151: a novel method of optimizing bioavailability profile via a microemulsion drug delivery system. Pharm Res 11:S368

    Google Scholar 

  11. Constantinides PP (1995) Lipid microemulsions for improving drug dissolution and oral absorption and biopharmaceutical aspects. Pharm Res 12:1561–1572

    CAS  PubMed  Google Scholar 

  12. Jumaa M, Mueller BW (2002) Formulation and stability of benzodiazepines in a new lipid emulsion formulation. Pharmazie 57:740–743

    CAS  PubMed  Google Scholar 

  13. Anderson BD (1999) Chemical and related factors controlling lipid solubility. Bull Tech Gatt 92:11–18

    CAS  Google Scholar 

  14. Monsteqszia A, Haqqueniq S (2012) Surfactant science and technology. Wiley, New Jersey

    Google Scholar 

  15. Lawrence MJ, Rees GD (2000) Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev 45:89–121

    CAS  PubMed  Google Scholar 

  16. Hait SK, Moulik SP (2002) Gemini surfactants: a distinct class of self-assembling molecules. Curr Sci 82:1101–1111

    CAS  Google Scholar 

  17. Ananthapadmanabhan KP et al (2009) A novel technology in mild and moisturizing cleansing liquids. Cosmet Dermatol 22:307–316

    Google Scholar 

  18. Griffin WC (1954) Calculation of HLB values of non ionic surfactants. J Soc Cosmet Chem 5:249–256

    Google Scholar 

  19. Ghosh PK, Murthy RSR (2006) Microemulsions: a potential drug delivery system. Curr Drug Deliv 3:167–180

    CAS  PubMed  Google Scholar 

  20. Warisnoicharoen W, Lansley AB, Lawrence MJ (2000) Nonionic oil-in-water microemulsions: the effect of oil type on phase behavior. Int J Pharm 198:7–27

    CAS  PubMed  Google Scholar 

  21. Yuasa H, Sekiya M, Ozeki S, Watanabe J (1994) Evaluation of milk fat globulemembrane (MFGM) emulsion for oral administration: absorption of α-linolenic acidin rats and the effect of emulsion droplet size. Biol Pharm Bull 17:756–758

    CAS  PubMed  Google Scholar 

  22. Hauss DJ, Fogal SE, Ficorilli JV, Price CA, Roy T, Jayaraj AA, Keirns JJ (1998) Lipid-based delivery systems for improving the bioavailability and lymphatic transport of a poorly water-soluble LTB4 inhibitor. J Pharm Sci 87:164–169

    CAS  PubMed  Google Scholar 

  23. Attwood D, Mallon C, Taylor CJ (1992) Phase studies on oil-in-water phospholipid microemulsions. Int J Pharm 84:R5–R8

    CAS  Google Scholar 

  24. Eccleston J (1994) Microemulsions. In: Swarbrick J, Boylan JC (eds) Encyclopedia of pharmaceutical technology. Marcel Dekker, New York, pp 375–421

    Google Scholar 

  25. Lawrence MJ (1996) Microemulsions as drug delivery vehicles. Curr Opin Colloid Interface Sci 1:826–832

    CAS  Google Scholar 

  26. OsborneDW MCA, Rogers RL (1988) Alcohol-free microemulsions. J Dispers Sci Technol 9:415–423

    Google Scholar 

  27. Aboofazeli R, Patel N, Thomas M, Lawrence MJ (1995) Investigations into the formation and characterisation of phospholipid microemulsions. IV. Pseudo-ternary phase diagrams of systems containing water–lecithin–alcohol and oil; the influence of oil. Int J Pharm 125:107–116

    CAS  Google Scholar 

  28. Aboofazeli R, Lawrence CB, Wicks SR, Lawrence MJ (1994) Investigations into the formation and characterisation of phospholipid microemulsions. III. Pseudo-ternary phasediagrams of systems containing water–lecithin–isopropylmyristate and either an alkanoic acid, amine, alkanediol,polyethylene glycol alkyl ether or alcohol as cosurfactant. Int J Pharm 111:63–72

    CAS  Google Scholar 

  29. Bouchemal K, Briancon S, Fessi H, Perrier E (2004) Nano-emulsion formulation using spontaneous emulsification: solvent, oil and surfactant optimization. Int J Pharm 280:241–251

    CAS  PubMed  Google Scholar 

  30. Musa SH, Basri M, Masoumi HR, Karjiban RA, Malek EA, Basri H, Shamsuddin AF (2013) Formulation optimization of palm kernel oil esters nanoemulsion-loaded with chloramphenicol suitable for meningitis treatment. Colloids Surf B Biointerfaces 112:113–119

    CAS  PubMed  Google Scholar 

  31. Chakraborty S, Shukla D, Vuddanda PR, Mishra B, Singh S (2010) Utilization of adsorption technique in the development of oral delivery system of lipid based nanoparticles. Colloids Surf B Biointerfaces 81:563–569

    CAS  PubMed  Google Scholar 

  32. Marszall L (1987) HLB of nonionic surfactants: PIT and EIP methods. In: Schick MJ (ed) Nonionic surfactant: physical chemistry. Marcel Dekker, New York, pp 493–547

    Google Scholar 

  33. Shafiq-un-Nabi S, Shakeel F, Talegaonkar S, Ali J, Baboota S, Ahuj A, Khar RK, Ali M (2007) Formulation development and optimizationusing nanoemulsion technique: a technical note. AAPS Pharm Sci Tech 8:E1–E6

    Google Scholar 

  34. Alam MS, Ali MS, Alam N, Siddiqui MR, Shamim M, Safhi MM (2013) In vivo study of clobetasol propionate loaded nanoemulsion for topical application in psoriasis and atopic dermatitis. Drug Invent Today 5:8–12

    CAS  Google Scholar 

  35. Kumar S, Talegaonkar S, Negi LM, Iqbal Z (2013) Design and development of ciclopirox topical nanoemulsion gel for the treatment of subungual onychomycosis. Indian J Pharm Educ Res 46:303–314

    Google Scholar 

  36. Rhee YS, Choi JG, Park ES, Chi SC (2001) Transdermal delivery of ketoprofen using microemulsions. Int J Pharm 228:161–170

    CAS  PubMed  Google Scholar 

  37. Elena P, Paola S, Maria RG (2001) Transdermal permeation of apomorphine through hairless mouse skin from microemulsions. Int J Pharm 226:47–51

    Google Scholar 

  38. Kreilgaard M (2002) Influence of microemulsion on cutaneous drug delivery. Adv Drug Deliv Rev 54:S77–S98

    CAS  PubMed  Google Scholar 

  39. Hua L, Weisan P, Jiayu L, Ying Z (2004) Preparation, evaluation and NMR characterization of vinpocetine microemulsion for transdermal delivery. Drug Dev Ind Pharm 30:657–666

    CAS  PubMed  Google Scholar 

  40. Trotta M, Pattarino F, Gasco MR (1996) Influence of counter ions on the skin permeation of methotrexate from water–oil microemulsion. Pharm. Acta Helv. 71:135–140

    Google Scholar 

  41. Baroli B, Lopez-Quintela MA, Delgado-Charro MB, Fadda AM, Blanco-Mendez J (2000) Microemulsions for topical delivery of 8-methoxsalen. J Control Release 69:209–218

    CAS  PubMed  Google Scholar 

  42. Liu H, Li S, Wang Y, Han F, Dong Y (2006) Bicontinuous water-AOT/Tween 85-isopropyl myristate microemulsion: a new vehicle for transdermal delivery of cyclosporine A. Drug Dev Ind Pharm 32:549–557

    CAS  PubMed  Google Scholar 

  43. Bernardi DS, Pereira TA, Maciel NR, Bortoloto J, Viera GS, Oliveira GC, Rocha-Filho PA (2011) Formation and stability of oil-in-water nanoemulsions containing rice bran oil: in vitro and in vivo assessments. J Nanobiotechnol 9:1–9

    Google Scholar 

  44. Alam MS, Ali MS, Alam N, Alam MI, Anwer T, Imam F, Shamim M (2012) Design and characterization of nanostructure topical gel of betamethasone dipropionate for psoriasis. J Appl Pharma Sci 2:148–158

    Google Scholar 

  45. Peira E, Carlotti ME, Trotta C, Cavalli R, Trotta M (2008) Positively charged microemulsions for topical application. Int J Pharm 346:119–123

    CAS  PubMed  Google Scholar 

  46. Severino P, Fangueiro JF, Ferreira SV, Basso R, Chaud MV, Santana MH, Rosmaninho A, Souto EB (2013) Nanoemulsions and nanoparticles for non-melanoma skin cancer: effects of lipid materials. Clin Transl Oncol 15:417–424

    CAS  PubMed  Google Scholar 

  47. Atrux-Tallau N, Delmas T, Han SH, Kim JW, Bibette J (2013) Skin cell targeting with self-assembled ligand addressed nanoemulsion droplets. Int J Cosmet Sci 35:310–318

    CAS  PubMed  Google Scholar 

  48. O’Driscoll CM (2002) Lipid-based formulations for intestinal lymphatic delivery. Eur J Pharm Sci 15:405–415

    Google Scholar 

  49. Tortora GJ, Grabowski SR (2000) Introduction to the human body: the essentials of anatomy and physiology. Wiley, New York

    Google Scholar 

  50. Kiyasu JY, Bloom B, Chaikoff IL (1952) The portal transport of absorbed fatty acids. J Biol Chem 199:415–419

    CAS  PubMed  Google Scholar 

  51. Wu H, Zhou A, Lu C, Wang L (2011) Examination of lymphatic transport of puerarin in unconscious lymph duct-cannulated rats after administration in microemulsion drug delivery systems. Eur J Pharm Sci 42:348–353

    CAS  PubMed  Google Scholar 

  52. Griffin BT, O’Driscoll CM (2006) A comparison of intestinal lymphatic transport and systemic bioavailability of saquinavir from three lipid-based formulations in the anaesthetized rat model. J Phama Pharmacol 58:917–925

    CAS  Google Scholar 

  53. Karajgi JS, Vyas SP (1994) A lymphotropic colloidal carrier system for diethylcarbamazine: preparation and performance evaluation. J Microencapsul 11:539–545

    CAS  PubMed  Google Scholar 

  54. Yoshimura K, Nunomura M, Takiguchi N, Oda K, Suzuki H, Furukawa R, Sarashina H, Kohda K, Saito N, Sugaya Y, Tiku T, Wakathuki K, Ishikawa H, Yasutomi J, Nakajima N (1996) Evaluation of endoscopic pirarubicin-Lipiodol emulsion injection therapy for gastric cancer. Gan To Kagaku Ryoho 23:1519–1522

    CAS  PubMed  Google Scholar 

  55. Nasr M, Nawaz S, Elhissi A (2012) Amphotericin B lipid nanoemulsion aerosols for targeting peripheral respiratory airways via nebulization. Int J Pharm 436(1):611–616

    Google Scholar 

  56. Nesamony J, Kalra A, Majrad MS, Boddu SH, Jung R, Williams FE, Schnapp AM, Nauli SM, Kalinoski AL (2013) Development and characterization of nanostructured mists with potential for actively targeting poorly water-soluble compounds into the lungs. Pharm Res 30:2625–2639

    CAS  PubMed  Google Scholar 

  57. Bae PK, Jung J, Lim SJ, Kim D, Kim SK, Chung BH (2013) Bimodal perfluorocarbon nanoemulsions for nasopharyngeal carcinoma targeting. Mol Imaging Biol 15:401–410

    PubMed  Google Scholar 

  58. Maeda H, Matsumura Y, Kato H (1988) Purification and identification of [hydroxypropyl3] bradykinin in ascitic fluid from a patient with gastric cancer. J Biol Chem 263:16051–16054

    CAS  PubMed  Google Scholar 

  59. Maeda H, Noguchi Y, Sato K, Akaike T (1994) Enhanced vascular permeability in solid tumor is mediated by nitric oxide and inhibited by both new nitric oxide scavenger and nitric oxide synthase inhibitor. Jpn J Cancer Res 85:331–334

    CAS  PubMed  Google Scholar 

  60. Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF (1983) Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219:983–985

    CAS  PubMed  Google Scholar 

  61. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N (1989) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246:1306–1309

    CAS  PubMed  Google Scholar 

  62. Ichikawa H, Watanabe T, Tokumitsu H, Fukumori Y (2007) Formulation considerations of gadolinium lipid nanoemulsion for intravenous delivery to tumors in neutron-capture therapy. Curr Drug Deliv 4:131–140

    CAS  PubMed  Google Scholar 

  63. Han M, He CX, Fang QL, Yang XC, Diao YY, Xu DH, He QJ, Hu YZ, Liang WQ, Yang B, Gao JQ (2009) A novel camptothecin derivative incorporated in nano-carrier induced distinguished improvement in solubility, stability and anti-tumor activity both in vitro and in vivo. Pharm Res 26:926–935

    CAS  PubMed  Google Scholar 

  64. Pardridge WM (2007) Blood-brain barrier delivery. Drug Discov Today 12:54–61

    CAS  PubMed  Google Scholar 

  65. Pardridge WM (2002) Drug and gene targeting to the brain with molecular Trojan horses. Nat Rev Drug Discov 1:131–139

    CAS  PubMed  Google Scholar 

  66. Begley DJ, Brightman MW (2003) Structural and functional aspects of the blood–brain barrier. Prog Drug Res 61:39–78

    CAS  PubMed  Google Scholar 

  67. Nies AT (2007) The role of membrane transporters in drug delivery to brain tumors. Cancer Lett 254:11–29

    CAS  PubMed  Google Scholar 

  68. Deeken JF, Löscher W (2007) The blood–brain barrier and cancer: transporters, treatment, and Trojan horses. Clin Cancer Res 13:1663–1674

    CAS  PubMed  Google Scholar 

  69. Gaoe H, Pang Z, Pan S, Cao S, Yang Z, Chen C, Jiang X (2012) Anti-glioma effect and safety of docetaxel-loaded nanoemulsion. Arch Pharm Res 35:333–334

    CAS  PubMed  Google Scholar 

  70. Yao J, Zhou JP, Ping QN (2007) Characteristics of nobiletin-loaded nanoemulsion and its in vivo distribution in mice. Yao Xue Xue Bao 42:663–668

    CAS  PubMed  Google Scholar 

  71. Talegaonkar S, Mishra P (2004) intranasal delivery: an approach to bypass the blood brain barrier. Indian J Pharmacol 36:140–147

    CAS  Google Scholar 

  72. Bahadur S, Pathak K (2012) Buffered nanoemulsion for nose to brain delivery of ziprasidone hydrochloride: preformulation and pharmacodynamic evaluation. Curr Drug Deliv 9:596–607

    CAS  PubMed  Google Scholar 

  73. Kumar M, Misra A, Babbar AK, Mishra AK, Mishra P, Pathak K (2008) Intranasal nanoemulsion based brain targeting drug delivery system of risperidone. Int J Pharm 358:285–291

    CAS  PubMed  Google Scholar 

  74. Vyas TK, Shahiwala A, Amiji MM (2008) Improved oral bioavailability and brain transport of Saquinavir upon administration in novel nanoemulsion formulations. Int J Pharm 347:93–110

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Kumar M, Misra A, Pathak K (2009) Formulation and characterization of nanoemulsion of olanzapine for intranasal delivery. PDA J Pharm Sci Technol 63:501–511

    CAS  PubMed  Google Scholar 

  76. Jogani VV, Shah PJ, Mishra P, Mishra AK, Misra AR (2008) Intranasal mucoadhesivemicroemulsion of tacrine to improve brain targeting. Alzheimer Dis Assoc Disord 22:116–124

    CAS  PubMed  Google Scholar 

  77. Jain N, Akhter S, Jain GK, Khan ZI, Khar RK, Ahmad FJ (2011) Antiepileptic intranasal Amiloride loaded mucoadhesive nanoemulsion: development and safety assessment. J Biomed Nanotechnol 7:142–143

    CAS  PubMed  Google Scholar 

  78. Murphy EA, Majeti BK, Barnes LA et al (2008) Nanoparticle-mediated drug delivery to tumor vasculature suppresses metastasis. Proc Natl Acad Sci U S A 105:9343–9348

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Das M, Mohanty C, Sahoo SK (2009) Ligand-based targeted therapy for cancer tissue. Expert Opin Drug Deliv 6:285–304

    CAS  PubMed  Google Scholar 

  80. Yukio K, Takeshi S, Takashi K et al (1996) Kinetic analysis of receptor-mediated endocytosis (RME) of proteins and peptides: use of RME as a drug delivery system. J Control Release 39:191–200

    Google Scholar 

  81. Sinha R, Kim GJ, Nie S et al (2006) Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol Cancer Ther 5:1909–1917

    CAS  PubMed  Google Scholar 

  82. Vora T, Azambuja ED, Awada A, Piccart M (2009) Novel therapeutics in breast cancer: looking to the future. Update Cancer Ther 3:189–205

    Google Scholar 

  83. Alvarez RH, Valero V, Hortobagyi GN (2010) Emerging targeted therapies for breast cancer. J Clin Oncol 28:3366–3379.

    CAS  PubMed  Google Scholar 

  84. Lee RJ, Armstrong AC, Wardley AM (2013) Emerging targeted combinations in the management of breast cancer. J Breast Cancer Targets Ther 14:505–515

    Google Scholar 

  85. Shaw RJ, Cantley LC (2006) Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 441:424–430

    CAS  PubMed  Google Scholar 

  86. Shih T, Lindley C (2006) Bevacizumab: an angiogenesis inhibitor for the treatment of solid malignancies. Clin Ther 28:1779–1802

    CAS  PubMed  Google Scholar 

  87. Negi LM, Talegaonkar S, Jaggi M (2012) Role of CD44 in tumour progression and strategies for targeting. J Drug Target 20:561–573

    CAS  PubMed  Google Scholar 

  88. Gao X, Cui Y, Levenson RM, Chung LWK, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–976

    CAS  PubMed  Google Scholar 

  89. Bartlett DW, Su H, Hildebrandt IJ, Weber WA, Davis ME (2007) Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc Natl Acad Sci U S A 104:15549–15554

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Winkler J, Martin-Killias P, Pluckthun A, Zangemeister-Wittke U (2009) EpCAM targeted delivery of nanocomplexed siRNA to tumor cells with designed ankyrin repeat proteins. Mol Cancer Ther 8:2674–2683

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Graf N, Bielenberg DR, Kolishetti N, Muus C, Banyard J, Farokhzad OC, Lippard SJ (2012) αVβ3 Integrin-targeted PLGA-PEG nanoparticles for enhanced anti-tumor efficacy of a Pt(IV) prodrug. ACS Nano 6:4530–4539

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Kamaly N, Fredman G, Subramanian M, Gadde S, Pesic A, Cheung L, Fayad ZA, Langer R, Tabas I, Farokhzad OC (2013) Development and in vivo efficacy of targeted polymeric inflammation-resolving nanoparticles. Proc Natl Acad Sci U S A 110:6506–6511

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Saw PE, Kim S, Lee IH, Park J, Yu M, Lee J, Kim JI, Jon S (2013) Aptide-conjugated liposome targeting tumor-associated fibronectin for glioma therapy. J Math Chem B 1:4723–4726

    CAS  Google Scholar 

  94. Werner ME, Karve S, Sukumar R, Cummings ND, Copp JA, Chen RC, Zhang T, Wang AZ (2011) Folate-targeted nanoparticle delivery of chemo- and radiotherapeutics for the treatment of ovarian cancer peritoneal metastasis. Biomaterials 32:8548–8554

    CAS  PubMed  Google Scholar 

  95. Ohguchi Y, Kawano K, Hattori Y, Maitani Y (2008) Selective delivery of folate-PEG-linked, nanoemulsion-loaded aclacinomycin A to KB nasopharyngeal cells and xenograft: effect of chain length and amount of folate-PEG linker. J Drug Target 16:660–667

    CAS  PubMed  Google Scholar 

  96. Talekar M, Ganta S, Singh A, Amiji M, Kendall J, Denny WA, Garg S (2010) Phosphatidylinositol 3-kinase inhibitor (PIK75) containing surface functionalized nanoemulsion for enhanced drug delivery, cytotoxicity and pro-apoptotic activity in ovarian cancer cells. Pharm Res 29:2874–2886

    Google Scholar 

  97. Tiwari S, Tan Y, Amiji M (2006) Preparation and in vitro characterization of multifunctional nanoemulsions for simultaneous mr imaging and targeted drug delivery. J Biomed Nanotechnol 2:217–224

    CAS  Google Scholar 

  98. Watanabe M, Yoneda M, Morohashi A, Hori Y, Okamoto D, Sato A, Kurioka D, Nittami T, Hirokawa Y, Shiraishi T, Kawai K, Kasai H, Totsuka Y (2013) Effects of Fe3O4 magnetic nanoparticles on A549 cells. Int J Mol Sci 14:15546–15560

    PubMed Central  PubMed  Google Scholar 

  99. Hu SH, Hsieh TY, Chiang CS, Chen PJ, Chen YY, Chiu TL, Chen SY (2013) Surfactant-free lipo-polymersomes stabilized by iron oxide nanoparticles/polymer interlayer for synergistically targeted and magnetically guided gene delivery. Adv Healthc Mater 3:273–282. doi:10.1002/adhm.201300122

    PubMed  Google Scholar 

  100. Huang HS, Hainfield JF (2013) Intravenous magnetic nanoparticle cancer hyperthermia. Int J Nanomedicine 8:2521–2532

    PubMed Central  PubMed  Google Scholar 

  101. Bakandritsos A, Zboril R, Bouropoulos N, Kallinteri P, Favretto ME, Parker TL, Mullertz A, Fatouros DG (2010) The preparation of magnetically guided lipid based nanoemulsions using self-emulsifying technology. Nanotechnology 21:055104–055112

    PubMed  Google Scholar 

  102. Primo FL, Macaroff PP, Lacava ZGM, Azevedo RB, Morais PC, Tedesco AC (2007) Binding and photophysical studies of biocompatible magnetic fluid in biological medium and development of magnetic nanoemulsion: a new candidate for cancer treatment. J Magn Magn Mater 310:2838–2840

    CAS  Google Scholar 

  103. Fang JY, Hung CF, Hua SC, Hwang TL (2009) Acoustically active perfluorocarbon nanoemulsions as drug delivery carriers for camptothecin: drug release and cytotoxicity against cancer cells. Ultrasonics 49:39–46

    CAS  PubMed  Google Scholar 

  104. Rapoport NY, Kennedy AM, Shea JE, Scaife CL, Nam KH (2009) Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles. J Control Release 138:268–276

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Herman GT (2009) Fundamentals of computerized tomography: image reconstruction from projection, 2nd edn. Springer, Berlin

    Google Scholar 

  106. Osborne E, Sutherland C, Scholl A, Rowntree L (1923) Roentgenography of urinary tract during excretion of sodium iodide. J Am Med Assoc 80:368–373

    CAS  Google Scholar 

  107. Bourin M, Jolliet P, Ballereau F (1997) An overview of the clinical pharmacokinetics of x-ray contrast media. Clin Pharmacokinet 32:180–193

    CAS  PubMed  Google Scholar 

  108. Hallouard F, Anton N, Choquet P, Constantinesco A, Vandamme T (2010) Iodinated blood pool contrast media for preclinical X-ray imaging applications—a review. Biomaterials 31:6249–6268

    CAS  PubMed  Google Scholar 

  109. Henning T, Weber AW, Bauer JS, Meier R, Carlsen JM, Sutton EJ, Prevrhal S, Ziegler SI, Feussner H, Daldrup-Link HE, Rummeny EJ (2008) Imaging characteristics of DHOG, a hepatobiliary contrast agent for preclinical microCT in mice. Acad Radiol 15:342–349

    PubMed  Google Scholar 

  110. Willekens I, Lahoutte T, Buls N, Vanhove C, Deklerck R, Bossuyt A, de Mey J (2009) Time-course of contrast enhancement in spleen and liver with Exia 160, Fenestra LC, and VC. Mol Imaging Biol 11:128–135

    PubMed  Google Scholar 

  111. Weichert JP, Lee FT Jr, Chosy SG, Longino MA, Kuhlman JE, Heisey DM, Leverson GE (2000) Combined hepatocyte-selective and blood-pool contrast agents for the CT detection of experimental liver tumors in rabbits. Radiology 216:865–867

    CAS  PubMed  Google Scholar 

  112. Hallouard F, Briançon S, Anton N, Li X, Vandamme T, Fessi H (2013) Iodinated nano-emulsions as contrast agents for preclinical X-ray imaging: impact of the free surfactants on the pharmacokinetics. Eur J Pharm Biopharm 83:54–62

    CAS  PubMed  Google Scholar 

  113. Li X, Anton N, Zuber G, Zhao M, Messaddeq N, Hallouard F, Fessi H, Vandamme TF (2013) Iodinated α-tocopherol nano-emulsions as non-toxic contrast agents for preclinical X-ray imaging. Biomaterials 34:481–491

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushama Talegaonkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Controlled Release Society

About this chapter

Cite this chapter

Talegaonkar, S., Negi, L.M. (2015). Nanoemulsion in Drug Targeting. In: Devarajan, P., Jain, S. (eds) Targeted Drug Delivery : Concepts and Design. Advances in Delivery Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-11355-5_14

Download citation

Publish with us

Policies and ethics