Skip to main content

Physicochemical Properties of Inorganic Citrates

  • Chapter
  • First Online:
Citric Acid

Abstract

ChapterĀ 5 contains information about applications and physicochemical properties of inorganic citrates. These include solubilities in water, boiling temperatures, freezing points and activity and osmotic coefficients at these temperatures. Presented vapour pressures of water over unsaturated and saturated solutions of alkali metal citrates are thermodynamically analyzed to give activities of components in these systems. From other properties, it also contains sound velocities, densities of binary and ternary solutions and partition data in two-phase ternary systems, namely in the alkali metal citrate + aliphatic alcohol + water and alkali metal citrate + polyethylene glycol (PEG) + water systems. In addition, it includes the literature sources leading to data about crystal structure of many inorganic citrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Love WE, Patterson AL (1960) X-ray analysis of the substrates of aconitase. III. Crystallization, cell constants, and space groups of some alkali citrates. Acta Crystallogr 13:426ā€“428

    CASĀ  Google ScholarĀ 

  2. Rossi M, Rickles LF, Glusker JP (1983) Trilithium citrate pentahydrate, C6H5O7 3āˆ’ 3Li+.5H2O. Acta Crystallogr C 89:987ā€“980

    Google ScholarĀ 

  3. Glusker JP, van der Helm D, Love WE, Dornberg M, Minkin JA, Johnson CK, Patterson AL (1965) X-ray crystal analysis of the substrates of aconitase. VI. The structures of sodium and lithium dihydrogen citrates. Acta Crystallogr 19:561ā€“572

    CASĀ  Google ScholarĀ 

  4. Tobon-Zapata GE, Piro DE, Etcheverry SB, Baran EJ (1998) Crystal structure and IR spectrum of lithium citrate monohydrate. Z Anorg Allg Chem 13(624):721ā€“724

    Google ScholarĀ 

  5. Gabe EJ, Glusker JP, Minkin JA, Patterson AL (1967) X-ray analysis of the substrates of aconitase. VII. The structure of lithium ammonium hydrogen citrate monohydrate. Acta Crystallogr 22:366ā€“375

    CASĀ  Google ScholarĀ 

  6. Venkateswarlu M, Rao TB, Rao KK (1989) Growth and characterization of triammonium citrate. Bull Mater Sci 12:143ā€“146

    Google ScholarĀ 

  7. Zacharias DE, Glusker JP (1993) Structure of a citrate double salt: potassium dihydrogen citrate-lithium potassium hydrogen citrate monohydrate. Acta Crystallogr C 13:1727ā€“1730

    Google ScholarĀ 

  8. Burns DM, Iball J (1954) Unit cells and space groups of citric acid and some potassium and sodium citrates. Acta Crystallogr 7:137ā€“138

    CASĀ  Google ScholarĀ 

  9. Fisher A Palladino G (2003) Trisodium citrate dihydrate. Acta Crystallogr E 59:m1080ā€“m1082

    Google ScholarĀ 

  10. Viossat B, Rodier N, Eberly J (1986) Crystal structure of sodium citrate hydrate. Bull Soc Chim France 522ā€“525

    Google ScholarĀ 

  11. Kim Y, Koo HG, Shin DH, Park LO, Lee JH, Jang HG, Kim C (2010) Zinc citrate with alkali metal ammonium cations: crystal structure of K4[Zn(Cit)2]. J Struct Chem 51:382ā€“385

    CASĀ  Google ScholarĀ 

  12. Glusker JP, van der Helm D, Love WR, Dornberg ML, Baran EJ (1960) X. The state of ionization of crystalline sodium dihydrogen citrate. J Am Chem Soc 82:2964ā€“2965

    CASĀ  Google ScholarĀ 

  13. Zacharias DE, Glusker JP (1993) Structure of dipotassium hydrogen citrate. Acta Crystallogr C 13:1730ā€“1732

    Google ScholarĀ 

  14. Nordman CE, Weldon AS, Patterson AL (1960) X-ray crystal analysis of the substrates of aconitase. I. Rubidium dihydrogen citrate. Acta Crystallogr 13:414ā€“417

    CASĀ  Google ScholarĀ 

  15. Holcomb M, Strumpel M, Butler WM, Nordman (1987) A crystallographic study of the phase transition in rubidium dihydrogen citrate. Acta Crystallogr B 43:313ā€“318

    Google ScholarĀ 

  16. Johnson CK (1965) X-ray analysis of the substrates of aconitase. V. Magnesium citrate decahydrate [Mg(H2O)6] [MgC6H5O7(H2O)]2ā€‰ ā€‰2H2O. Acta Crystallogr 18:1004ā€“1018

    CASĀ  Google ScholarĀ 

  17. Pogainis E.M, Shaw EH Jr (1957) The unit-cell dimensions of tricalcium citrate tetrahydrate. Proc South Dakota Acad Sci 36:56ā€“59

    CASĀ  Google ScholarĀ 

  18. Herdtweck E, Kornprobst T, Sieber R, Straver L Plank J (2011) Crystal structure, synthesis and properties of tri-calcium di-citrate tetrahydrate [Ca3(C6H5O7)2(H2O)2]Ā·2H2O. Z Anorg Allgem Chemie 637:655ā€“659

    CASĀ  Google ScholarĀ 

  19. Sheldrick B (1965) Calcium hydrogen citrate trihydrate. Acta Crystallogr B 30:2056ā€“2057

    Google ScholarĀ 

  20. Wu H, Pan S, Yu H, Huang Z, Jia D (2012) Synthesis structure and characterization of layered Ca{B(C6H6O7)2]Ā·(H2O)4ā€‰ā€‰HCl. J Mol Struct 1027:111ā€“115

    CASĀ  Google ScholarĀ 

  21. Zacharias DE, Glusker JP (1993) Structure of strontium citrate pentahydrate. Acta Crystallogr C 13:1732ā€“1735

    Google ScholarĀ 

  22. Vanhoyland G, Pagnaer J, Dā€™Haen J, Mullens S Mullens J (2005) Characterization and structural study of lanthanum citrate trihydrate. J Solid Chem 178:166ā€“171

    CASĀ  Google ScholarĀ 

  23. Zviedre II, Fundamenskii VS, Krasnikov VV, Kolesnikova (1984) Crystal structure of potassiumborocitrate(dicitrateborate) [K(C6H6O7)2B]Ā·2H2O. Zh Strukt Khim 25:95ā€“101

    Google ScholarĀ 

  24. Zviedre II, Belyakov SV (2011) A restudy of the crystal structure of tetraaquastrontium dicitratoborate trihydrate. Russ J Inorg Chem 56:375ā€“382

    CASĀ  Google ScholarĀ 

  25. Zviedre II, Belyakov SV (2012) Crystal structure of a new copper(II) complex with borocitric acid. Russ J Inorg Chem 57:1321ā€“1327

    CASĀ  Google ScholarĀ 

  26. Svoronos DR, Boulhassa S, Guillaumont R (1981) Citric complexes and neodymium citrate: NdCitĀ·3H2O. J Inorg Nucl Chem 43:1541ā€“1545

    CASĀ  Google ScholarĀ 

  27. Dakanali M, Kefalas ET, Raptopoulou CP, Terzis A, Voyiatzis G, Kyrikou I, Mavromoustakos T Salifoglou A (2003) A new dinuclear Ti(IV)-peroxo-citrate complex from aqueous solutions. Synthetic, structural, and spectroscopic studies in relevance to aqueous titanium(IV)-peroxy-citrate speciation. Inorg Chem 42:4632ā€“4639

    CASĀ  Google ScholarĀ 

  28. Kakihana M, Tada M, Shiro M, Petrykin V, Osada M, Nakamura Y (2001) Structure and stability of water soluble (NH4)8[Ti4(C6H4O7)4(O2)4]Ā·8H2O. Inorg Chem 40:891ā€“894

    CASĀ  Google ScholarĀ 

  29. Panagiotidis P, Kefalas ET, Raptopoulou CP, Terzis A, Mavromoustakos T Salifoglou A (2008) Delving in the complex picture of Ti(IV)-citrate speciation in aqueous media: synthetic, structural, and electrochemical considerations in mononuclear Ti(IV) complexes containing variably deprotonated citric ligands. Inorg Chim Acta 361:2210ā€“2224

    CASĀ  Google ScholarĀ 

  30. Deng YF, Zhang HL, Hong QM, Weng WZ, Wan HL, Zhou ZH (2007) Titanium-based mixed oxides from a series of titanium(IV) citrate complexes. J Solid State Chem 180:3152ā€“3159

    CASĀ  Google ScholarĀ 

  31. Collins JM, Uppal R, Incarvito CD, Valentine AM (2005) Titanium(IV) citrate speciation and structure under environmentally and biologically relevant conditions. Inorg Chem 49:3431ā€“3440

    Google ScholarĀ 

  32. Deng YF, Zhou ZH Wan HL (2004) pH-dependent isolation and spectroscopic, structural and thermal studies of titanium citrate complexes. Inorg Chem 43:6266ā€“6273

    CASĀ  Google ScholarĀ 

  33. Tsaramyrsi M, Kaliva M, Salifoglou A, Raptopoulou CP, Terzis A, Tangoulis V Giaprintzakis J (2001) Vanadium(IV) ā€“ citrate complex interconversions in aqueous solutions. A pH-dependent synthetic, structural, spectroscopic, and magnetic study. Inorg Chem 40:5772ā€“5779

    CASĀ  Google ScholarĀ 

  34. Kaliva M, Raptopoulou CP, Terzis A Salifoglou A (2003) Systematic studies on pH-dependent transformations of dinuclear vanadium(V)-citrate complexes inaqueous solutions. A perspective relevance to aqueous vanadium(V)-citrate speciation. J Inorg Biochem 93:161ā€“173

    CASĀ  Google ScholarĀ 

  35. Zhou ZH, Yan WB, Wan HL, Hu SZ (1995) Metal-hydroxycarboxylate interactions: syntheses and structures of K2[VO2(C6H6O7)]2ā€‰ ā€‰4H2O and (NH4)2[VO2(C6H6O7)]2ā€‰ ā€‰2H2O. J Chem Crystal 25:807ā€“811

    CASĀ  Google ScholarĀ 

  36. Zhou ZH, Wan HL, Hu SZ, Tsai KR (1995) Syntheses and structures of the potassium-ammonium dioxocitratovanadate(V) and sodium oxocitratovanadate(IV) dimer. Inorg Chim Acta 237:193ā€“197

    CASĀ  Google ScholarĀ 

  37. Zhou ZH, Zhang H, Jiang YQ, Lin DH, Wan HL, Tsai KR (1999) Complexation between vanadium(V) and citrate: spectroscopic and structural characterization of a dinuclear vanadium(V) complex. Transit Met Chem 24:605ā€“609

    CASĀ  Google ScholarĀ 

  38. Wright DW, Humiston PA, Orme-Johnson WH, Davis WM (1995) A unique coordination mode for citrate and a transition metal: K2[V(O)2C6H6O7]2ā€‰ ā€‰4H2O. Inorg Chem 34:4194ā€“4197

    CASĀ  Google ScholarĀ 

  39. Gunari P, Krishnasamy SSO, Bai SQ, Hor TSA (2010)Crystallographic identification of an unusual homoleptic palladium citrate [Na(OH2)6]Ā·{[Na3(OH2)8}3{NaPd3(C6H4O7)3]2}Ā·H2O stabilized by intermetalic aggregation with sodium and heavy hydration. Dalton Trans 39:9462ā€“9464

    CASĀ  Google ScholarĀ 

  40. Fedosseev AM, Grigoriev MS, Budantseva NA, Guillaumont D, Le Naour C, Simoni E, Den Auwer C, Moisy P (2010) Americium (III) coordination chemistry. An unexplored diversity of structure and bonding. Comp Rend Chimie 13:839ā€“848

    CASĀ  Google ScholarĀ 

  41. Keizer TS, Scott BL, Sauer NN, McCleskey TM (2005) Stable, soluble beryllium aluminum citrate complexes inspired by the emerald mineral structure. Angew Chem Int Ed Engl 117:2455ā€“2458

    Google ScholarĀ 

  42. Kaliva M, Giannadaki T Salifoglou A (2002) A new dinuclear vanadium(V)-citrate complex from aqueous solutions. Synthesis, structural, spectroscopic, and pH-dependent studies in relevance to aqueous vanadium(V) ā€“ citrate speciation. Inorg Chem 41:3850ā€“3858

    CASĀ  Google ScholarĀ 

  43. Djordjevic C, Lee M, Sinn E (1989) Oxyperoxo(citrate)- and dioxo(citrate) vanadates(V): synthesis, spectra, and structure of a hydroxyl oxygen bridged dihydrate, K2[V2O6(Hcit)2] 2H2O. Inorg Chem 28:719ā€“723

    CASĀ  Google ScholarĀ 

  44. Gabriel C, Raptopoulou CR, Terzis A, Tangocelis V, Mateescu C, Salifoglou A (2007) pH-specific synthesis and spectroscopic, structural and magnetic studies of a chromium(III)-citrate species. Aqueous solution speciation of the binary chromium(III)-citrate system. Inorg Chem 46:2998ā€“3009

    CASĀ  Google ScholarĀ 

  45. Gabriel C, Raptopoulou CR, Drouza C, Lalioti N Salifoglou A (2009) Synthesis, spectroscopic, structural and magnetic studies of new binary Cr(III)-citrate. pH-specific structural variants from aqueous media. Polyhedron 28:3209ā€“3220

    CASĀ  Google ScholarĀ 

  46. Zhou ZH, Wan H.l Tsai KR (2000) Syntheses and spectroscopic and structural characterization of molybdenum(VI) citrate monomeric raceme and dimer, K4[MoO3(cit)]ā€‰ 2H2O and K4[(MoO2)2O(Hcit)2].ā€‰4H2O. Inorg Chem 39:59ā€“64

    CASĀ  Google ScholarĀ 

  47. Zhou ZH, Wan HL, Tsai KR (1997) Molybdenum(VI) complex with citric acid: synthesis and structural characterization of 1:1 ratio citro: molybdate K2Na4[(Mo2)2O(Cit)2]Ā·5H2O. Polyhedron 16:75ā€“79

    CASĀ  Google ScholarĀ 

  48. Cruywagen JJ, Saayman LJ, Niven ML (1992) Complexation between tungsten(VI) and citrate: The crystal and molecular structure of a dinuclear complex, Na6[W2O5(cit)2]ā€‰ 10H2O. J Crystal Spectr Res 22:737ā€“740

    CASĀ  Google ScholarĀ 

  49. Llopis E, Ramirez JA, Domenech A Cervilla A (1993) Tungsten(VI) complexes with citric acid (H4cit). Structural characterization of Na6[{WO2(Cit)2}O}]Ā·10H2O. J Chem Soc Dalton Trans 1121ā€“1124

    Google ScholarĀ 

  50. Zhang H, Zhao H, Jiang YQ, Hou SY, Zhou ZH Wan HL (2003) pH-mol-ratio dependent tungsten(VI)-citrate speciation from aqueous solutions: syntheses, spectroscopic properties and crystal structures. Inorg Chim Acta 351:311ā€“3188

    CASĀ  Google ScholarĀ 

  51. Li D, Cui LF, Xing YH, Xu JQ, Yu JH, Wang TG, Jia HQ Hu NH (2007) Syntheses and structural characterization of new tungsten(VI) complexes with carboxylate ligands. J Mol Struct 832:138ā€“145

    CASĀ  Google ScholarĀ 

  52. Xu JQ, Li DM, Xing YH, Wang RZ, Liu SQ, Wang TG, Xing Y, Lin YH Jia HQ (2000) Synthesis and structure of a novel mononuclear tungsten(VI) complex, (NH4)3[Li(H2O)3WO3(C6H4O7)]. J Coord Chem 53:25ā€“33

    Google ScholarĀ 

  53. Carrell HL, Glusker JP (1973) Manganous citrate decahydrate. Acta Crystallogr B 29:638ā€“340

    CASĀ  Google ScholarĀ 

  54. Glusker JP, Carrell HL (1973) X-ray crystal analysis of substrates of aconitase. XI. Manganous citrate decahydrate. J Mol Struct 15:151ā€“159

    CASĀ  Google ScholarĀ 

  55. Matzapetakis M, Karligiano N, Bino A, Dakanali M, Raptopoulou CP, Tangoulis V, Terzis A, Giapintzakis J, Salifoglou A (2000) Manganese citrate chemistry: synthesis, spectroscopic studies, and structural characterizations of novel mononuclear water-soluble citrate complexes. Inorg Chem 39:4044ā€“4051

    CASĀ  Google ScholarĀ 

  56. Strouse J, Layten SW, Strouse CE (1977) Structual studies of transition metal complexes of triinized and tetraionized citrate. Models for the citrate ion to transition metal ion insolution and at the active site of aconitase. J Am Chem Soc 99:562ā€“572

    CASĀ  Google ScholarĀ 

  57. Matzapetakis M, Raptopoulou CP, Tsohos A, Papaefthymiou V, Moon N, Salifoglou A (1998) Synthesis, spectroscopic and structural characterization of the first mononuclear, water soluble iron-citrate complex. J Am Chem Soc 120:13266ā€“13267

    CASĀ  Google ScholarĀ 

  58. Kotsakis N, Raptopoulou CP, Tangoulis V, Terzis A, Giapintzakis J, Jakusch T, Kiss T Salifoglou A (2003) Correlations of synthetic, spectroscopic, structural, and speciation studies in the biologically relevant cobalt(II)-citrate system. The tale of the first aqueous dinuclear cobalt(II)-citrate complex. Inorg Chem 42:22ā€“31

    CASĀ  Google ScholarĀ 

  59. Zhou ZH, Lin YJ, Zhang HB, Lin GD Tsai KR (1997) Syntheses, structures and spectroscopic properties of nickel(II) citrate complexes (NH4)2[Ni(Hcit)(H2O)2]2-2H2O and (NH4)4[Ni(Hcit)2]-2H2O. J Coord Chem 42:131ā€“141

    CASĀ  Google ScholarĀ 

  60. Burshtein IF, Kiosse NV, Ablov AV, Malinovski TI, Shchedrin BM, Rannev NV (1978) Structure of a complex of antimony(III) with citric acid. Dokl Akad Nauk SSSR 239:90ā€“93

    CASĀ  Google ScholarĀ 

  61. Baker EN, Baker HM, Anderson BF Reeves RD (1983) Chelation of nickel(II) by citrate. The crystal structure of a nickel-citrate complex K2[Ni(C6H5O7)(H2O)2]2ā€‰ ā€‰4H2O. Inorg Chim Acta 78:281ā€“285

    CASĀ  Google ScholarĀ 

  62. Mastropaolo D, Powers DA, Potenza JA, Schugar HJ (1976) Crystal structure and magnetic properties of copper citrate dehydrate Cu2C6H4O7ā€‰ ā€‰2H2O. Inorg Chem 15:1444ā€“1449

    CASĀ  Google ScholarĀ 

  63. Bott RC, Sagatis DS, Lynch DE, Smith G, Kennard CHL, Mak TCW (1991) The preparation and crystal structure of ammonium biscitrate(3-)-cuprate(II). Aust J Chem 44:1495ā€“1498

    CASĀ  Google ScholarĀ 

  64. Smith G, Sagatys DS, Bott RC, Lynch DE (1992) Crystallographic evidence for the presence of both(2āˆ’) and (3āˆ’) citrate species in a mixed-metal complex [CuSb(C6H6O7 2ā€“C6H5O7 3āˆ’)(H2O)2].2.5H2O. Polyhedron 11:631ā€“634

    CASĀ  Google ScholarĀ 

  65. Swanson R, Ilsley WH, Stanislowki AG (1983) Crystal structure of zinc citrate. J Inorg Biochem 18:187ā€“194

    CASĀ  Google ScholarĀ 

  66. Kefalas ET, Dakaneli M, Panagiotidis P, Raptopoulou CP, Terzis A, Mavromoustakos T, Kyrikon I, Karligiano N, Bino A, Salifoglou A (2005) pH-Specific aqueous synthetic chemistry in the binary cadmium(II)-citrate system. Gaining insight into cadmium(II)-citrate speciation with relevance to cadmium toxicity. Inorg Chem 44:4818ā€“4828

    CASĀ  Google ScholarĀ 

  67. Matzapetakis M, Raptopoulou CP, Terzis A, Lakatos A, Kiss T, Salifoglou A (1999) Synthesis, structural characterization, and solution behavior of the first mononuclear, aqueous aluminum citrate complex. Inorg Chem 38:618ā€“619

    CASĀ  Google ScholarĀ 

  68. Matzapetakis M, Kourgiantakis M, Dakanali M, Raptopoulou CP, Tangoulis V, Terzis A, Lakatos A, Kiss T, Banyai I, Iordanidis L, Mavromoustakos T, Salifoglou A (2001) Synthesis pH-dependent structural characterization of aqueous aluminum and gallium citrate complexes. Inorg Chem 40:1734ā€“1744

    CASĀ  Google ScholarĀ 

  69. Oā€™Brien P, Salacinski H, Motevalli M (1997) The X-ray single crystal structure of a gallium citrate complex (NH4)3[Ga(C6H5O7)2]Ā·4H2O. J Am Chem Soc 119:12695ā€“12696

    Google ScholarĀ 

  70. Hawkes GE, Oā€™Brien P, Salicinski H, Motevalli M, Abrahams I (2001) Solid and solution state NMR spectra and the structure of the gallium citrate complex (NH4)3[Ga(C6H5O7)2]Ā·4H2O. Eur J Inorg Chem 1005ā€“1011

    Google ScholarĀ 

  71. Martsinko EE, Minacheva LK, Pesaraglo AG, Seifullina II, Churakov AV, Sergienko VS (2011) Bis(citrate) germinates of bivalent 3d metals (Fe, Co, Ni, Cu, Zn): crystal and molecular structure of [Fe(H2O)6 Ge(Hcit)2]Ā·4H2O. Russ J Inorg Chem 56:1243ā€“1249

    CASĀ  Google ScholarĀ 

  72. Deacon PR, Mahon MF, Molloy KC, Waterfield PC (1997) Synthesis and characterization of tin(II) and tin(IV) citrates. J Chem Soc Dalton Trans 3705ā€“3712

    Google ScholarĀ 

  73. Chu C, Darling K, Netusil R, Doyle RP, Zubieta J (2011) Synthesis and structure of a lead(II)-citrate {Na(H2O)3[Pb5(C6H5O7)3(C6H6O7)(H2O)3]}Ā·9 5 H2O. Inorg Chim Acta 378:186ā€“193

    CASĀ  Google ScholarĀ 

  74. Smith G, Sagatys DS, Bott RC, Lynch DE (1993) Group 15 complexes with carboxylic acids ā€“ VI. Preparation and crystal structures of potassium antimony(III) citrate {[K2Sb4(citrate)8(H2O)2]} and lithium antimony(III) citrate{[LiSb(citrate)2(H2O)]Ā·2H2O}. Polyhedron 12:1491ā€“1497

    CASĀ  Google ScholarĀ 

  75. Hartley DW, Smith G, Sagatys DS, Kennard CHL Antimony(III) complexes with carboxylic acids. Part 2. Preparation and crystal structures of [Sb2Ag2(C6H6O7)4] and [SbNa(C6H6O7)2(H2O)2].H2O. J Chem Soc Dalton Trans 2735ā€“2739

    Google ScholarĀ 

  76. Antsyshkina AS, Sadikov GG, Kurskinova TB, Skorikov VM, Sergienko VS (2006) Synthesis and crystal structure of KBi (C6H4O7)Ā·3 5H2O. Russ J Inorg Chem 51:374ā€“385

    Google ScholarĀ 

  77. Asato E, Katsura K, Mikuriya M, Fujii T, Reedijk J (1993) Synthesis structure, and spectroscopic characterization of bismuth citrate compounds and bismuth-containing ulcer healing agent colloidal bismuth subcitrate (CBS). 31. Crystal and solution structures of KNH4[Bi2(cit)2(H2O)2]Ā·(H2O)xā€‰ ā€‰(xā€‰=ā€‰2, 4). Inorg Chem 32:5322ā€“5329

    CASĀ  Google ScholarĀ 

  78. Asato E, Katsura K, Mikuriya M, Turpeinen U, Mutikainen I, Reedijk J (1995) Synthesis, structure, and spectroscopic characterization of bismuth citrate compounds and bismuth-containing ulcer healing agent colloidal bismuth subcitrate (CBS). 41. Crystal K(NH4)[Bi2(cit)2(H2O)2].(H2O)x (x = 2,4). Inorg Chem 34:2447ā€“2454

    CASĀ  Google ScholarĀ 

  79. Wu H, Pan S, Jia D, Yu H, Chen Z (2012) New borate-citrate: synthesis, structure, and properties of Sr[B(C6H5O7)2 (H2O)4]Ā·3H2O. Z Anorg Allg Chem 638:856ā€“860

    CASĀ  Google ScholarĀ 

  80. ThuĆ©ry P (2006) Uranyl ion complexation by citric and tricarballylic acids: hydrothermal synthesis and structure of two- and three-dimensional uranium-organic frameworks. Chem Commun 853ā€“855

    Google ScholarĀ 

  81. Glusker JP (1980) Citrate conformation and chelation: enzymatic implications. Acc Chem Res 13:345ā€“352

    CASĀ  Google ScholarĀ 

  82. Hahn L (1948) Stabilisation of penicillin-salt solutions with sodium citrate. Biochem Biophys Acta 2:113ā€“120

    Google ScholarĀ 

  83. Deng YF, Jiang Q, Houg QM, Zhou ZH (2007) Speciation of water-soluble titanium citrates: synthesis, structural, spectroscopic properties and biological relevance Polyhedron 26:1561ā€“1569

    CASĀ  Google ScholarĀ 

  84. Zang Q, Li N, Goebl J, Lu Z, Yin Y (2011) A systematic study of the synthesis of silver nanoplates: is citrate a ā€œmagicā€ reagent? J Am Chem Soc 133:18931ā€“18939

    Google ScholarĀ 

  85. Chou YH, Doraiswamy LK, Larson MA (2001) Studies of the dissolution rate of sparingly soluble calcium citrate in water. Chem Eng Comm 185:223ā€“236

    CASĀ  Google ScholarĀ 

  86. Henglein A, Giersig M (1999) Formation of colloidal silver nanoparticles: capping action of citrate. J Phys Chem B 103:9533ā€“9539

    CASĀ  Google ScholarĀ 

  87. Pillai ZS, Kamat PV (2004) What factors control the size and shape of silver-nanoparticles in the citrate ion reduction method. J Phys Chem B 108:945ā€“951

    CASĀ  Google ScholarĀ 

  88. Pei L, Mori K, Adachi M (2004) Formation process of two-dimensional networked gold nanowires by citrate reduction of AuCl4 āˆ’ and the shape stabilization. Langmuir 20:7837ā€“7843

    CASĀ  Google ScholarĀ 

  89. Ji X, Song X, Li J, Bai Y, Yang W (2007) Size control of gold nanocrystals in citrate reduction: the third role of citrate. J Am Chem Soc 129:13939ā€“13948

    CASĀ  Google ScholarĀ 

  90. Ojea-JimĆ©nez I, Puntes V (2009) Instability of cationic gold nanoparticles bioconjugates: the role of citrate ions. J Am Chem Soc 131:13320ā€“13327

    Google ScholarĀ 

  91. Xia H, Bai S, Hartmann J, Wang D (2010) Synthesis of monodisperse quasi-spherical gold nanoparticles in water via silver(I)-assisted citrate reduction. Langmuir 26:3585ā€“3589

    CASĀ  Google ScholarĀ 

  92. Li H, Xia H, Wang D, Tao X (2013) Simple synthesis of monodisperse quasi-spherical, citrate stabilized silver nanocrystals in water. Langmuir 29:5074ā€“5079

    CASĀ  Google ScholarĀ 

  93. Gajbhiye NS, Prasad S (1996) Thermal decomposition of hexahydrated nickel iron citrate. Thermochim Acta 285:325ā€“336

    CASĀ  Google ScholarĀ 

  94. Hennings D, Mayr W (1978) Thermal decomposition of (BaTi) citrates into barium titanate. J Solid State Chem 26:329ā€“338

    CASĀ  Google ScholarĀ 

  95. Tsay J, Fang T (1999) Effects of molar ratio of citric acid to cations and of pH value on the formation and thermal decomposition behavior of barium titanium citrate. J Amer Ceramic Soc 82:1409ā€“1415

    CASĀ  Google ScholarĀ 

  96. Sankaranarayanan VK, Gajbhiye NS (1989) Thermal decomposition of dysprosium iron citrate. Thermochim Acta 153:337ā€“348

    CASĀ  Google ScholarĀ 

  97. Sankaranarayanan VK, Gajbhiye NS (1990) Low-temperature preparation of ultrafine rare-earth iron garnets. J Amer Ceram Soc 73:1301ā€“1307

    CASĀ  Google ScholarĀ 

  98. Chen R, So MH, Che CM, Sun H (2005) Controlled synthesis of high crystalline bismuth sulfide nanarods: using bismuth citrate as a precursor. J Mater Chem 15:4540ā€“4545

    CASĀ  Google ScholarĀ 

  99. Prasad S, Vijayalakshmi A, Gujbhiye NS (1998) Synthesis of ultrafine cobalt-ferrite by thermal decomposition of citrate precursor. J Therm Anal Calorim 52:595ā€“607

    CASĀ  Google ScholarĀ 

  100. Randhawa BS, Dosanjh HS, Kaur M (2009) Preparation of spinel ferrites from citrate precursor route. A comparative study. Ceram Int 35:1045ā€“1049

    CASĀ  Google ScholarĀ 

  101. Devi PS, Rao MS (1989) Rare-earth chromium citrates as precursors for rare-earth chromities: lanthanum biscitrato chromium(III) dihydrate, La[Cr(C6H5O7)2]Ā·2H2O. Thermochim Acta 153:181ā€“191

    CASĀ  Google ScholarĀ 

  102. MasÄŗowska J (1984) Thermal decomposition and thermofracto-chromatographic studies of metal citrates. J Therm Anal 29:895ā€“904

    Google ScholarĀ 

  103. Srivastava A, Singh P, Gunjikar VG, Jose CJ (1984) Thermal decomposition of barium citrate. Thermochim Acta 76:249ā€“254

    CASĀ  Google ScholarĀ 

  104. Srivastava A, Singh P, Gunjikar VG, Sinha APB (1985) Study of the thermal decomposition of iron and barium citrates. Thermochim Acta 86:77ā€“84

    CASĀ  Google ScholarĀ 

  105. Srivastava A, Gunjikar VG, Sinha APB (1987) Thermoanalytical studies of zinc citrate, bismuth citrate and calcium citrate. Thermochim Acta 117:201ā€“217

    CASĀ  Google ScholarĀ 

  106. Mansour AAA (1994) Thermal decomposition of magnesium citrate 14 hydrate. Thermochim Acta 233:231ā€“242

    CASĀ  Google ScholarĀ 

  107. Mansour AAA (1994) Thermal decomposition of calcium citrate tetrahydrate. Thermochim Acta 233:243ā€“256

    CASĀ  Google ScholarĀ 

  108. Mansour AAA (1994) Thermal decomposition of anhydrous bismuth citrate. Thermochim Acta 233:257ā€“268

    CASĀ  Google ScholarĀ 

  109. TabĆ³n-Zapata GE, Ferrer EG, Etcheverry SB, Baran EJ (2000) Thermal behaviour of pharmacologically active lithium compounds. J Therm Anal Calorim 61:29ā€“35

    Google ScholarĀ 

  110. Duval C (1962) Sur la stabilitĆ© thermique des Ć©talons analytiques. Microchim Acta 50(1):268ā€“274

    Google ScholarĀ 

  111. Szynkaruk P, WesoÄŗowski. M, Samson-Rosa U (2010) Principal component analysis of thermal decomposition of magnesium salts used as drugs. J Therm Anal Calorim 101:505ā€“512

    CASĀ  Google ScholarĀ 

  112. Radecki A, WesoÄŗowski M (1976) The thermal decomposition of bismuth(III) compounds used in medicine. Thermochim Acta 17:217ā€“229

    CASĀ  Google ScholarĀ 

  113. Charles J, Kopf PW, Toby S (1966) The reaction of pyrophosphoric lead with oxygen. J Phys Chem 70:1478ā€“1482

    CASĀ  Google ScholarĀ 

  114. Brown ME (1973) Thermal decomposition of lead citrate. J Chem Soc Faraday Trans I 69:1202ā€“1212

    CASĀ  Google ScholarĀ 

  115. Bassi PS, Randhawa BS, Janwal HS (1984) Mƶssbauer study of the thermal decomposition of iron(III) citrate pentahydrate. J Therm Anal 29:439ā€“444

    CASĀ  Google ScholarĀ 

  116. Devi PS, Rao MS (1992) Study of the thermal decomposition of lanthanum and chromium citrate hydrates. J Anal Appl Pyrolysis 22:187ā€“195

    CASĀ  Google ScholarĀ 

  117. Erdey L, GĆ”l S, Liptay G (1964) Thermoanalytical properties of analytical grade reagents. Ammonium salts. Talanta 11:913ā€“940

    CASĀ  Google ScholarĀ 

  118. MasÄŗowska J, Bielawski M, Baranowska A (1985) Thermoanalytical investigation of citric acid and complexe salts of transition metals with citric acid. Thermochim Acta 92:235ā€“239

    Google ScholarĀ 

  119. Wu S, Chang Z, Wang K, Xiong W (1995) Preparation and thermal behaviour of rare earth citrate hydrates. J Therm Anal 45:199ā€“206

    CASĀ  Google ScholarĀ 

  120. da Silva MFP, Matos JR, Isolani PC (2008) Synthesis characterization and thermal analysis of 1:1 and 2:3 lanthanide(II) citrates. J Therm Anal Calorim 94:305ā€“311

    CASĀ  Google ScholarĀ 

  121. Popa M, Kakihana M (2001) Synthesis and thermoanalytical investigation of an amorphous praseodymium citrate. J Therm Anal Calorim 65:281ā€“293

    CASĀ  Google ScholarĀ 

  122. Chatterjee KP, Dhar NR (1924) Studies of sparingly soluble salts, readily obtained from hot solutions of reacting substances. J Phys Chem 28:1009ā€“1028

    CASĀ  Google ScholarĀ 

  123. Shear MJ, Kramer B (1928) Composition of bone. V. Some properties of calcium citrate. J Biol Chem 79:161ā€“175

    CASĀ  Google ScholarĀ 

  124. Hastings AB, McLean FC, Eichelberger L, Hall JL, Da Costa E (1934) The ionization of calcium, magnesium and strontium citrates. J Biol Chem 107:351ā€“370

    CASĀ  Google ScholarĀ 

  125. Joseph NR (1946) The dissociation constants of organic calcium complexes. J Biol Chem 164:529ā€“541

    CASĀ  Google ScholarĀ 

  126. Boulet M, Marier JR (1960) Solubility of tricalcium citrate in solutions of variable ionic strength and milk ultrafiltrates. J Diary Sci 43:155ā€“164

    CASĀ  Google ScholarĀ 

  127. Meyer JL (1974) Formation constants for interaction of citrate with calcium and magnesium ions. Anal Biochem 62:295ā€“300

    CASĀ  Google ScholarĀ 

  128. Singh RP, Yeboah YD, Pambid ER, Debayle P (1991) Stability constant of the calcium-citrate(3āˆ’) ion pair complex. J Chem Eng Data 35:52ā€“54

    Google ScholarĀ 

  129. Apelblat A (1993) Solubilities of organic salts of magnesium, calcium, and iron in water. J Chem Thermodyn 25:1443ā€“1445

    CASĀ  Google ScholarĀ 

  130. Ciavatta L, De Tommaso G, Iuliano M (2001) The solubility of calcium citrate hydrate in sodium perchlorate solutions. Anal Lett 34:1053ā€“1062

    CASĀ  Google ScholarĀ 

  131. Gao J, Xie C, Wang Y, Xu Z, Hao H (2012) Solubility data of trisodium citrate hydrates in aqueous solution and crystal-solution interfacial energy of the pentahydrate. Cryst Res Technol 47:399ā€“403

    Google ScholarĀ 

  132. Van Auken TV (1991) Solubility and heat of solution of potassium dihydrogen citrate. J Chem Eng Data 36:255ā€“257

    CASĀ  Google ScholarĀ 

  133. Linke WF (1965) Solubilities. Inorganic and Metal-Organic Compounds. volĀ 2, 4thĀ edn. American Chemical Society, Washington, pĀ 51

    Google ScholarĀ 

  134. Shear MJ, Kramer B, Resnikoff L (1929) Composition of bone. VIII. Conductivity titrations of calcium ion with chloride, acetate, lactate and citrate ions at 38Ā°. J Biol Chem 83:729ā€“735

    Google ScholarĀ 

  135. Wiley WJ (1930) XCIV. The dissociation of calcium citrate. J Biochem 24:856ā€“859

    CASĀ  Google ScholarĀ 

  136. Muus J, Lebel H (1936) On complex calcium citrate. Del Kgl Danske Videnskabernes Selskab (Mat Phys) 13:1ā€“17

    Google ScholarĀ 

  137. Al-Khaldi MH, Nasr-El-Din AD, Mehta S, Al-Aamri AD (2007) Reaction of citric acid with calcite. Chem Eng Sci 62:5880ā€“5896

    CASĀ  Google ScholarĀ 

  138. Bolton S (1960) The interaction of citrate with aspirin and benzoic acid. J Am Pharm Assoc 49:237ā€“242

    CASĀ  Google ScholarĀ 

  139. Skornik NA, Serebrennikov VV (1963) Solubility of La, Pr, Sm, Gd, Yb, and Y citrates. Trudy Tomskogo Gos Univ Ser Khim 157:198ā€“201

    Google ScholarĀ 

  140. Skornik NA, Serebrennikov VV (1963) Solubility of lanthanum, gadolinium and yttrium citrates in solutions of alkali metal and group II metal citrates. Trudy Tomskogo Gos Univ Ser Khim 157:307ā€“310

    Google ScholarĀ 

  141. Skornik NA, Serebrennikov VV (1965) Dependence of solubility of citrates of some rare earth elements on the pH of the medium. Zhurn Neorg Khim 10:407ā€“409

    Google ScholarĀ 

  142. Skorik NA, Kumok VN, Perov EI, Avgustan KP, Serebrennikov VV (1965) Complexes of rare earth citrates in acid solutions. Zhurn Neorg Khim 10:653ā€“656

    CASĀ  Google ScholarĀ 

  143. Skornik NA, Serebrennikov VV (1966) Rare earth element citrates in aqueous solutions. Zhurn Neorg Khim 11:764ā€“765

    Google ScholarĀ 

  144. Skorik NA, Kumok VN, Serebrennikov VV (1967) Thorium citrate. Radiokhimiya 9:515ā€“517

    CASĀ  Google ScholarĀ 

  145. Skornik NA, Serebrennikov VV (1968) Rare-earth element hydroxycitrate complexes. Trudy Tomskogo Gos Univ Ser Khim 192:37ā€“39

    Google ScholarĀ 

  146. Skorik NA, Kumok VN (1969) Solubility products of some metal citrates. Zhurn Neorg Khim 14:98ā€“101

    CASĀ  Google ScholarĀ 

  147. Williamson AT (1944) The exact calculation of heats of solution from solubility data. Trans Faraday Soc 40:421ā€“436

    CASĀ  Google ScholarĀ 

  148. Apelblat A (1994) Enthalpies of solution of citrates and hydrogen citrates of lithium, sodium, and potassium. J Chem Thermodyn 26:49ā€“51

    CASĀ  Google ScholarĀ 

  149. Apelblat A, Manzurola E (2003) Cryoscopic studies of aqueous solutions of tartaric acid, sodium hydrogen tartrate, potassium tartrate, sodium dihydrogen citrate, potassium dihydrogen citrate, disodium hydrogen citrate, sodium citrate and potassium citrate. J Chem Thermodyn 35:1225ā€“1236

    CASĀ  Google ScholarĀ 

  150. Fricke R, SchĆ¼tzdeller H (1924) Investigations of hydrates in aqueous solution-citrate, d-tartrate, acetate and oxalate. Z Anorg Allg Chemie 136:295ā€“304

    CASĀ  Google ScholarĀ 

  151. Robinson RA, Stokes RH (1965) Electrolyte Solutions. 2nd. revised. edn. Butterworths, London

    Google ScholarĀ 

  152. Manzurola E, Apelblat A (2003) Vapour pressure of water over saturated solutions of tartaric acid, sodium hydrogen tartrate, sodium tartrate, potassium tartrate, calcium tartrate, barium tartrate, citric acid, disodium hydrogen citrate, sodium citrate, and potassium citrate at temperatures from 277 to 317Ā K. J Chem Thermodyn 35:251ā€“260

    CASĀ  Google ScholarĀ 

  153. Saul A, Wagner W (1987) International equations for the saturation properties of ordinary water substance. J Phys Chem Ref Data 16:893ā€“901

    CASĀ  Google ScholarĀ 

  154. Martinez dela Cuesta PJ, Rodrigez Maroto JM, Wucherpfennig AT (1986) Determinacion de datos para el diseno de evaporadores. Aplicacion de acidos organicos y sus sales. Parte I. Acido citrico, citrico sodico y citrico potasico. Ing Quim (Madr) 18:219ā€“223

    CASĀ  Google ScholarĀ 

  155. Timmermans J (1960) The Physico-Chemical Constants of Binary Systems. Systems with Metallic Compounds. volĀ 3. Interscience Publishers, Inc., New York, pĀ 462, 606

    Google ScholarĀ 

  156. Sadeghi R, Ziamajidi F (2007) Vapor-liquid equilibria of binary tri-potassium citrate + water and ternary polypropylene oxide 400 + tri-potassium citrate + water systems from isopiestic measurements over a range of temperatures. Fluid Phase Equilib 255:46ā€“54

    CASĀ  Google ScholarĀ 

  157. Sadeghi R (2006) Vapor-liquid equilibrium in aqueous systems containing poly(vinylpyrrolidine) and sodium citrate at different temperatures ā€“ experimental and modeling. Fluid Phase Equilib 249:33ā€“41

    CASĀ  Google ScholarĀ 

  158. Sadeghi R, Goodarzi B (2008) Effect of potassium citrate salts on the vapor-liquid equilibrium properties of aqueous solutions of alanine at different temperatures. Biophys Chem 135:116ā€“124

    CASĀ  Google ScholarĀ 

  159. Sadeghi R, Goodarzi B (2008) Measurement of water activities of alanine + tripotassium citrate + water systems at temperature between 293 and 313 K. Experiment and modeling. Fluid Phase Equilib 267:61ā€“69

    CASĀ  Google ScholarĀ 

  160. Sadeghi R, Golabiazar R, Parsi E (2010) Vapor-liquid equilibria density, and speed of sound of aqueous solutions of sodium dihydrogen citrate and disodium hydrogen citrate. J Chem Eng Data 55:5874ā€“5882

    CASĀ  Google ScholarĀ 

  161. Sadeghi R, Mostafa B, Parsi E, Shahebrahimi Y (2010) Toward an understanding of the salt-out effects in aqueous ionic liquid solutions: vapour-liquid equilibria, liquid-liquid equilibria, volumetric, compressibility, and conductivity behavior. J Phys Chem B 114:16528ā€“16541

    CASĀ  Google ScholarĀ 

  162. Sadeghi R, Gholamireza A (2011) Thermodynamics of the ternary systems: (water + glycine, L-alanine and L-serine + di-ammonium hydrogen from volumetric, compressibility, and (vapour + liquid) equilibria measurements. J Chem Thermodyn 43:200ā€“215

    CASĀ  Google ScholarĀ 

  163. Schunk A, Maurer G (2004) Activity of water in aqueous solutions of sodium citrate and in aqueous solutions of (an investigated salt and citric acid) at 298 15 K. J Chem Eng Data 49:944ā€“949

    CASĀ  Google ScholarĀ 

  164. Salabat A, Shamshiri L, Sahrakar F (2005) Thermodynamic and transport properties of aqueous trisodium citrate system at 298 15 K. J Mol Liq 118:67ā€“70

    CASĀ  Google ScholarĀ 

  165. Kazemi S, Zafarami-Moatter MT, Taghikhami V, Ghotbi C (2007) Measurement and correlation of vapor-liquid equilibria of the aqueous poly(ethylene glycol) + sodium citrate and poly(ethylene glycol) + potassium citrate systems. Fluid Phase Equilib 262:137ā€“148

    CASĀ  Google ScholarĀ 

  166. Clarke ECW, Glew DN (1985) Evaluation of the thermodynamic functions for aqueous sodium chloride from equilibrium and calorimetric measurements below 154ā€‰Ā°C. J Phys Chem Ref Data 14:489ā€“610

    CASĀ  Google ScholarĀ 

  167. Pitzer KS (1979) Theory: ion interaction approach. In: Pytkowicz RM (ed) Activity Coefficients in Electrolyte Solutions, volĀ 1. CRC, Inc., Boca Raton, ppĀ 157ā€“208

    Google ScholarĀ 

  168. Halasey SME (1941) Partial molal volumes of potassium salts of the Hofmeister series. J Phys Chem 45:1252ā€“1263

    CASĀ  Google ScholarĀ 

  169. Dhake KP, Padmini ARKL (1970) Ultrasonic parameters and hydration numbers in aqueous solutions of electrolytes. Indian J Pure Appl Phys 8:311ā€“315

    CASĀ  Google ScholarĀ 

  170. Apelblat A, Manzurola E (1990) Apparent volumes of organic acids and salts in water at 298 15Ā K. Fluid Phase Equilib 60:157ā€“171

    CASĀ  Google ScholarĀ 

  171. Sadeghi R, Ziamajidi (2007) Apparent molar volume and isentropic compressibility of trisodium citrate in water and in aqueous solutions polyvinylpyrrolidone at Tā€‰=ā€‰(283.15 to 308.15)Ā K. J Chem Eng Data 52:1037ā€“1044

    Google ScholarĀ 

  172. Sadeghi R, Ziamajidi F (2007) Thermodynamic properties of tripotassium citrate in water and in aqueous solutions of polypropylene oxide 400 over a range of temperatures. J Chem Eng Data 52:1753ā€“1759

    CASĀ  Google ScholarĀ 

  173. Sadeghi R, Goodarzi B (2008) Apparent molar volumes and isentropic compressibilities of transfer of L-alanine from water to aqueous potassium di-hydrogen citrate and tri-citrate at Tā€‰=ā€‰283 15 to 308 15)Ā K. J Mol Liq 141:62ā€“68

    CASĀ  Google ScholarĀ 

  174. Sadeghi R, Goodarzi B (2008) Volumetric properties of potassium dihydrogen citrate and tripotassium citrate in water and aqueous solutions of alanine at T =ā€‰(283.15 to 308.15)Ā K. J Chem Eng Data 53:26ā€“35

    CASĀ  Google ScholarĀ 

  175. Sadeghi R, Goodarzi B, Karami K (2009) Effect of potassium citrate salts on the transport behavior of L-alanine in aqueous solutions at Tā€‰=ā€‰(293.15 to 308.15)Ā K. J Chem Eng Data 54:791ā€“794

    CASĀ  Google ScholarĀ 

  176. Regupathi I, Govindarajan R, Amaresh SP, Murugesan T (2009) Densities and viscosities of polyethylene glycol 6000+ triammonium citrate + water systems. J Chem Eng Data 54:3291ā€“3295

    CASĀ  Google ScholarĀ 

  177. Sadeghi R, Golabiazar R, Shekaari H (2010) Effect of simple electrolytes on the thermodynamic properties of room temperature ionic liquids in aqueous solutions. Fluid Phase Equilib 298:231ā€“239

    CASĀ  Google ScholarĀ 

  178. Zafarami-Moattar MT, Izadi F (2011) Effect of KCl on the volumetric and transport properties of aqueous tri-potassium citrate solutions at different temperatures. J Chem Thermodyn 43:552ā€“561

    Google ScholarĀ 

  179. Zafarami-Moatter MT, Izadi F (2011) Effect of temperature and concentration of KBr or KNO3 on the volumetric and transport properties of aqueous solutions of tripotassium citrate. J Chem Eng Data 56:2818ā€“2829

    Google ScholarĀ 

  180. Lu JG, Hua AC, Xu ZW, Fan F, Cheng L, Lin F (2012) Measurement and prediction of densities, viscosities, and surface tensions for aqueous solutions of potassium citrate. Fluid Phase Equil 327:9ā€“13

    CASĀ  Google ScholarĀ 

  181. Kalaivani S, Srikanth CK, Regupathi I (2012) Densities and viscosities of binary and ternary mixtures and aqueous two-phase system of ply(ethylene glycol) 2000 + diammonium hydrogen citrate + water at different temperatures. J Chem Eng Data 57:2528ā€“2534

    CASĀ  Google ScholarĀ 

  182. Kumar H, Kaur K, Kaur SP, Singla M (2013) Studies of volumetric and acoustic properties of trisodium citrate and tripotassium citrate in aqueous solutions of N-acetyl glycine at different temperatures. J Chem Thermodyn 59:173ā€“181

    CASĀ  Google ScholarĀ 

  183. Govindarajan R, Diviya K, Perumalsamy M (2013) Phase behavior and density of binary and ternary solutions of PEG 4000 + triammonium citrate + water aqueous two phase systems at different temperatures. J Chem Eng Data 58:315ā€“321

    CASĀ  Google ScholarĀ 

  184. Patterson BA, Wooley EM (2001) Thermodynamics of proton dissociation from aqueous citric acid: apparent molar volumes and apparent heat capacities of citric acid and its sodium salts at the pressure of 0.35 MPa and at temperatures from 278.15 to 393.15Ā K. J Chem Thermodyn 33:1735ā€“1764

    CASĀ  Google ScholarĀ 

  185. Sadeghi R, Ziamajidi F (2007) Volumetric and isentropic compressibility behaviour of aqueous solutions of (polyvinylpyrrolidone + sodium citrate) at Tā€‰=ā€‰(283.15 to 308.15)Ā K. J Chem Thermodyn 39:1118ā€“1124

    CASĀ  Google ScholarĀ 

  186. Kumar H, Singla M, Jindal R (2014) Volumetric properties of glycine, L-alanine and L-valine in aqueous solutions of triammonium citrate at different temperatures. Monatsh Chem 145:565ā€“575

    CASĀ  Google ScholarĀ 

  187. Sadeghi R, Ziamajidi F (2007) Effect of aqueous solution of tri-potassium citrate on the volumetric behaviour of poly(propylene glycol) 400 at T ā€“ (288.15 to 313.15)Ā K. J Chem Eng Data 52:1268ā€“1272

    CASĀ  Google ScholarĀ 

  188. Kumar H, Singla M, Jindal R (2013) Interactions of glycine, L-alanine and L-valine with aqueous solutions of trisodium citrate at different temperatures: A volumetric and acoustic approach. J Chem Thermodyn 67:170ā€“180

    CASĀ  Google ScholarĀ 

  189. Millero FJ (1972) The partial molal volumes of electrolytes in aqueous solutions. In: Horne RA (ed) Water and Aqueous Solutions. Structure, Thermodynamics and Transport Processes. Wiley, New York, ppĀ 519ā€“595

    Google ScholarĀ 

  190. Hepler LG (1969) Thermal expansion and structure in water and aqueous solutions. Can J Chem 47:4613ā€“4616

    CASĀ  Google ScholarĀ 

  191. Apelblat A, Manzurola(1999) Volumetric properties of water, and solutions of sodium chloride and potassium chloride at temperatures Tā€‰=ā€‰277 15Ā K to Tā€‰=ā€‰343 15Ā K at molalities of (0 1, 0 5, and 1 0) molĀ kgāˆ’1. J Chem Thermodyn 31:869ā€“893

    CASĀ  Google ScholarĀ 

  192. Rao MR (1940) Relation between velocity of sound in liquids and molecule volume. Indian J Phys 14:109ā€“116

    CASĀ  Google ScholarĀ 

  193. Rao MR (1941) The adiabatic compressibility of liquids. J Chem Phys 14:699

    Google ScholarĀ 

  194. Passynski A (1940) Compressibility and salvation of solution of electrolytes. Acta Physicochim USSR 8:358ā€“418

    Google ScholarĀ 

  195. Barradas RG, Donaldson GJ, Shoesmith DW (1973) Double layer studies of aqueous sodium citrate solution at the mercury electrode. J Electroanal Chem 41:243ā€“258

    CASĀ  Google ScholarĀ 

  196. McDonald DM, Hsu HW (1972) Transport phenomena in zonal centrifuge rotors. VI. Concentration-dependent diffusivities of potassium citrate and potassium tartrate in aqueous solutions. Separ Sci 7:491ā€“503

    CASĀ  Google ScholarĀ 

  197. Jenkins HDB, Marcus Y (1995) Viscosity B-coefficients of ions in solution. Chem Rev 95:2695ā€“2724

    CASĀ  Google ScholarĀ 

  198. Washburn EW (ed) (1926) International Critical Tables of Numerical Data Physics, Chemistry and Technology, volĀ V. McGraw-Hill, New York, pĀ 150

    Google ScholarĀ 

  199. Sadeghi R, Golabiazar R, Shekaari H (2010) The salting effect and phase separation in aqueous solutions of tri-sodium citrate and 1-butylāˆ’3-methylimidazolium bromide. J Chem Thermodyn 42:441ā€“453

    CASĀ  Google ScholarĀ 

  200. Livingston J, Morgan R, McKirahan WW (1913) The weight of falling drop and the laws of Tate. XIV. The drop weights of aqueous solutions of the salts of organic acids. J Am Chem Soc 35:1759ā€“1761

    Google ScholarĀ 

  201. Bhat JI, Manjunatha MN (1998) Transport behaviour of sodium, potassium and ammonium citrate in water and water ā€“ DMF as a function of temperature. Proc Natl Acad Sci India 68:29ā€“40

    CASĀ  Google ScholarĀ 

  202. Greve A, Kula MR (1991) Phase diagrams of new aqueous phase systems composed of aliphatic alcohol, salts and water. Fluid Phase Equil 62:53ā€“63

    CASĀ  Google ScholarĀ 

  203. Zafarami-Moattar MT, Banisaeid S, Shamsi Beirami MA (2005) Phase diagrams of some aliphatic alcohols + potassium or sodium + water at 25ā€‰Ā°C. J Chem Eng Data 50:1409ā€“1413

    Google ScholarĀ 

  204. Katayama H, Sugahara K (2008) Liquid-liquid phase equilibria in the system ethanol(1)ā€‰+ā€‰water(2)ā€‰+ā€‰tripotassium citrate(3). J Chem Eng Data 53:1940ā€“1943

    CASĀ  Google ScholarĀ 

  205. Wang Y, Hu S, Han J, Yan Y (2010) Measurement and correlation of phase diagram data for several hydrophilic alcohol + citrate two phase systems at 298.15Ā K. J Chem Eng Data 55:4574ā€“4579

    CASĀ  Google ScholarĀ 

  206. Wang Y, Mao Y, Han J, Liu Y, Yan Y (2010) Liquid-liquid equilibrium of potassium phosphate/potassium citrate/sodium citrate + ethanol aqueous two-phase systems at (298.15 and 313.15)Ā K and correlation. J Chem Eng Data 55:5621ā€“5626

    CASĀ  Google ScholarĀ 

  207. Nemati-Kande E, Shekaari H (2012) Liquid-liquid equilibria in some aliphatic alcohols + disodium hydrogen citrate + water ternary systems. J Solut Chem 41:1649ā€“1663

    CASĀ  Google ScholarĀ 

  208. Nemati-Kande E, Shekaari H, Zofarami-Moattar MT (2012) Binodal curves and tie-lines inaliphatic alcohols + diammonium hydrogen citrate + water systems: measurement and modeling. J Chem Eng Data 57:1678ā€“1688

    CASĀ  Google ScholarĀ 

  209. Zafarami-Moattar MT, Jafari P (2013) The effect of temperature on the liquid-liquid equilibria of some aliphatic alcohols + di-sodium hydrogen citrate + water systems: experimental and correlation. Fluid Phase Equil 353:50ā€“60

    Google ScholarĀ 

  210. Zafarami-Moattar MT, Hamidi AA (2003) Liquid-liquid equilibria of aqueous two-phase poly(propylene glycol) ā€“ potassium citrate system. J Chem Eng Data 48:262ā€“265

    Google ScholarĀ 

  211. Zafarani-Moattar MT, Sadeghi R, Hamidi AA (2004) Liquid-liquid equilibria of an aqueous two-phase system containing polyethylene glycol and sodium citrate: experiment and correlation. Fluid Phase Equil 219:149ā€“155

    CASĀ  Google ScholarĀ 

  212. Murugesan T, Perumalsamy M (2005) Liquid-liquid equilibrium of poly(ethylene glycol) 2000 + sodium citrate + water at (25, 30, 35, 40, and 45)ā€‰Ā°C. J Chem Eng Data 50:1392ā€“1395

    CASĀ  Google ScholarĀ 

  213. Tubio G, Pellegrini L, Nerli BB, Pico GA (2006) Liquid-liquid equilibria of aqueous two-phase systems containing poly(ethylene glycols) of different molecular weight and sodium citrate. J Chem Eng Data 51:209ā€“212

    CASĀ  Google ScholarĀ 

  214. Perumalsamy M, Murugesan T (2006) Prediction of liquid-liquid equilibria for PEG 2000-sodium citrate based aqueous two-phase systems. Fluid Phase Equil 244:52ā€“61

    CASĀ  Google ScholarĀ 

  215. Perumalsamy M, Bathmalakshmi A, Murugesan T (2007) Experiment and correlation of liquid-liquid equilibria of an aqueous salt + polymer system containing PEG 6000 + sodium citrate. J Chem Eng Data 52:1186ā€“1188

    CASĀ  Google ScholarĀ 

  216. Jayapal M, Regupathi I, Murugesan T (2007) Liquid-liquid equilibrium of poly(ethylene glycol) 2000 + potassium citrate + water at (25, 35, and 45)ā€‰Ā°C. J Chem Eng Data 52:56ā€“59

    CASĀ  Google ScholarĀ 

  217. Zafarami-Moattar MT, Emamian S, Hamzehzadeh S (2008) Effect of temperature on the phase equilibrium of the aqueous two-phase poly(propylene glycol) + tripotassium citrate system. J Chem Eng Data 53:456ā€“461

    Google ScholarĀ 

  218. Oliveira RM, Reis Coimbra JS, Minim LA, Silva LHM, Fontes MPF (2008) Liquid-liquid equilibria of biphasic systems composed of sodium citrate + polyethylene (glycol) 1500 or 4000 at different temperatures. J Chem Eng Data 53:895ā€“899

    Google ScholarĀ 

  219. Alves JGLF, Brenneisen J, Ninni L, Meirelles AJA, Maurer G (2008) Aqueous two-phase systems of poly(ethylene glycol) and sodium citrate: experimental results and modeling. J Chem Eng Data 53:1587ā€“1594

    CASĀ  Google ScholarĀ 

  220. Regupathi I, Murugesan S, Govindarajan R, Amaresh SP, Thanapalan M (2009) Liquid-liquid equilibrium of poly(ethylene glycol) 6000 + triammonium citrate + water at different temperatures. J Chem Eng Data 54:1094ā€“1097

    CASĀ  Google ScholarĀ 

  221. Perumalsamy M, Murugesan T (2009) Phase compositions, molar mass, and temperature effect on densities, viscosities, and liquid-liquid equilibrium of polyethylene glycol and salt ā€“ based aqueous two-phase systems. J Chem Eng Data 54:1359ā€“1366

    CASĀ  Google ScholarĀ 

  222. Regupathi I, Brikanth CK, Sindhu N (2011) Liquid-liquid equilibrium of poly(ethylene glycol) 2000 + diammonium hydrogen citrate + water system at different temperatures. J Chem Eng Data 56:3643ā€“3650

    CASĀ  Google ScholarĀ 

  223. Duraiayya R, Arumugam S, Settu S (2012) Equilibrium phase behavior of poly (ethylene glycol) 4000 and biodegradable salts at various temperatures. J Chem Eng Data 57:1112ā€“1117

    CASĀ  Google ScholarĀ 

  224. Souza Jr EC, Diniz RS, Reis CJS, Oliveira LM, Santos GR, Cruz RAM, Salva LHM (2013) Measurements and modeling of polyethylene glycol 400, sodium phosphate, or sodium citrate aqueous two-phase systems at (298.2, 308.2, and 318.2)Ā K. J Chem Eng Data 58:2008ā€“2017

    Google ScholarĀ 

  225. Govindarajan R, Perumalsamy M (2013) Phase equilibrium of PEG 2000 + triammonium citrate + water system relating PEG molecular weight, cation, anion with effective excluded volume, Gibbs free energy of hydration, size of cation, and type of anion at (298.15, 308.15, and 318.15)Ā K. J Chem Eng Data 58:2952ā€“2958

    CASĀ  Google ScholarĀ 

  226. Nagaraja VH, Iyyaswami R (2013) Phase demixing studies in aqueous two-phase system with polyethylene glycol (PEG) and sodium citrate. Chem Eng Comm 200:1293ā€“1308

    CASĀ  Google ScholarĀ 

  227. Zafarani-Moattar MT, Jafari P (2013) Phase diagrams for liquid-liquid and liquid-solid equilibrium of the ternary polyethylene glycol + di-sodium hydrogen citrate + water system. Fluid Phase Equil 337:224ā€“233

    CASĀ  Google ScholarĀ 

  228. Perumalsamy M, Murugesan T (2014) Liquid-liquid equilibrium of aqueous two-phase system (PEG 2000ā€“sodium citrateā€“water) using potential difference as a key tool. Phys Chem Liq 52:26ā€“36

    CASĀ  Google ScholarĀ 

  229. Pazuki G, Vossoughi M, Taghikhani V (2010) Partitioning of penicillin G acylase in aqueous two-phase systems of poly (ethylene glycol) 20,000 or 35,000 and potassium dihydrogen phosphate or sodium citrate. J Chem Eng Data 55:243ā€“248

    CASĀ  Google ScholarĀ 

  230. Zafarani-Moattar MT, Hamzehzadeh S (2009) Phase diagrams for the aqueous two-phase ternary system containing the ionic liquid 1-butyl-3-methylimidazolium bromide and tri-potassium citrate at ā€‰T = ā€‰(278.15, 298.15, and 318.15)Ā K. Chem J Eng Data 54:833ā€“841

    Google ScholarĀ 

  231. Zafarani-Moattar MT, Hamzehzadeh S (2010) Salting-out effect, preferential exclusion, and phase separation in aqueous solutions of chaotropic water-miscible ionic liquids and kosmotropic salts: effects of temperature, anions, and cations. J Chem Eng Data 55:1598ā€“1610

    CASĀ  Google ScholarĀ 

  232. Han J, Pan R, Xie X, Wang Y, Yan Y, Yin G, Guan G (2010) Liquid-liquid equilibria of ionic liquid 1-butyl-3-methylimidazolium Tetrafluoroborate + sodium and ammonium citrate aqueous two-phase systems at (298 15, 308 15, and 323 15)Ā K. J Chem Eng Data 55:3749ā€“3754

    CASĀ  Google ScholarĀ 

  233. Li YL, Zhang MS, Su H, Liu Q, Guan WS (2013) Liquid-liquid equilibria of aqueous two-phase systems of the ionic liquid brominated N-ethyl pyridine and sodium dihydrogen phosphate, sodium sulfate, ammonium citrate, and potassium tartrate at different temperatures: experimental determination and correlation. Fluid Phase Equil 341:70ā€“78

    CASĀ  Google ScholarĀ 

  234. Porto TS, PessĆ“a-Filho PA, Neto BB, Filho JLL, Converti A, Porto ALF, Pessoa Jr A (2007) Removal of proteases from Clostridium perfringens fermented broth by aqueous two-phase systems (PEG/citrate). J Ind Microbiol Biotechnol 34:547ā€“552

    CASĀ  Google ScholarĀ 

  235. Sadeghi R, Rafiei HR, Motamedi M (2006) Phase equilibrium in aqueous two-phase systems containing poly(vinylpyrrolidone) and sodium citrate at different temperatures ā€“ experimental and modeling. Thermochim Acta 451:163ā€“167

    CASĀ  Google ScholarĀ 

  236. Sadeghi R (2006) Aqueous two-phase systems of poly(vinylpyrrolidone) and potassium citrate at different temperatures ā€“ experimental results and modeling of liquid-liquid equilibrium data. Fluid Phase Equil 246:89ā€“95

    CASĀ  Google ScholarĀ 

  237. da Rocha Patricio P, Mageste AB, de Lemos LR, de Carvalho RMM, da Silva LHM, da Silva MCH (2011) Phase diagram and thermodynamic modeling of PEO + organic salts + H2O and PPO + organic salts + H2O aqueous two-phase systems. Fluid Phase Equil 305:1ā€“8

    Google ScholarĀ 

  238. Virtuoso LS, Vello KASF, de Oliveira AA, Junqueira CM, Mesquita AF, Lemes NHT, de Carvalho RMM, da Silva MCH, da Silva LHM (2012) Measurement and modeling of phase equilibrium in aqueous two-phase systems: L35 + sodium citrate + water, L35 + sodium tartrate + water, and L35 + sodium hydrogen sulfite + water at different temperatures. J Chem Eng Data 57:462ā€“468

    CASĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Apelblat .

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Apelblat, A. (2014). Physicochemical Properties of Inorganic Citrates. In: Citric Acid. Springer, Cham. https://doi.org/10.1007/978-3-319-11233-6_5

Download citation

Publish with us

Policies and ethics