Skip to main content

Citric Acid Chemistry

  • Chapter
  • First Online:
Citric Acid

Abstract

Chapter 4 offers an extensive description of the citric acid chemistry. It includes presentation of total syntheses of citric acid, preparations of labeled citric acid, typical reactions – neutralization, degradation, oxidation, esterification, formation of anhydrides, amides, citrate-based siderophores and other compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grimaux C, Adam P (1880) Synthèse de l’acide citrique. C R Acad Sci 90:1252–1255

    Google Scholar 

  2. Andreoni G (1880) Uberer die Citronensäure. Ber Dtsch Chem Ges 13:1394–1395

    Google Scholar 

  3. Kekulé A (1880) Synthese der Citronensäure. Ber Dtsch Chem Ges 13:1686–1687

    Google Scholar 

  4. Haller A, Held A (1890) Synthèse de l’acide citrique. C R Acad Sci 111:682–685

    Google Scholar 

  5. Favrel G, Prevost C (1931) The constitution of so-called cyanoacetoacetic ester and a disputed synthesis of citric acid. Bull Soc Chim 49:243–261 (France)

    CAS  Google Scholar 

  6. Lawrence WTXLIV (1897) A synthesis of citric acid. J Chem Soc 71:457–459

    CAS  Google Scholar 

  7. Dunschmann M, Pechmann H (1891) Synthesis of citric acid from acetonedicarboxylic acid. Liebig’s Ann Chem 261:162

    Google Scholar 

  8. Ferrario E (1908) A new synthesis of citric acid. Gazz Chim Ital 38:99–100

    CAS  Google Scholar 

  9. Wiley RH, Kim KS (1973) The bimolecular decarboxylative self-condensation of oxaloacetic acid to citroylformic acid and its conversion by oxidative decarboxylation to citric acid. J Org Chem 38:3582–3585

    CAS  Google Scholar 

  10. Wilkes JB, Wall RG (1980) Reaction of dinitrogen tetraoxide with hydrophilic olefins: synthesis of citric acid and 2-hydroxy-2-methylbutanedioic acids. J Org Chem 45:247–250

    CAS  Google Scholar 

  11. Sargsyan MS, Mkrtumyan SA, Gevorkyan AA (1989) Citric acid synthesis. Armyanskii Khim Zh 42:496–505

    Google Scholar 

  12. Stern JR, Ochoa S (1949) Enzymatic synthesis of citric acid by condensation of acetate and oxalacetate. J Biol Chem 179:491–492

    CAS  Google Scholar 

  13. Novelli GD, Lipmann F (1950) The catalytic function of coenzyme A in citric acid synthesis. J Biol Chem 182:213–228

    CAS  Google Scholar 

  14. Stern JR, Ochoa S (1951) Enzymatic synthesis of citric acid: I. Synthesis with soluble enzymes. J Biol Chem 191:161–172

    CAS  Google Scholar 

  15. Ochoa S, Stern JR, Schneider MC (1949) Enzymatic synthesis of citric acid. II. Crystalline condensing enzyme. J Biol Chem 179:491–492

    Google Scholar 

  16. Stern JR, Shapiro B, Stadtman ER, Ochoa S (1951) Enzymatic synthesis of citric acid. III. Reversibility and mechanism. J Biol Chem 193:703–720

    CAS  Google Scholar 

  17. Korkes S, del Campillo A, Gunsalus IC, Ochoa S (1949) Enzymatic synthesis of citric acid. IV. Pyruvate as acetyl donor. J Biol Chem 193:721–735

    Google Scholar 

  18. Stern JR, Ochoa S, Lynen F (1952) Enzymatic synthesis of citric acid. V. Reaction of acetyl coenzyme A. J Biol Chem 198:313–321

    CAS  Google Scholar 

  19. Patel SS, Conlon HD, Walt DR (1980) Enzyme-catalyzed synthesis of L-acetylcarnitine and citric acid using acetyl coenzyme A recycling. J Org Chem 51:2842–2848

    Google Scholar 

  20. Ouyang T, Walt DR, Patel SS (1990) Enzyme-catalyzed synthesis of citric acid using acetyl-coenzyme A recycling in a two-phase system. Bioorg Chem 18:131–135

    CAS  Google Scholar 

  21. Messing W, Schmitz R (1976) The technical production of citric acid on the basis of molasses. ChED Chem Exp Didakt 2:306–316

    Google Scholar 

  22. Lewis KF, Weinhouse S (1951) Studies on the mechanism of citric acid production in Aspergillus niger. J Am Chem Soc 73:2500–2503

    CAS  Google Scholar 

  23. Weinhouse S, Medes G, Floyd NF (1946) Fatty acid metabolism. V. The conversion of fatty acid intermediates to citrate studied with the aid of isotopic carbon. J Biol Chem 166:691–703

    CAS  Google Scholar 

  24. Martin SM, Wilson PW, Burris RH (1950) Citric acid formation from C14O2 by Aspergillus niger. Arch Biochem 26:103–111

    CAS  Google Scholar 

  25. Martin SM, Wilson PW (1951) Uptake by C14O2 by Aspergillus niger. Arch Biochem Biophys 32:150–157

    CAS  Google Scholar 

  26. Carson SF, Mosbach EH, Phares EF (1951) Biosynthesis of citric acid. J Bacteriol 62:235–238

    CAS  Google Scholar 

  27. Mosbach EH, Phares EF, Carson SF (1951) Degradation of isotopically labeled citric, α-ketoglutaric and glutamic acids. Arch Biochem Biophys 33:179–185

    CAS  Google Scholar 

  28. Strouse J (1977) 13C NMR studies of ferrous citrates in acidic and alkaline solutions. Implications concerning the active site of aconitase. J Am Chem Soc 99:572–580

    CAS  Google Scholar 

  29. Henderson TR, Lamond MR (1966) Effects of D2O on citric acid pyruvate carboxylase formation by Aspergillus niger. Arch Biochem Biophys 115:187–191

    CAS  Google Scholar 

  30. Hunter FE, Leloir LF (1945) Citric acid formation from acetoacetic and oxalacetic acids. J Biol Chem 159:295–310

    CAS  Google Scholar 

  31. Lorber V, Utter MF, Rudney. H, Cook M (1950) The enzymatic formation of citric acid studied with C14-labelled oxalacetate. J Biol Chem 185:689–699

    CAS  Google Scholar 

  32. Milewska MJ, Chimiak A (1994) Synthesis of symmetric and asymmetric diamides of citric acid and amino acids. Amino Acids 7:89–96

    CAS  Google Scholar 

  33. Lin Z, Wu M, Schäferling M, Wolfbeis OS (2004) Fluorescent imaging of citrate and other intermediates of the citric acid cycle. Angew Chem 43:1735–1738

    CAS  Google Scholar 

  34. Suelter CH, Arrigton S (1967) Oxygen-18 studies in citrate synthase. Biochim Biophys Acta 141:423–425

    CAS  Google Scholar 

  35. Wilcox PE, Heidelbergen C, Potter VR (1950) Chemical preparation of asymmetrically labeled citric acid. J Am Chem Soc 72:5019–5024

    CAS  Google Scholar 

  36. Rothchild S, Fields M (1952) An improved synthesis of citric acid 1,5-C14. J Am Chem Soc 74:2401

    CAS  Google Scholar 

  37. Buhler DR, Hansen E, Christensen BE Wang CH (1956) The conversion of C14O2 and CH3-C14O-COOH to citric and malic acids in the tomato fruits. Plant Physiol 31:192–195

    CAS  Google Scholar 

  38. Kent SS (1972) Complete stereochemical distribution of 14C-isotope in citrate. Anal Biochem 49:393–406

    CAS  Google Scholar 

  39. Winkel C, Buitenhuis EG, Lugtenburg J (1989) Synthesis and spectroscopic study of 13C-labeled citric acids. Recl Trav Chim Pay-Bas 108:51–56

    CAS  Google Scholar 

  40. Brandänge S, Dahlman O (1983) Synthesis of stereoselectively labelled citric acid transformable into chiral acetic acids. J Chem Soc Chem Commun 1324–1325

    Google Scholar 

  41. Mosbach EH, Phares EF, Carson SF (1952) The role of one-carbon compounds in citric acid biosynthesis. Arch Biochem Biophys 35:435–442

    CAS  Google Scholar 

  42. Lee CR, Pollitt RJ (1977) Simultaneous determination of intermediates of the citric acid cycle by gas chromatography-mass fragmentography using deuterated internal standards. Adv Mass Spectr Biochem Med 2:383–387

    CAS  Google Scholar 

  43. Finch LL, Johnson JE, Moulton GC (1979) An ESR and ENDOR study of citric acid single crystals X-irradiated at 4.2 K. J Chem Phys 70:3662–3668

    CAS  Google Scholar 

  44. Henderson TR, Lamond MR (1966) Effects of D2O on citric acid pyruvate carboxylase formation by Aspergillus niger. Arch Biochem Biophys 115:187–191

    CAS  Google Scholar 

  45. Ogawa E (1936) The exchange reactions between heavy water and hydrogen compounds. Bull Chem Soc Jpn 11:310–320

    CAS  Google Scholar 

  46. Carpenter BS, Samuel D, Wasserman I (1973) Quantitative applications of oxygen-17 tracer. Radiat Eff 19:59

    CAS  Google Scholar 

  47. Houerou G, Kelly SD, Dennis MJ (1999) Determination of the oxygen-18/oxygen-16 isotope ratios of sugar, citric acid and water from single strength orange juice. Rapid Commun Mass Spectrom 13:1257–1262

    CAS  Google Scholar 

  48. Doner LW (1985) Carbon isotope ratios in natural and synthetic citric acid as indicators of lemon juice adulteration. J Agric Food Chem 33:770–772

    CAS  Google Scholar 

  49. Jamin E, Martin F, Santamaria-Fernandez R, Lees M (2005) Detection of exogenous citric acid in fruit juices by stable isotope ratio analysis. J Agric Food Chem 53:5130–5133

    CAS  Google Scholar 

  50. Campi E, Mentasti E (1982) Radiocarbon evaluation of natural/synthetic ratio in citric acid samples. Anal Chim Acta 147:345–351

    Google Scholar 

  51. Cohen E, Saguy I (1984) Measurements of oxygen-18/oxygen-16 stable isotope ratio in citrus juice. A comparison of preparation methods. J Agric Food Chem 32:28–30

    CAS  Google Scholar 

  52. Jamin E, Gonzalez J, Remaud G, Naulet N, Martin GG (1997) Detection of exogenous sugars and organic acids additions in pineapple juices and concentrates by 13C IRMS analysis. J Agric Food Chem 45:3961–3967

    CAS  Google Scholar 

  53. Gonzalez J, Jamin E, Remaud G, Martin YL, Martin GG, Martin ML (1998) Authentication of lemon juice and concentrates by a combined multi-isotope approach using SNIF-NMR & IRMS. J Agric Food Chem 46:2200–2206

    CAS  Google Scholar 

  54. Guillou C, Koziet J, Rossmann A, Martin GG (1999) Determination of the 13C contents of organic acids and sugars in fruit juices: an inter-comparison study. Anal Chim Acta 388:137–143

    CAS  Google Scholar 

  55. Gensler M, Schmidt HL (1994) Isolation of the main organic acids from fruit juices and nectars for carbon isotope ratio measurements. Anal Chim Acta 299:231–237

    CAS  Google Scholar 

  56. Fittig R, Landolt A (1877) The contribution to the knowledge of the syntheses products from ita-, citra-, and mesaconic acid. Liebig’s Ann Chem 188:71–104

    Google Scholar 

  57. Anschütz R (1880) Decomposition of citric acid by distillation. Ber Dtsch Chem Ges 13:1541–1543

    Google Scholar 

  58. Shriner RL, Ford SG, Roll LJ (1931) Itaconic anhydride and itaconic acid. Org Synth 11:70–72

    CAS  Google Scholar 

  59. Linstead RP, Mann JTW XCIX (1931) Investigations of the olefinic acids. Part IV. The two types of tautomerism of itaconic acids and the connexion between configurational and tautomeric changes in alkali. J Chem Soc 726–740

    Google Scholar 

  60. Duval C, Wadier C, Servigne Y (1955) Sur la stabilité thermique des etalons analytiques. II. Anal Chim Acta 13:427–430

    Google Scholar 

  61. Umbdenstok RR, Bruins PF (1945) Aconitic acid from citric acid by catalytic dehydration. Ind Eng Chem 37:963–967

    Google Scholar 

  62. Wyrzykowski D, Hebanowska E, Nowak-Wick G, Makowski M, Chmurzyński L (2011) Thermal behaviour of citric acid and isomeric acotinic acids. J Therm Anal Calorim 104:731–735

    CAS  Google Scholar 

  63. Askew FA, Tawn ARH (1950) The catalytic pyrolysis of citric acid to itaconic and citraconic acids. J Soc Chem Ind 69:97–99

    CAS  Google Scholar 

  64. Carlsson M, Habenicht C, Kam LC, Antal MJ, Bian N, Cunningham RJ, Jones M Jr (1994) Study of the sequential conversion of citric acid to itaconic to methacrylic acid in near-critical and supercritical water. Ind Eng Chem Res 33:1989–1996

    CAS  Google Scholar 

  65. Nakui H, Okitsu K, Maeda Y Nishimura R (2009) Formation of formic acid, acetic acid and lactic acid from decomposition of citric acid by coal ash particles at room temperature. J Hazard Mater 168:548–550

    CAS  Google Scholar 

  66. Waddell TG, Geevarghese SK, Henderson BS, Pagni RM, Newton JS (1989) Chemical evolution of the citric acid cycle: sunlight and ultraviolet photolysis of cycle intermediates. Orig Life Evol Biosph 19:603–607

    CAS  Google Scholar 

  67. Wendlandt WW, Hoiberg JA (1963) A differential thermal analysis study of some organic acids. Part I. Anal Chim Acta 28:506–511

    CAS  Google Scholar 

  68. Masĺowska J (1984) Thermal decomposition and thermofracto-chromatographic studies of metal citrates. J Therm Anal 29:895–904

    Google Scholar 

  69. Barbooti MM, Al-Sammerrai DA (1986) Thermal decomposition of citric acid. Thermochim Acta 98:119–123

    CAS  Google Scholar 

  70. Heide K, Lehmann T, Utschick H (1989) Thermal behaviour of citric acid. J Therm Anal 35:2481–2490

    CAS  Google Scholar 

  71. Fisher JW, Merwin LH, Nissan RA (1995) NMR investigation of the thermolysis of citric acid. Appl Spectr 49:120–126

    Google Scholar 

  72. Popov A, Micev L (1962) Paper chromatographic detection of some acids formed by thermal decomposition of citric acid. Dokl Bulg Akad Nauk 15:37–40

    CAS  Google Scholar 

  73. Uno T, Nakagawa T, Matsumoto M (1971) Pyrolysis gas chromatography of citric acid and its analytical applications. Bunseki Kagaku 20:1245–1249

    CAS  Google Scholar 

  74. Trask-Morrell BJ, Kottes Andrews BA (1991) Thermoanalytical characteristics of polycarboxylic acids investigated as durable press agents for cotton textiles. J Appl Polym Sci 42:511–521

    CAS  Google Scholar 

  75. Usol’tseva VA, Pobedinskaya AI, Kobenina NM (1970) Thermographic analysis of Krebs tricarboxylic acid cycle intermediates and their systems. Izv Vyss Ucheb Zaved Khimiya Khim Technol 13:507–517

    Google Scholar 

  76. Usol’tseva VA, Kobenina NM, Pobedinskaya AI (1971) Thermographic analysis of intermediates of the Krebs tricarboxylic acid cycle and their systems. 3. Thermographic analysis of the citric acid – succinic acid system. Izv Vyss Ucheb Zaved Khimiya Khim Technol 14:535–537

    Google Scholar 

  77. Usol’tseva VA, Pobedinskaya AI, Kobenina NM (1971) Thermographic analysis of intermediates of the Krebs tricarboxylic acid cycle and their systems. 4. Thermographic analysis of the malic – citric acid system. Izv Vyss Ucheb Zaved Khimiya Khim Technol 14:698–700

    Google Scholar 

  78. Usol’tseva VA, Pobedinskaya AI, Kobenina NM (1972) Thermal analysis of metabolites of the Krebs tricarboxylic acid cycle and their systems. 6. Thermal analysis of the citric acid – cis-aconitic acid and citric acid – α-ketoglutaric acid systems. Izv Vyss Ucheb Zaved Khimiya Khim Technol 15:1824–1827

    Google Scholar 

  79. Winther C (1935) The light sensitivity of several reactions. Z phys Chemie A174:41–48

    CAS  Google Scholar 

  80. Passerini L (1935) The chemical and physical characterization of water crystallization. I. Hydrates containing up to three molecules of water. Gazz Chim Ital 65:502–511

    CAS  Google Scholar 

  81. Edsall JT (1937) Raman spectra of amino acids and related compounds. IV. Ionization of di- and tricarboxylic acids. J Chem Phys 5:508–517

    CAS  Google Scholar 

  82. Canals E, Peyrot P (1938) Raman spectra of some crystalline powders. C R Acad Sci 206:1179–1781

    CAS  Google Scholar 

  83. Parker FS (1958) Infrared spectra of some biochemical substances in water. Appl Spectrosc 12:163–166

    CAS  Google Scholar 

  84. Von Burg K, Delaney P (1962) Photoelectron emission spectroscopy of weak acids and bases and their ions in aqueous solution. Chem Phys Lett 86:528–532

    Google Scholar 

  85. Hanson KR, Rose IA (1963) The absolute stereochemical course of citric acid biosynthesis. Proc Natl Acad Sci U S A 50:981–988

    CAS  Google Scholar 

  86. Corvaja C, Nordio PL, Giacometti G (1966) Free radicals from citric acid. Trans Faraday Soc 62:3400–3402

    CAS  Google Scholar 

  87. Rao KM, Narayanaswany CK (1970) Infrared spectrum of anhydrous citric acid in the solid state. Indian J Phys 44:34–38

    CAS  Google Scholar 

  88. Zeldes H, Livingston R (1971) Paramagnetic resonance study of liquids during photolysis. XI. Citric acid and sodium citrate in aqueous solution. J Am Chem Soc 93:1082–1085

    CAS  Google Scholar 

  89. Finch LL, Johnson JE, Moulton GC (1979) An ESR and ENDOR study of citric acid simple crystals X-irradiated at 4.2 K. J Chem Phys 70:3662–3668

    CAS  Google Scholar 

  90. Glusker JP (1980) Citrate conformation and chelation: enzymatic applications. Acc Chem Res 13:345–352

    CAS  Google Scholar 

  91. Tarakeshwar P, Mangoran S (1994) Ground state vibrations of citric acid and citrate trianion-an initio study. Spectrochim Acta 50A 2327–2343

    CAS  Google Scholar 

  92. De Gelder J, De Gussem K, Vandenabeele P, Moens L (2007) Reference database of Raman spectra of biological molecules. J Raman Spectrosc 38:1133–1147

    CAS  Google Scholar 

  93. Quinci N, Litter MI, Braun AM, Oliveroc E (2008) Vacuum-UV-photolysis of aqueous solutions of citric and gallic acids. J Photochem Photobiol 197:306–312

    Google Scholar 

  94. King MD, Davis EA, Smith TM, Korter TM (2011) Importance of accurate spectral simulations for the analysis of tetrahertz spectra: citric acid. J Phys Chem A115:11039–11044

    Google Scholar 

  95. Russell DB (1965) Electron spin resonance of γ-irradiated sodium citrate pentahydrate and pentadeuterate. J Chem Phys 43:1996–2000

    Google Scholar 

  96. Floate S, Hosseini M, Arshadi MR, Ritson D, Young KL, Nichols RJ (2003) An in-situ infrared spectroscopic study of the adsorption of citrate on Au(III) electrodes. J Electroanal Chem 542:67–74

    CAS  Google Scholar 

  97. Zarkadas GM, Stergiou A, Papanastasiou G (2005) Influence of citric acid on the silver electrodeposition from AgNO3 solutions. Electrochim Acta 50:5022–5031

    CAS  Google Scholar 

  98. Trettenhahn G, Köberl A (2007) Anodic decomposition of citric acid on gold and stainless steel electrodes: an in situ-FTIR-spectroscopic investigation. Electrochim Acta 52:2716–2722

    CAS  Google Scholar 

  99. Li Y, Wang C, Qian Y, Wang Y, Zhang L (2013) Simultaneous removal of chemical oxygen demand, turbidity and hardness from biologically treated citric acid wastewater by electrochemical oxidation. Spt Purif Technol 107:281–288

    CAS  Google Scholar 

  100. Ohyoshi A, Ueno K (1974) Studies on actinide elements. VI. Photochemical reduction of uranyl ion in citric acid. J Inorg Nucl Chem 36:379–384

    CAS  Google Scholar 

  101. Kakihana M, Nagumo T, Okamoto M, Kakihana H (1987) Coordination structures for uranyl carboxylate complexes in aqueous solution studied by IR and 13C NMR spectra. J Phys Chem 91:6128–6136

    CAS  Google Scholar 

  102. Dodge CJ, Francis AJ (1994) Photodegradation of uranium-citrate complex with uranium recovery. Environ Sci Technol 28:1300–1306

    CAS  Google Scholar 

  103. Dodge CJ, Francis AJ (2002) Photodegradation of a ternary iron(III)-uranium(VI)-citric acid complex. Environ Sci Technol 36:2094–2100

    CAS  Google Scholar 

  104. Glikman TS, Kalibababchuk VA, Sosnovskaya VP (1965) Effect of addition of iron salt on the process photolysis and radiolysis of hydroxyl acids. Zh Obshchei Khim 35:1530–1534

    CAS  Google Scholar 

  105. Buchanan DNE (1970) Mössbauer spectroscopy of radiolytic and photolytic effects on ferric citrate. J Inorg Nucl Chem 32:3531–3533

    CAS  Google Scholar 

  106. Arzhankov SI, Poznyak AL, Shagisultanova GA (1972) Spectroscopic investigation of the low temperature photolysis of complexes of trivalent iron with some hydroxyl acids. J Appl Spectrosc 17:109–113

    CAS  Google Scholar 

  107. Arzhankov SI, Poznyak AL (1974) ESR spectra of free radicals formed during low temperature photolysis of complex ions of iron(III)-citric acid. J Appl Spectrosc 21:745–747

    CAS  Google Scholar 

  108. Bassi PS, Randhawa BS, Janwal HS (1984) Mössbauer study of the thermal decomposition of iron(III) citrate pentahydrate. J Therm Anal 29:439–444

    CAS  Google Scholar 

  109. Criquet J, Karpel N, Leitner V (2012) Electron beam irradiation of citric acid aqueous solutions containing persulfate. Spt Purif Technol 88:168–173

    CAS  Google Scholar 

  110. Tuner H, Korkmaz M (2010) Effects of gamma radiation on solid trisodium dehydrate: radical kinetics, radiosensitivity and dosimetry. Radiat Environ Biophys 49:723–729

    CAS  Google Scholar 

  111. Tuner H (2012) Investigation of kinetic and dosimetric features of citric acid using ESR spectroscopy. Appl Magn Reson 43:363–376

    CAS  Google Scholar 

  112. Szyper M, Zuman P (1976) Electronic absorption of carboxylic acids and their anions. Anal Chim Acta 85:357–373

    CAS  Google Scholar 

  113. Smith WG, York JL (1970) Stereochemistry of the citric acid cycle. J Chem Educ 47:588–589

    CAS  Google Scholar 

  114. Loewenstein A, Roberts JD (1960) The ionization of citric acid studied by the nuclear magnetic resonance technique. J Am Chem Soc 82:2705–2710

    CAS  Google Scholar 

  115. Wright LB, Rodger PM, Walsh TR (2013) Aqueous citrate: a first-principles and force-field molecular dynamics study. RSC Adv 3:16399–16409

    CAS  Google Scholar 

  116. Semelová M, Čuba V, John J, Múčka V (2008) Radiolysis of oxalic and citric acid using gamma rays and accelerated electrons. Radiat Phys Chem 77:884–888

    Google Scholar 

  117. Negrón-Mendoza A, Ramos BS (1993) Estudio sobre la radolisis del acido citrico y sus implicaciones en procesos de evolucion quimica. Rev Soc Quim México 37:167–173

    Google Scholar 

  118. Simic M, Neta P, Hayon E (1969) Pulse radiolysis of aliphatic acids in aqueous solution. II. Hydroxy and polycarboxylic acids. J Phys Chem 73:4214–4219

    CAS  Google Scholar 

  119. Toste AP, Polach KJ, White TW (1994) Degradation of citric acid in a simulated, mixed nuclear waste: radiolytic versus chemical forces. Waste Manage 14:27–34

    CAS  Google Scholar 

  120. Gire G (1931) Corrosion of tin plates used in the manufacture of containers for canned food. Ann Falsif Fraudes 24:355–362

    CAS  Google Scholar 

  121. Clark WE, Holt ML (1948) Electrodeposition of cobalt-tungsten alloys from a citrate bath. J Electrochem Soc 94:244–252

    CAS  Google Scholar 

  122. Bryan JM (1950) The corrosion of aluminium and aluminium alloys by citric acid and citric acid-salt solutions. J Sci Food Agric 1:84–87

    CAS  Google Scholar 

  123. Lewandowski T (1952) Factor involved in corrosion of tinned and stainless steel by mild acid solutions used in cleaning dairy equipment. J Dairy Sci 35:449–454

    CAS  Google Scholar 

  124. Buck WR III, Leidheiser H (1957) The corrosion of single crystals and recrystallized single crystals of iron and steel in citric acid. J Electrochem Soc 104:474–481

    CAS  Google Scholar 

  125. Lorking KF, Mayne JEO (1961) The corrosion of aluminium. J Appl Chem 11:170–180

    CAS  Google Scholar 

  126. Buck WR III, Leidheiser H (1961) The effect of metallic cations on the corrosion of iron in boiling acids. J Electrochem Soc 108:203–208

    Google Scholar 

  127. Evans S, Koehler EL (1961) Use of polarization methods in the determination of the rate of corrosion of aluminum alloys in anaerobic media. J Electrochem Soc 108:509–514

    CAS  Google Scholar 

  128. Marinović V, Despić AR (1997) Hydrogen evaluation from solutions of citric acid. J Electroanal Chem 431:127–132

    Google Scholar 

  129. Almeida CMVB, Rabóczkay T, Giannetti BF (1999) Inhibiting effect of citric acid on the pitting corrosion of tin. J Appl Electrochem 29:123–128

    CAS  Google Scholar 

  130. Colucci J, Montalvo V, Hernandez RH, Poullet C (1999) Electrochemical oxidation potential of photocatalyst reducing agents. Electrochim Acta 44:2507–2514

    CAS  Google Scholar 

  131. Chailapakul O, Popa E, Tai H, Sarada BV, Tryk DA, Fujishima A (2000) The electrooxidation of organic acids at boron-doped diamond electrodes. Electrochem Comm 2:422–426

    CAS  Google Scholar 

  132. Šeruga M, Hasenay D (2001) Electrochemical and surface properties of aluminum in citric acid solutions. J Appl Electrochem 31:961–967

    Google Scholar 

  133. Nichols RJ, Burgess I, Young KL, Zamlynny V, Lipkowski J (2004) A quantitative evaluation of the adsorption of citrate on Au(111) using SNIFTIRS. J Electroanal Chem 563:33–39

    CAS  Google Scholar 

  134. O’Laoire C, Timmins B, Kremer L, Holmes JD, Morris MA (2006) Analysis of the acid passivation of stainless steel. Anal Lett 39:2255–2271

    Google Scholar 

  135. Jafarian M, Gobal F, Danaee I, Biabani R, Mahjani MG (2008) Electrochemical studies of the pitting corrosion of tin in citric acid and solution containing Cl. Electrochim Acta 53:4528–4536

    CAS  Google Scholar 

  136. Denigès G (1898) Proof of citric acid in botanical juices, wine and milk. Bull Soc Pharm de Bordx 33:1898

    Google Scholar 

  137. Denigès G (1898) Detection of citric acid in vegetable juices, wine and milk. Rev Chim Appl 7:110–112

    Google Scholar 

  138. Denigès G (1900) Sur la formation spontanée d’oxalate de manganèse cristallisé dans l’oxidation permanganique de l’acide citrique. J Pharm 11:102–104

    Google Scholar 

  139. Denigès G (1900) Over the oxidation of the citric acid and the malic acid with permanganate. C R Acad Sci 130:32–35

    Google Scholar 

  140. Denigès G (1902) Estimation of citric acid in milk. C R Seances Soc Biol 54(9):197–198

    Google Scholar 

  141. Denigès G (1908) The normal citric acid of wine. Ann Chim Appl 13:226

    Google Scholar 

  142. Denigès G (1909) Detection of citric acid in wine. Ann Chim Anal Rev Chim Anal Reunies 13:393–402

    Google Scholar 

  143. Spindler O (1905) New modification of the reaction of Denige’s. Proof of tartaric acid in citric acid. Chem Ztg 28:15–13

    Google Scholar 

  144. Robin L (1904) Recherche et dosage de l’acide citrique dans les vins. Ann Chim Anal 9:453–456

    CAS  Google Scholar 

  145. Wagenaar M (1926) The Deniges reaction for citric acid. Pharm Weekblad 63:1293–1299

    CAS  Google Scholar 

  146. Fresenius W, Grünhut L (1913) Detection of citric acid in wine. Z Anal Chemie 52:31–35

    CAS  Google Scholar 

  147. Desmouliere E (1911) Determination of citric acid in milk. Bull Sci Pharm 17:588–594

    CAS  Google Scholar 

  148. Sabbatani L (1900) Oxidation of citric acid and citrates with potassium permanganate. Atti Accad Sci Torino 35:678–684

    CAS  Google Scholar 

  149. Pozz-Escot E (1946) Réaction pour la recherche de l’acide citrique. Bull Assoc Chem 63:363

    Google Scholar 

  150. Gowing-Scopes L (1913) The estimation of citric acid in the presence of certain other acids. Analyst 38:119–120

    Google Scholar 

  151. Baier E, Neumann PW (1916) Detection of citric acid in wine. Z angew Chemie Scheiz Apoth Ztg 54:195–196

    Google Scholar 

  152. Phipson TL (1862) XXVII – on the transformation of citric, butyric and valerianic acids, with reference to the artificial production of succinic acid. J Chem Soc 15:141–142

    Google Scholar 

  153. Kolthoff IM (1926) Influence of chlorides on the Deniges reaction for citric acid. Pharm Weekblad 63:1453–1455

    CAS  Google Scholar 

  154. Stahr L (1895) A characteristic reaction of citric acid. Nordisk Pharm Tidskrift 2:141

    Google Scholar 

  155. Kunz R (1914) Occurrence and determination of citric acid in wine, milk, marmalade and fruit sirops. Arch Chem Mikros 7:285–299

    CAS  Google Scholar 

  156. Kunz R (1914) Occurrence of citric acid in compressed lees. Arch Chem Mikros 7:299–303

    CAS  Google Scholar 

  157. Kunz R (1915) The determination of citric acid in milk. Arch Chem Mikros 8:129–133

    CAS  Google Scholar 

  158. Cahours A (1847) Relatives a l’action du brome sur les citrates et sur les sels alcalins formés par le acides pyrogénés dérivés de l’acide citrique. Ann Chim Phys 19:484–508

    Google Scholar 

  159. Wohlk A (1902) Action of bromine and potassium permanganate (Stahro’s reaction) and detection of citric acid in milk. Z Anal Chemie 41:77–100

    CAS  Google Scholar 

  160. Yoder PA (1911) Notes on the determination of acids in sugar cane juice. Ind Eng Chem 3:640–646

    CAS  Google Scholar 

  161. Willamann JJ (1916) Modification of the Pratt method for the determination of citric acid. J Am Chem Soc 38:2193–2199

    Google Scholar 

  162. McClure WR (1922) The adaptation of the pentabromoacetone method to the quantitative determination of citric acid in the urine. J Biol Chem 53:357–363

    CAS  Google Scholar 

  163. Hartmann BG, Hilling F (1927) Application of the Stahre reaction for the accurate determination of citric acid. J Assoc Official Agric Chem 10:264–272

    CAS  Google Scholar 

  164. Hartmann BG, Hilling F (1928) Determination of citric acid in fruits and fruit products. J Assoc Off Agric Chem 11:256–257

    Google Scholar 

  165. Hartmann BG, Hilling F (1930) Determination of citric acid in fruits and fruit products. J Assoc Off Agric Chem 13:99–103

    CAS  Google Scholar 

  166. Hartmann BG, Hilling F (1932) Citric acid in milk. J Assoc Off Agric Chem 15:643–645

    CAS  Google Scholar 

  167. Hartmann BG, Hilling F (1934) Acid constituents of food products. Special reference to citric, malic and tartaric acids. J Assoc Off Agric Chem 17:256–257

    Google Scholar 

  168. Elsdon GD, Lees A (1933) Citric acid and its detection. Analyst 58:328–331

    CAS  Google Scholar 

  169. Pucher GW, Vickery HB, Leavenworth CS (1934) Determination of the acids in plant tissue. III. Determination of citric acid. Ind Eng Chem Anal Ed 6:190–192

    CAS  Google Scholar 

  170. Lampitt LH, Rooke HS (1936) Citric acid in milk and its determination. Analyst 61:654–665

    CAS  Google Scholar 

  171. Pesez M (1935) Sur une nouvelle méthode de recherche de l’acide citrique. J Pharm Chimie 22:160–163

    CAS  Google Scholar 

  172. Pucher GW, Sherman CC, Vickery HB (1936) A method to determination of small amounts of citric acid in biological material. J Biol Chem 113:235–245

    CAS  Google Scholar 

  173. Arup PS (1938) citric acid determination in milk and milk products. Analyst 63:635–640

    CAS  Google Scholar 

  174. Reichard O (1936) Determination of citric acid in wine. Z Unters Lebensm 72:50–63

    CAS  Google Scholar 

  175. Taufel K, Schoierer K (1936) Determination of citric acid by conversion into acetone II. Z Unters Lebensm 71:297–310

    CAS  Google Scholar 

  176. Deysher EF, Holm GE (1942) Determination of citric acid. In pure solutions and in milk by pentabromoacetone method. Ind Eng Chem 14:4–7

    CAS  Google Scholar 

  177. Hartmann BG (1943) Determination of the polybacic acid in fruits and fruit products. J Assoc Off Agric Chem 26:522–531

    Google Scholar 

  178. Goldberg AS, Bernheim AR (1944) Citric acid determination. J Biol Chem 156:33–46

    CAS  Google Scholar 

  179. Perlman D, Lardy HA, Johnson MJ (1944) Determination of citric acid in fermentation media and biological materials. Ind Eng Chem 19:515–516

    Google Scholar 

  180. Natelson S, Lugovoy JK, Pincus JB (1947) Determination of micro quantities of citric acid in biological fluids. J Biol Chem 170:597–606

    CAS  Google Scholar 

  181. Breusch FL, Tulus R (1947) Specificity of micromethods for determining citric acid as pentabromoacetone. Biochim Biophys Acta 1:77–82

    CAS  Google Scholar 

  182. Taussky HH, Shorr E (1947) A microcolorimetric method for the determination of citric acid. J Biol Chem 169:103–118

    CAS  Google Scholar 

  183. Wolcott GH, Boyer PD (1948) A colorimetric method for the determination of citric acid in blood and plasma. J Biol Chem 172:729–736

    CAS  Google Scholar 

  184. Hargreaves CA, Abrahams MD, Vickery H (1951) Determination of citric and d-isocitric acids. Anal Chem 23:467–470

    CAS  Google Scholar 

  185. Ettinger RH, Goldbaum LR, Smith LH Jr (1952) A simplified photometric method for the determination of citric acid. J Biol Chem 199:531–536

    CAS  Google Scholar 

  186. Taylor TG (1953) A modified procedure for the microdetermination of citric acid. Biochem J 54:48–49

    CAS  Google Scholar 

  187. Jacobs SL, Lee ND (1964) Determination of citric acid in serum and urine using 82Br. J Nucl Med 5:297–301

    CAS  Google Scholar 

  188. Zhabolovskaya NA, Ageev LM (1967) Quantitative determination of citric acid in industrial solutions. Khlebopekarnaya i Konditers Promyshlennost 11:17–18

    CAS  Google Scholar 

  189. Jones GB (1967) Estimation of microgram quantities of citrate in biological fluids. Anal Biochem 21:286–292

    CAS  Google Scholar 

  190. Zhabolovskaya NA, Ageev LM, Petrova LM (1968) Comparative evaluation of methods for the quantitative determination of citric acid. Khlebopekarnaya i Konditers Promyshlennost 12:22–24

    Google Scholar 

  191. Zhabolovskaya NA (1971) Accuracy of methods for the quantitative determination of citric acid. Khlebopekarnaya i Konditers Promyshlennost 15:23–24

    CAS  Google Scholar 

  192. Zecin J, Walisch S, Kaczmarowicz G (1978) Spectrophotometric method of determination of citric acid in fermentation fluids. Przem Ferment i Owocowo-Warzywny 22:20–22

    CAS  Google Scholar 

  193. Rajagopal G (1984) A simple colorimetric procedure for estimation of citric acid in urine. Indian Exp Biol 22:391–392

    CAS  Google Scholar 

  194. Nordbo R, Scherstern B (1931) Determination of citric acid in blood by Thunberg’s method and by the pentabromoacetone method. Scand Arch Physiol 63:124–132

    CAS  Google Scholar 

  195. Östberg O (1934) Determination of citric acid in blood serum by Thunberg’s method. Scand Arch Physiol 68:265–274

    Google Scholar 

  196. Weil-Malherbe H, Bone AD (1945) The micro-estimation of citric acid. Biochem J 45:377–381

    Google Scholar 

  197. Kuyper AC (1932) The oxidation of citric acid. Proc Iowa Acad Sci 39:175

    CAS  Google Scholar 

  198. Bhale VM, Mohammad S, Bhagwat WV, Bafna SL (1953) Acid permanganate oxidation of citric acid. J Sci Ind Res 12B:521–523

    CAS  Google Scholar 

  199. Bakore GV, Shanker R (1963) Kinetics of the oxidation of hydroxyl carboxylic acid by acid permanganate. Indian J Chem 1:286–288

    CAS  Google Scholar 

  200. Berka A, Barek J, Hladíková A (1979) Analysis of mixture of citric and oxalic acids based on their oxidation with potassium permanganate and manganese(III) sulfate. Microchem J 24:431–434

    CAS  Google Scholar 

  201. Barek J, Berka A, Pokorná A (1979) Oxidation of organic substances with manganese(III). XI. Oxidation of citric acid with manganese(III) sulfate. Coll Czechoslov Chem Comm 44:1134–1145

    CAS  Google Scholar 

  202. Barek J, Berka A, Pokorná A (1979) Oxidation of organic substances with manganese(III). Compounds XII. Oxidation of citric acid hexaaquamanganese(II) ion in a noncomplex perchloric acid medium. Coll Czechoslov Chem Comm 44:2603–2611

    CAS  Google Scholar 

  203. Prasad G (1965) A kinetic study of redox system containing citric acid and manganic acetate. Bull Chem Soc Jpn 38:882–883

    CAS  Google Scholar 

  204. Chattarji K, Gyani B (1959) Oxidation of oxalic and citric acids by dichromate in the presence of manganous sulphate. J Indian Chem Soc 36:605–608

    Google Scholar 

  205. Romani B The determination of citric acid as acetone. Ann Chim Appl 21(931):496–500

    Google Scholar 

  206. Krog PW (1946) Determination of blood serum citric acid as acetone. Acta Physiol Scand 12:141–146

    CAS  Google Scholar 

  207. Wiig EO (1930) Decomposition of citric acid by sulfuric acid. J Am Chem Soc 52:4729–4737

    CAS  Google Scholar 

  208. Pechmann H (1884) Acetodicarboxylic acid. Ber Dtsch Chem Ges 17:2542–2543

    Google Scholar 

  209. Mibauer J (1935) Reactions in concentrated sulfuric acid. II. Influence of gases. Chem Obzor 10:201–204

    Google Scholar 

  210. Bruce WF (1943) Aconitic acid. Org Synth 2:17–18

    Google Scholar 

  211. Willard HH, Young P (1930) Ceric sulfate as a volumetric oxidizing reagent. XI. The oxidation of organic acids. J Am Chem Soc 52:132–142

    CAS  Google Scholar 

  212. Smith GF, Duke FR (1943) Cerate and periodate oxidimetry. Perchlorato-cerate and periodate ions as oxidants in the determination of organic compounds. Ind Eng Chem Anal Ed 15:120–122

    CAS  Google Scholar 

  213. Ajl SJ, Wong DTO, Hersey DF (1952) Manometric estimation of citric acid. J Am Chem Soc 74:553–554

    CAS  Google Scholar 

  214. Mehrotra RN, Ghosh S (1963) Kinetics of oxidation of citric acid by ceric sulfate in aqueous sulfuric acid. Z phys Chemie 224:57–64

    CAS  Google Scholar 

  215. Sen Gupta KK (1964) Oxidation of citric acid in aqueous solution by Ce(IV) ion. J Proc Inst Chem (India) 36:149–151

    CAS  Google Scholar 

  216. Datt N, Nagori RR, Mehrotra RH (1986) Kinetics and mechanisms of oxidation by metal ions. Part VI. Oxidation of α-hydroxy acids by cerium(IV) in aqueous nitric acid. Can J Chem 64:19–23

    CAS  Google Scholar 

  217. Butler K, Steinbock O, Steinbock B, Dalal NS (1998) Carbon dioxide production in the oxidation of organic acids by cerium(IV) under aerobic and anaerobic conditions. Int J Chem Kinet 30:899–902

    Google Scholar 

  218. Maseĺko J, Tĺaczala T, Czerwiński M, Michaĺczyk J, Sikorski Z (1978) Oscillation reactions in the system: metabolites of Krebs cycle Mn2+-KBrO3-H2SO4. Bioinorg Chem 9:529–536

    Google Scholar 

  219. Rastogi RP, Rastogi P, Rai RB (1978) Oscillations of Belousov-Zhabotinskii reagent: cerium and manganese ion catalyzed oxidations of citric acid. Indian J Chem A 16:374–378

    Google Scholar 

  220. Rastogi RP, Rastogi P, Rai RB (1978) Chemical waves in Belousov-Zhabotinskii reagent, citric acid/potassium bromate/manganous sulfate/sulfuric acid. Indian J Chem A 16:379–382

    Google Scholar 

  221. Zueva TS, Sipershtein IN (1980) Study of oscillatory conditions in a citric acid-potassium bromate-cerium(IV)-sulfate system in a sulfuric acid medium. Theor Exp Khim 16:551–554

    CAS  Google Scholar 

  222. Treindl L, Fabian P (1980) Influence of oxygen on the Belousov-Zhabotinskii reaction. Coll Czech Chem Comm 45:1168–1172

    CAS  Google Scholar 

  223. Ścięgosz H, Pokrzywnicki S (1989) The Belousov-Ahabotisky reaction under external periodic influence near the SNIPER bifurcation point. Acta Chem Scand 43:926–931

    Google Scholar 

  224. Ojha A, Bhathena K (1990) Sequential oscillations with entrainment-type behavior in mixed substrate Belousov-Zhabotinskii (B-Z) system. J Indian Chem Soc 67:806–808

    CAS  Google Scholar 

  225. Jayalakshmi V, Ramaswamy R (1995) New experimental findings in a Belousov-Zhabotinsky system with mixed substrate. Chem Phys Lett 247:38–44

    CAS  Google Scholar 

  226. Ram Reddy MK, Rajanna KC, Saiprakash PK (1996) Characteristics and mechanistic details of chemical waves in a new B-Z oscillatory reaction with citric acid, glycolic acid and mixed organic substrates simulated in Teflon reactor. Oxid Comm 19:362–380

    CAS  Google Scholar 

  227. Jayalakshmi V, Ramaswamy R (1997) Influence of working electrodes in Belousov-Zhabotinsky oscillatory system. Can J Chem 75:547–558

    CAS  Google Scholar 

  228. Voskresenskaya OO, Skorik. NA (2009) The kinetics of cerium(IV) sulfate reaction with citrate and the thermodynamic characteristics of formation of intermediate complex. Russ J Phys Chem A83:945–950

    Google Scholar 

  229. Murray JD (1976) On travelling wave solutions in a model for the Belousov-Zhabotinskii reaction. J Theor Biol 56:329–353

    CAS  Google Scholar 

  230. Kalra HL, Ghosh S (1965) Reduction of trivalent manganese by citrate. J Prakt Chemie 30:6–9

    CAS  Google Scholar 

  231. Reddy CS (2007) Homogenous catalysis of manganese(II) in the oxidation of citric acid by acid bromate: a novel behaviour of citric acid. Indian J Chem 46A:407–417

    CAS  Google Scholar 

  232. Sen Gupta KK, Chatterjee AK, Chakladar JK (1972) Kinetics of chromic acid oxidation of α-hydroxyisobutyric, dl-a-phenyllactic and citric acids. Indian J Chem 10:493–495

    CAS  Google Scholar 

  233. Krumpolc M, Bocek J (1976) Stable chromium(V) compounds. J Am Chem Soc 98:872–873

    CAS  Google Scholar 

  234. Alvarez Macho MP, Montequi Martin MI (1987) Oxidacion cromica del acido citrico en medio acido. Anales Quimica Ser A 83:248–250

    CAS  Google Scholar 

  235. Bikaneria SL, HIran BL (2000) Kinetics studies on the effect of Mn(II) on the oxidation of a-hydroxy carboxylic acids by Cr(VI). Asian J Chem 12:825–832

    CAS  Google Scholar 

  236. Kabir-ud-Din, Hartani K, Khan Z (2000) Unusual rate inhibition of manganese(II) assisted oxidation of citric acid by chromium(VI). Trans Met Chem 25:478–484

    Google Scholar 

  237. Khan Z, Akram M, Kabir-ud-Din (2001) A kinetic study of one step three-electron oxidation of citric acid by chromium(VI). Oxid Comm 24:257–267

    CAS  Google Scholar 

  238. Mali M, Khadaskar SN, Patel NT (2004) Kinetics of chromic acid oxidation of citric acid and tartaric acid (in lemon and tamarind, a comparative study) in acetic-water medium. Asian J Chem 16:811–817

    CAS  Google Scholar 

  239. Lan J, Li C, Mao J, Sun J (2008) Influence of clay minerals on the reduction of Cr6+ by citric acid. Chemosphere 71:781–787

    CAS  Google Scholar 

  240. Dzhabarov FZ, Gorbachev SV (1965) Kinetics of the citric acid oxidation by vanadium(V) compounds. Zh Fiz Khim 39:2198–2201

    CAS  Google Scholar 

  241. Mehrotra RN (1968) Kinetic acidity dependence in certain oxidation reactions. Part III. Oxidation of citric acid by quinquevalent vanadium ion. J Chem Soc B Phys Org 1563–1566

    Google Scholar 

  242. Vanni A (1973) Activating effect of polycarboxylic and hydroxyl organic acids in the vanadium(V) catalyzed reaction. Influence of citric, DL-malic, tricarballylic, and succinic acids. Gaz Chim Ital 103:669–679

    CAS  Google Scholar 

  243. Vanni A, Amico P (1975) Catalymetric determination of microamounts of citric acid. Ann Chim Roma 65:347–354

    CAS  Google Scholar 

  244. Yatsmirski KB, Tikhonova LP, Kovalenko AS (1977) Possible use of vanadium(IV) and vanadium(V) ions as a catalyst for the oscillatory Belousov-Zhabotinskii chemical reaction. Theor Exp Khim 19:700–704

    Google Scholar 

  245. Raminelli C, Barreto WJ, Takashima K (2000) Citric acid oxidation by vanadium(V) in sulfuric acid medium: kinetic and mechanistic study. Intern J Kinet 32:566–572

    CAS  Google Scholar 

  246. Ando RA, Raminelli C, Barreto WJ, Takashima K (2003) Oxidation of two α-hydro acids by vanadium(V). Monatsh Chem 134:1321–1331

    CAS  Google Scholar 

  247. Kumar S, Mathur PC (1978) Kinetics and mechanism of oxidation of citric acid by alkaline hexacyanoferrate(III) catalysed by Cu(II) ions. J Inorg Nucl Chem 40:581–584

    CAS  Google Scholar 

  248. Lin LL, Liu GG, Lv WY (2012) Simultaneous oxidation of citric acid and reduction of copper ion by TiO2. Adv Mater Res Durnten-Zürich 485:253–256

    CAS  Google Scholar 

  249. Akbiyik T, Sönmezoĝlu I, Guçlú K, Tor I, Apak R (2012) Protection of ascorbic acid from copper(II)-catalyzed oxidative degradation in the presence of fruit acids: citric, oxalic, tartaric, malic, malonic, and fumaric acids. Int J Food Prop 15:398–411

    CAS  Google Scholar 

  250. Smith TD (1967) Effect of nitrate on the autooxidation of tin(II) in citric acid solutions. Austr J Chem 20:15–19

    CAS  Google Scholar 

  251. Devi P, Sujatha PS, Maiti HS (1994) A modified citrate gel route for the synthesis of phase pure Bi2Si2CaCu2O8 superconductor. J Mater Res 9:1357–1362

    CAS  Google Scholar 

  252. Shaji Kumar MD, Srinivasan TM, Ramasamy P, Subramanian C (1995) Synthesis of lanthanum aluminate by a citrate-combustion route. Mater Lett 25:171–174

    CAS  Google Scholar 

  253. Roy S, Wang L, Sigmund W, Aldinger F (1999) Synthesis of YAG phase by a citrate-nitrate combustion technique. Mater Lett 39:138–141

    CAS  Google Scholar 

  254. Zupan K, Kolar D, Marinsek M (2000) Influence of citrate-nitrate reaction mixture packing on ceramic powder properties. J Power Sour 86:417–422

    CAS  Google Scholar 

  255. Yue Z, Zhou J, Wang X, Gui Z, Li L (2001) Low temperature sintered Mg-Zn-Cu ferrite prepared by auto-combustion of citrate-nitrate gel. J Mater Sci Lett 20:1327–1329

    CAS  Google Scholar 

  256. Du K, Zhang H (2003) Preparation and performance of spinel LiMn2O4 by a citrate route with combustion. J Alloys Comp 352:250–254

    CAS  Google Scholar 

  257. Kazakov AI, Rubtsov YuI, Lempert DB, Manelis GB (2003) Kinetics of oxidation of organic acids by ammonium nitrate. Russ J Appl Chem 76:1214–1220

    CAS  Google Scholar 

  258. Behera SK, Barpanda P, Prathar SK, Bhattacharyya S (2004) Synthesis of magnesium-aluminium spinel from autoignition of citrate-nitrate gel. Mater Lett 58:1451–1455

    CAS  Google Scholar 

  259. Chandradass J, Kim K, Ki H (2004) Effect of activity on the citrate-nitrate combustion synthesis of alumina-zirconia composite powder. Metals Mater Int 15:2039–2043

    Google Scholar 

  260. Purohit RD, Saha S, Tyagi AK (2006) Nanocrystalline ceria powders through citrate-nitrate combustion. J Nanosci Nanotech 6:209–214

    CAS  Google Scholar 

  261. Ataie A, Zojaji SE (2007) Synthesis of barium hexaferrite nanoparticles via a mechano-combustion rroute. J Alloys Comp 431:331–336

    CAS  Google Scholar 

  262. Li J, Pan Y, Qiu F, Guo J (2008) Nanostructured Nd:YAG powders via gel combustion. The influence of citrate to nitrate ratio. Ceram Intern 34:141–149

    CAS  Google Scholar 

  263. Marinsek M, Kemperl J, Likozar B, Macek J (2008) Temperature profile analysis of the citrate-nitrate combustion system. Ind Eng Chem Res 47:4379–4386

    CAS  Google Scholar 

  264. Deganello F, Marci G, Deganello G (2009) Citrate-nitrate auto-combustion synthesis of perovskite-type nanopowders: a systematic approach. J Eur Ceram Soc 29:439–450

    CAS  Google Scholar 

  265. Cuny ML (1926) Dosage iodométrique de quelques acides organiques. J Pharm Chim 3:112–113

    CAS  Google Scholar 

  266. Huebner CF, Ames SR, Bubl E (1946) Periodate oxidation of certain methylene groups. J Am Chem Soc 68:1621–1628

    CAS  Google Scholar 

  267. Courtois J (1949) Oxidation of citric acid with periodic acid. Ann Pharm Francaises 7:77–89

    CAS  Google Scholar 

  268. Qureshi M, Veeraiah K (1946) A note on the reaction between sodium citrate and iodine. Curr Sci 15:132–133

    CAS  Google Scholar 

  269. Gupta YK, Bhargave AP (1965) The oxidation of iodide to iodite and the reduction of iodate to iodite in iodine solutions of permanganate and some of the carboxylic acids. Bull Chem Soc Jpn 38:12–16

    CAS  Google Scholar 

  270. Melangeau P, Rubman A (1968) Oxydation de l’acide citrique par l’acide periodique. Ann Falsif L’Expert Chim 61:283–296

    Google Scholar 

  271. Broeksmit TCN (1904) The iodoform reaction on citric acid. Pharm Weekblad 41:401–404

    CAS  Google Scholar 

  272. Broeksmit TCN (1915) The detection of citric acid. Pharm Weekblad 52:1637

    CAS  Google Scholar 

  273. Broeksmit TCN (1916) Detection of citric acid in foods and medicines. Pharm Weekblad 53:1034–1037

    CAS  Google Scholar 

  274. Broeksmit TCN (1917) Citric and tartaric acids. Pharm Weekblad 54:686–687

    CAS  Google Scholar 

  275. Broeksmit TCN (1917) Malic and citric acids. Pharm Weekblad 54:1371–1373

    CAS  Google Scholar 

  276. Broeksmit TCN (1919) Citric acid in mixtures and combined citric acid. Pharm Weekblad 56:1047–1052

    CAS  Google Scholar 

  277. Broeksmit TCN (1923) Notes on citric acid. Pharm Weekblad 60:626–631

    CAS  Google Scholar 

  278. Dhar N (1917) LXI. Catalysis. Part III. Some induced reactions. J Chem Soc Trans 111:690–706

    CAS  Google Scholar 

  279. Wächtershäuser G (1990) Evolution of the first metabolic cycles. Proc Natl Acad Sci U S A 87:200–204

    Google Scholar 

  280. Cody GD, Boctor NZ, Hazen RM, Brandes JA, Morowitz HJ, Yoder HS Jr (2001) Geochemical roots of autotropic carbon fixation: Hydrothermal experiments in the system citric acid, H2O-(± FeS)-(± NiS). Geochim Cosmochim Acta 65:3557–3576

    CAS  Google Scholar 

  281. Kalapos MP (1997) Possible evolutionary role of methyglyoxalase pathway: anaplerotic route for reductive citric acid cycle of surface metabolists. J Theor Biol 188:201–206

    CAS  Google Scholar 

  282. Kalapos MP (2007) The energetics of the reductive citric acid cycle in the pyrite-pulled surface metabolism in early stage of evalution. J Theor Biol 248:251–258

    CAS  Google Scholar 

  283. Dalla-Betta P, Schulte M (2009) Calculation of the aqueous thermodynamic properties of citric acid cycle intermediates and precursors and the estimation of high temperature and pressure equation of state parameters. Int J Mol Sci 10:2809–2837

    CAS  Google Scholar 

  284. Marakushev SA, Belonogova OV (2009) The parageneses thermodynamic analysis of chemoautotrophic CO2 fixation archaic cycle components, their stability and self-organization in hydrothermal systems. J Theor Biol 257:588–597

    CAS  Google Scholar 

  285. Cooper G, Reed C, Nguyen D, Carter M, Wang Y (2011) Detection and formation scenario of citric acid, pyruvic acid, and other possible metabolism precursors in carbonaceous meteorites. Proc Natl Acad Sci U S A 108:14015–14020

    CAS  Google Scholar 

  286. Saladino R, Botta G, Delfino M, Di Mauro E (2013) Meteorites as catalyst for prebiotic chemistry. Chem Eur J 19:16916–16922

    CAS  Google Scholar 

  287. Knoop F, Martius C (1936) The formation of citric acid. Z Physiol Chem 242:204

    CAS  Google Scholar 

  288. Wiley RH, Kim KS (1973) The bimolecular decarboxylative self-condensation of oxaloacetic acid to cytroylformic acid and its conversion by oxidative decarboxylation to citric acid. J Org Chem 38:3582–3585

    CAS  Google Scholar 

  289. Xue J, Huang PM (1995) Zinc adsorption-desorption on short-range ordered iron oxide as influenced by citric acid during its formation. Geoderma 64:343–356

    CAS  Google Scholar 

  290. Gerke JP (1992) Aluminium and iron in the soil solution of three different soils in relation to varying concentration of citric acid. Z Pflanzenernär Bodenk 155:339–343

    CAS  Google Scholar 

  291. Gerke J (1997) Aluminum and iron(III) species in the soil solution including organic complexes with citrate and humic substances. Z Pflanzenernär Bodenk 160:427–432

    CAS  Google Scholar 

  292. Francis AJ, Dodge CJ (1998) Remediation of soils and wastes contaminated with uranium and toxic metals. Env Technol 32:3993–3998

    CAS  Google Scholar 

  293. Wasay SA, Barrington SF, Tokunaga S (1998) Remediation of soils polluted by heavy metals using salts of organic acids and chelating agents. Env Technol 19:369–380

    CAS  Google Scholar 

  294. van Hees PAW, Lundstrom OS (2000) Equilibrium models of aluminium and iron complexation with different organic acids in soil solution. Geoderma 94:201–221

    CAS  Google Scholar 

  295. Bassi R, Prasher O, Simpson BK (2000) Extraction of metals from contaminated sandy soil using citric acid. Env Prog 19:275–282

    CAS  Google Scholar 

  296. Ebbs S, Brady D, Norvell W, Kochian L (2000) Uranium speciation, plant uptake, and phytoremediation. Env Pipeline Eng 446–474

    Google Scholar 

  297. Strobel BW (2001) Influence of vegetation on low-molecular-weight carboxylic acid in soil solution – a review. Geoderma 99:169–198

    CAS  Google Scholar 

  298. Liu C, Huang PM (2001) Pressure-jump relaxation studies on kinetics of lead sorption by iron oxides formed under influence of citric acid. Geoderma 102:1–25

    CAS  Google Scholar 

  299. Ahumada I, Mandoza J, Escudero P, Ascar L (2001) Effect of acetate, citrate and lactate incorporation in distribution of cadmium and copper chemical forms in soil. Comm Soil Sci Plant Anal 32:771–785

    CAS  Google Scholar 

  300. Chen YX, Lin Q, Luo YM, He YF, Zhen SJ, Yu YL, Tiau GM, Wong MH (2003) The role of citric acid on the phytoremediation of heavy metal contaminated soil. Chemosphere 50:807–811

    CAS  Google Scholar 

  301. Wang Y, Stone AT (2006) The citric acid-MnIII,IVO2 (birnesite) reaction. Electron transfer, complex formation, and autocatalytic feedback. Geochim Cosmochim Acta 70:4463–4476

    CAS  Google Scholar 

  302. Renella G, Landi L, Nannipieri P (2004) Degradation of low molecular weight organic acids complexed with heavy metals in soil. Geoderma 122:311–315

    CAS  Google Scholar 

  303. Gramss G, Voigt KD, Bergmann H (2004) Plant availability and leaching of (heavy) metals from ammonium-calcium-, carbohydrate, and citric acid-treated uranium-mine dump soil. J Plant Nutr Soil Sci 167:417–427

    CAS  Google Scholar 

  304. Kantar C, Honeyman BD (2006) Citric acid enhanced remediation of soils contaminated with uranium by soil flushing and soil washing. J Env Eng 132:247–255

    CAS  Google Scholar 

  305. Jing YD, He ZL, Yang XE (2007) Effects of pH organic acids, and competative cations on mercury desorption of soils. Chemosphere 69:1662–1669

    CAS  Google Scholar 

  306. Schwab AP, Zhu DS, Banks MK (2008) Influence of organic acids on the transport of heavy metals in soil. Chemosphere 72:986–994

    CAS  Google Scholar 

  307. Yang JW, Tang ZS, Guo RF, Chen SQ (2008) Soil surface catalysis of Cr(VI) reduction by citric acid. Env Prog 27:302–307

    CAS  Google Scholar 

  308. Sinhal VK, Srivastava A, Singh VP (2010) EDTA and citric acid mediated phytoextraction of Zn, Cu, Pb and Cd through marigold (Tagetes erecta). J Env Biol Acad Env Biol India 31:255–259

    CAS  Google Scholar 

  309. Tian X, Gao X, Yang F, Lan Y, Mao JD, Zhou L (2010) Catalytic role of soils in the transformation of Cr(VI) to Cr(III) in the presence of organic acids containing α-OH groups. Geoderma 159:270–275

    CAS  Google Scholar 

  310. Gu YY, Yeung AT (2012) Use of citric acid industrial wastewater to enhance electrochemical remediation of cadmium contaminated natural clay. Geocongress 3995–4004

    Google Scholar 

  311. Pérez-Estaban J, Escolastico C, Moliner A, Masaguer A (2013) Chemical speciation and mobilization of copperand zinc in naturally contaminated mine soils with citric and tartaric acids. Chemosphere 90:276–283

    Google Scholar 

  312. Vranova V, Rejsek K, Skene KR, Janous D, Formanek P (2013) Methods of collection of plant root exudates in relation to plant metabolism and purpose: a review. J Plant Nutr Soil Sci 176:175–199

    CAS  Google Scholar 

  313. Martius C, Knoop F (1937) Physiological breakdown of citric acid. Preliminary. Z Physiol Chem 246:1–11

    Google Scholar 

  314. Svardal K, Götzendorfer K, Nowak O, Kroiss H (1993) Treatment of citric acid wastewater for high quality effluent of the anaerobic-aerobic route. Water Sci Technol 28:177–186

    CAS  Google Scholar 

  315. Francis AJ, Dodge CJ (1993) Influence of complex structure on the biodegradation of iron-citrate complex. Appl Environ Microbiol 59:109–113

    CAS  Google Scholar 

  316. Joshi-Topé G, Francis AJ (1995) Mechanism of biodegradation of metal citrate complexes by Pseudomonas fluorescens. J Bacteriol 177:1989–1993

    Google Scholar 

  317. Francis AJ, Joshi-Topé G, Dodge CJ (1996) Biodegradation of nickel-citrate and modulation of nickel toxicity by iron. Environ Sci Technol 30:562–568

    CAS  Google Scholar 

  318. Dodge CJ, Francis AJ (1997) Biotransformation of binary and ternary citric acid complexes of iron and uranium. Env Sci Technol 31:3062–3067

    CAS  Google Scholar 

  319. Colleran E, Pender S, Philpott U, O’Flaherty V, Leahy B (1998) Full-scale and laboratory-scale anaerobic treatment of citric acid production wastewater. Biodegradation 9:233–245

    CAS  Google Scholar 

  320. VanBreisen JM, Rittmann BE (1999) Modeling speciation effects on biodegradation in mixed metal/chelate systems. Biodegradation 10:315–330

    Google Scholar 

  321. Mazzarino I, Piccinini P (1999) Photocatalytic oxidation of organic acids in aqueous media by a supported catalyst. Chem Eng Sci 54:3107–3111

    Google Scholar 

  322. Thomas RAP, Beswick AJ, Basnakova G, Moller R, Macaskie LE(2000) Growth of naturally occurring microbial isolates in metal-citrate medium and bioremediation of metal-citrate wastes. J Chem Technol Biotechnol 75:187–195

    Google Scholar 

  323. Rittmann BE, Banaszak JE, Van Briesen JM, Reed DT(2002) Mathematic modeling of precipitation and dissolution reactions in microbiology. Biodegradation 13:239–250

    Google Scholar 

  324. Gámez VM, Sierra-Alvarez R, Waltz RJ, Field JA (2009) Anaerobic degradation of citrate under sulfate reducing and methanogenic conditions. Biodegradation 20:499–510

    Google Scholar 

  325. Furukawa M, Tokunaga S (2004) Extraction of heavy metals from contaminated soil using citrate-enhancing extraction by pH control and ultrasound application. J Environ Sci Health A39:627–638

    CAS  Google Scholar 

  326. Rossi T, Mazzilli F, Sarandrea N, Rapone S, Dondero F (1997) The application of the differential pH method to the biochemical evaluation of seminal plasma. Clin Biochem 30:143–148

    CAS  Google Scholar 

  327. Dunemann L (1989) Automated determination of carboxylic acids in biological and geochemical samples by means of a chemical reaction detector. Anal Chim Acta 221:19–26

    CAS  Google Scholar 

  328. Costello LC, O’Neill JJ (1969) Citrate determination in biological samples. J Appl Physiol 27:120–122

    CAS  Google Scholar 

  329. Ghassempour A, Najafi NM, Amiri AA (2003) Determination of citric acid in fermentation media by pyrolysis mass spectroscopy. J Anal Appl Pyrolylis 70:251–261

    CAS  Google Scholar 

  330. Ghassempour A, Nojavan S, Talebpour Z, Amiri AA, Majafi NM (2004) Monitoring of the fermentation media of citric acid by the trimethylsilyl derivatives of the organic acid formed. J Agric Food Chem 52:6384–6388

    CAS  Google Scholar 

  331. Sočič H, Gaberc-Porekar V (1981) Direct thin-layer densitometric determination of citric acid in fermentation media. Fresenius Z Anal Chem 309:114–116

    Google Scholar 

  332. Gey M, Nagel B, Weissbrodt E, Stottmeister U (1988) Fast liquid chromatographic determination of organic acids in fermentation media with short glass columns. Anal Chim Acta 213:227–230

    CAS  Google Scholar 

  333. Wodecki ZJ, Tarĺop B, Ślebioda M (1991) Chromatographic determination of citric acid for monitoring the mould process. J Chromatogr 558:302–305

    CAS  Google Scholar 

  334. Rowers PJW, Kasprzycka-Guttman T (1992) Analysis of organic acids in potato wastewater. Food Chem 45:283–287

    Google Scholar 

  335. Tisza S, Sass P, Molnár-Perl I (1994) Optimization of the simultaneous determination of acids and sugars as their trimethylsilyl(oxime) derivatives by gas chromatography-mass spectrometry and determination of the composition of six apple varieties. J Chromatogr A 676:461–468

    CAS  Google Scholar 

  336. Silva FO, Ferraz V (2004) Microwave-assisted preparation of sugars and organic acids for simultaneous determination of citric fruits by gas chromatography. Food Chem 88:609–612

    CAS  Google Scholar 

  337. Palmer JK, List DM (1973) Determination of organic acids in foods by liquid chromatography. J Agric Food Chem 21:903–906

    CAS  Google Scholar 

  338. Miyakoshi K, Komoda M (1977) Determination of citric acid and its decomposed products in edible oils by gas liquid chromatography. J Oil Chem Soc 54:331–333

    CAS  Google Scholar 

  339. Ohlson R, Persmark U, Rodlaha O (1968) Determination of citric acid in fats. J Am Oil Chem 45:475–476

    CAS  Google Scholar 

  340. Plantá M, Lázaro F, Puchades R, Maquieira A (1993) Determination of citric acid and oxalacetic acid in foods by enzymic flow injection. Analyst 118:1193–1197

    Google Scholar 

  341. Li KC, Woodroof JG (1968) Gas chromatographic resolution of nonvolatile organic acids in peaches. J Agric Food Chem 16:534–535

    CAS  Google Scholar 

  342. Wilson CW, Shaw PE, Campbell CW (1982) Determination of organic acids and sugars in guava (Psidium guajava L) cultivars by high-performance liquid chromatography. J Sci Food Agric 33:777–780

    CAS  Google Scholar 

  343. Chapman RM Jr, Horvat RJ (1989) Determination of nonvolatile acids and sugars from fruits and sweet potato extracts by capillary GLC and GLC/MS. J Agric Food Chem 37:947–950

    CAS  Google Scholar 

  344. Fernández-Fernández R, López-Martínez JC, Romero-González R, Martínez-Vidal JL, Flores MIA, Frenich AG (2010) Simple LC-MS determination of citric and malic acids in fruits and vegetables. Chromatographia 72:55–62

    Google Scholar 

  345. Bureau S, Ścibisz I, Le Bourvellec C, Renard CMGC (2012) Effect of sample preparation on the measurement of sugars, organic acids and polyphenols in apple fruit by mid-infrared spectroscopy. Agric Food Chem 60:3551–3563

    CAS  Google Scholar 

  346. Esti M, Messia MC, Sinesio F, Nicotra A, Conte L, La Notte E, Palleschi G (1997) Quality evaluation of peaches and nectarines by electrochemical and multivariate analysis: relationships between analytical measurements and sensory attributes. Food Chem 60:659–666

    CAS  Google Scholar 

  347. Omar AE, Atan H, MatJafri MZ (2012) NIR Spectroscopic properties of aqueous acid solutions. Molecules 17:7440–7450

    CAS  Google Scholar 

  348. Gancedo MC, Luh BS (1986) HPLC analysis of organic acids and sugars in tomato juice. J Food Sci 51:571–573

    CAS  Google Scholar 

  349. Marconi O, Floridi S, Montanari L (2007) Organic acid profile in tomato juice by HPLC with UV detection. J Food Qual 30:253–266

    CAS  Google Scholar 

  350. Plaza L, Muñoz M, de Aucos B, Cano MP (2003) Effect of combined treatments of high-pressure citric acid and sodium chloride on quality of tomato puree. Env Food Res Technol 216:514–519

    CAS  Google Scholar 

  351. Zakharova EA, Moskaleva ML, Akeneev YuA, Moiseeva ES, Slepchenko GB, Pikula NP (2011) Potentiometric determination of the total acidity and concentration of citric acid in wines. J Anal Chem 66:848–853

    CAS  Google Scholar 

  352. Masár M, Pollaková K, Danková M, Kaniansky D, Stanislawski B (2005) Determination of organic acids in wine by zone electrophoresis on a chip with conductivity detection. J Sep Sci 28:905–914

    Google Scholar 

  353. Erny GL, Rodrigues JEA, Gil AM, Barros AS, Esteves VI (2009) Analysis of non-aromatic organic acids in beer by CE and direct detection mode with diode array detection. Chromatographia 70:1737–1742

    CAS  Google Scholar 

  354. Lin L, Tanner H (1985) Quantitative TPTLC analysis of carboxylic acids in wine and juice. J High Res Chtomatogr Chromatogr Comm 8:126–131

    CAS  Google Scholar 

  355. Caccamo F, Carfagnini G, Di Corcia A, Samperi R (1986) Improved high-performance liquid chromatographic assay for determining organic acids in wines. J Chromatogr 362:47–53

    CAS  Google Scholar 

  356. Tusseau D, Benoit C (1987) Routine high-performance liquid chromatography of carboxylic acids in wines and champagne. J Chromatogr A 395:323–333

    CAS  Google Scholar 

  357. Zatou A, Loukou Z, Karava O (2004) Method development for the determination of seven organic acids in wines by reverse-phase high performance liquid chromatography. Chromatographia 60:39–44

    Google Scholar 

  358. Kerem Z, Bravdo B, Shoseyov O, Tugendhaft Y (2004) Rapid liquid chromatography-ultraviolet determination of organic acids and phenolic compounds in red wine and must. J Chromatogr A 1052:211–215

    CAS  Google Scholar 

  359. Patz CD, Bleke A, Ristow R, Dietrich, H (2004) Applications of FT-MIR spectroscopy in wine analysis. Anal Chim Acta 513:81–89

    CAS  Google Scholar 

  360. Regmi U, Palma M, Barroso CG (2012) Direct determination of organic acids in wine and wine-derived products by Fourier transform infrared (FT-IR) spectroscopy and chemometric techniques. Anal Chim Acta 732:137–144

    CAS  Google Scholar 

  361. Ribeiro CMF, Matos CD, Sales MG, Vaz MCVF (2002) Citrate selective electrodes for the flow injection analysis of soft drinks, beers and pharmaceutical products. Anal Chim Acta 471:41–49

    CAS  Google Scholar 

  362. Henniger G, Mascaro L Jr (1985) Enzymatic-ultraviolet determination of citric acid in wine: collaborative study. J Assoc Off Anal Chemists 68:1024–1027

    CAS  Google Scholar 

  363. Junge C (1987) Determination of malic acid, lactic acid, citric acid, sodium, potassium, magnesium, calcium, and chloride in wine: summary of collaborative study of the International Office of Wine (OIV). J Assoc Off Anal Chemists 70:1087–1089

    CAS  Google Scholar 

  364. Mato I, Huidobro JF, Simal-Lozano J, Sancho MT (2006) Simultaneous determination of organic acids in beverages by capillary zone electrophoresis. Anal Chim Acta 565:190–197

    CAS  Google Scholar 

  365. Shaw PE, Buslig BS, Wilson CW III (1983) Total citrate content of orange and grapefruit juices. Agric Food Chem 31:182–184

    CAS  Google Scholar 

  366. Park GL, Byers JL, Pritz CM, Nelson DB, Navarro JL, Smolensky DC, Vandercook CE (1983) Characteristics of California navel orange juice and pulp wash. J Food Sci 48:627–632

    CAS  Google Scholar 

  367. Gomis DB, Gutierrez MJM, Alvares MDG, Medel AS (1987) High-performance liquid chromatographic determination of major organic acids in apple juices and ciders. Chromatographia 24:347–350

    Google Scholar 

  368. Gomis DB, Gutiérrez MJM, Alvarez MDG, Alonso JJM (1988) Application of HPLC to characterization and control of individual acids in apple extracts and ciders. Chromatographia 25:1054–1058

    Google Scholar 

  369. Aristoy MC, Orlando L, Navarro JL, Sendra JM, Izquerdo L (1989) Characterization of Spanish orange juice for variables used in purity control. J Agric Food Chem 37:596–600

    CAS  Google Scholar 

  370. Marcé RM, Calull M, Manchobas RM, Borruel F, Rius FX (1990) An optimization direct method for the determination of carboxylic acids in beverages by HPLC. Chromatographia 29:54–58

    Google Scholar 

  371. Lee HS (1993) HPLC method for separation and determination of nonvolatile organic acids in orange juice. J Agric Food Chem 41:1991–1993

    CAS  Google Scholar 

  372. Saccani G, Gherardi S, Trifiró A, Soresi-Bordini C, Calza M, Freddi C (1995) Use of ion chromatography for the measurement of organic acids in fruit juices. J Chromatogr A 706:395–403

    CAS  Google Scholar 

  373. Lourdes-Morales M, Ferreira F, Gonzalez AG, Troncoso AM (2001) Simultaneous determination of organic acids and sweeteners in soft drinks by ion-exclusion HPLC. J Sep Sci 24:874–884

    Google Scholar 

  374. Cunha SC, Fernandes JO, Ferreira IMPlVO (2002) HPLC/UV determination of organic acids in fruit juices and nectars. Env Food Res Technol 214:67–71

    CAS  Google Scholar 

  375. Versari A, Parpinello GP, Mattioli AU, Galassi S (2008) Characterization of Italian commercial apricot juices by high-performance liquid chromatography analysis and multivariate analysis. Food Chem 108:334–340

    CAS  Google Scholar 

  376. Ayora-Cañada MJ, Lendl B (2000) Sheath-flow Fourier transform infrared spectroscopy for the simultaneous determination of citric, malic and tartaric acids in soft drinks. Anal Chim Acta 417:41–50

    Google Scholar 

  377. del Campo G, Berregi I, Caracena R, Santos JI (2006) Quantitative analysis of malic and citric acids in fruit juices using proton nuclear magnetic spectroscopy. Anal Chim Acta 556:462–468

    CAS  Google Scholar 

  378. Marier JR, Boulet M (1958) Direct determination of citric acid in milk with an improved pyridine-acetic anhydride. J Dairy Sci 41:1683–1692

    CAS  Google Scholar 

  379. Lucas JM, Kaneko JJ, Hirohara K, Kleiber M (1959) Separation of milk components. Chromatographic isolation of citric acid and lactose from skim milk. J Agric Food Chem 7:638–639

    CAS  Google Scholar 

  380. Frazeur DR (1961) Method for determination of citric and lactic acids in dairy products. J Dairy Sci 44:1638–1643

    CAS  Google Scholar 

  381. Heinemann B (1944) The determination of citric acid in milk by cerate oxidimetry. J Dairy Sci 27:377–383

    CAS  Google Scholar 

  382. Marsili RT, Ostapenko H, Simmons RE, Green DE (1981) High performance liquid chromatographic determination of organic acids in dairy products. J Food Sci 46:52–57

    CAS  Google Scholar 

  383. Bevilacqua AE, Califano AN (1989) Determination of organic acids in dairy products by high performance liquid chromatography. J Food Sci 54:1076–1079

    CAS  Google Scholar 

  384. Tormo M, Izco JM (2004) Alternative reversed-phase high-performance liquid chromatography method to analyse organic acids in dairy products. J Chromatogr A 1033:305–310

    CAS  Google Scholar 

  385. Indyk UE, Kurmann A (1987) Routine spectrophotometric determination of citric acid in milk. Analyst 112:1173–1175

    CAS  Google Scholar 

  386. Mulzelburg ID (1979) An enzymatic method for the determination of citrate in milk. Austr J Dairy Technol 34:82–84

    Google Scholar 

  387. Suárez-Luque S, Mato I, Huidobro JF, Simal-Lozano J, Sancho MT (2002) Rapid determination of organic acids in honey by high-performance liquid chromatography. J Chromatogr A 955:207–214

    Google Scholar 

  388. Tourn ML, Lombard A, Belliardo F, Buffa M (1980) Quantitative analysis of carbohydrates and organic acids in honeydew, honey and royal jelly by enzymic methods. J Agric Res 19:144–146

    CAS  Google Scholar 

  389. Irache JM, Ezpeleta I, Vega FA (1993) HPLC determination of antioxidant synergists and ascorbic acid in some fatty pharmaceuticals, cosmetics and food. Chromatographia 35:232–236

    CAS  Google Scholar 

  390. DeBorba BM, Rohrer JS, Bhattacharyya L (2004) Development and validation of an assay for citric acid/citrate and phosphate in pharmaceutical dosage forms using ion chromatography with suppressed conductivity detection. J Pharm Biomed Anal 36:517–524

    CAS  Google Scholar 

  391. Pérez-Ruiz T, Lozano C, Tomás V, Sanz A (1998) Flow-injection spectrophotometric determination of oxalate, citrate and tartrate based on photochemical reactions. Anal Lett 31:1413–1427

    Google Scholar 

  392. Warty VS, Busch RP, Virji MA (1984) A kit for citrate foodstuff adapted for assay of serum and urine. Clin Chem 30:1231–1233

    CAS  Google Scholar 

  393. Camp BJ, Farmer L (1967) A rapid spectrophotometric method for the determination of citric acid in blood. Clin Chem 13:201–2505

    Google Scholar 

  394. Holden AJ, Littlejohn D, Fell GS (1996) Determination of citrate in plasma protein solutions by UV-visible spectrophotometry and ion chromatography. J Pharm Biomed Anal 14:713–719

    CAS  Google Scholar 

  395. Naruse H, Cheng SC, Waelsch H (1966) Microdetermination of citric acid in nervous tissue. Exp Brain Res 1:40–47

    CAS  Google Scholar 

  396. Nielsen TT (1976) A method for enzymic determination of citrate in serum and urine. Scand J Clin Lab Investig 36:513–519

    CAS  Google Scholar 

  397. Gavella M (1983) A simple automated method for determination of citric acid levels in semen. Intern J Androl 6:585–591

    CAS  Google Scholar 

  398. Nordbö R, Scherstén B (1932) Determination of citric acid in blood by Thunberg’s method and pentabromoacetone. Scand Archiv Physiol 63:124–132

    Google Scholar 

  399. Lennér A (1934) The observations and data obtained by means of Thunberg’s citric acid method. Scand Archiv Physiol 68:221–225

    Google Scholar 

  400. Shihabi ZK, Holmos RP, Hinsdale ME (2001) Urinary citrate analysis by capillary electrophoresis. J Liq Chromatogr Related Technol 24:3197–3204

    CAS  Google Scholar 

  401. Ambler JA, Roberts EJ (1947) Determination of aconitic acid in mixtures with citric acid. Anal Chem 19:879–880

    CAS  Google Scholar 

  402. de Souza NE, Godinho OES, Aleixo LM (1985) Procedure for the simultaneous determination of tartaric and citric acids and total carbonate by potentiometric titrimetry and its applications to antacid analysis. Analyst 110:989–991

    CAS  Google Scholar 

  403. Akhond M, Tashkhourian J, Hemmateenejad B (2006) Simultaneous determination of ascorbic, citric and tartaric acids by potentiometric titration with PLS calibration. J Anal Chem 61:804–808

    CAS  Google Scholar 

  404. Aue WA, Hastings CR, Gerhard KO, Pierce JO III, Hill HH, Moseman RF (1972) The determination of part-per-billion levels of citric acid nitrilotriacetic acids in tap water and sewage effluents. J Chromatogr 72:259–267

    CAS  Google Scholar 

  405. Gaudie AJ, Rieman W III (1962) Chromatographic separation and determination of fruit acids. Anal Chim Acta 26:419–423

    Google Scholar 

  406. Timpa JD, Burke JJ (1986) Monitoring organic acids and carbohydrates in cotton leaves by high-performance liquid chromatography. J Agric Food Chem 34:910–913

    CAS  Google Scholar 

  407. Gamoh K, Saitoh H, Wada H (2003) Improved liquid chromatography/mass spectroscopic analysis of low molecular weight carboxylic acids by ion exclusion separation with electrospray ionization. Rapid Comm Mass Spectrom 17:685–689

    CAS  Google Scholar 

  408. Kloos D, Derks RJE, Wijtmans M, Lingeman H, Mayboroda OA, Deelder AM, Niessen WMA, Giera M (2012) Derivatization of the tricarboxylic acid cycle intermediates and analysis by online solid-phase extraction-liquid chromatography-mass spectrometry with positive-ion electrospray ionization. J Chromatogr A 1232:19–26

    CAS  Google Scholar 

  409. Kul’berg LM, Ivanova ZV (1946) Detection of some organic acids in a mixture. Zhurn Anal Khim 1:311–314

    Google Scholar 

  410. Elving PJ, Van Atta RE (1954) Polarographic determination of citric acid. Polarography of pentabromoacetone. Anal Chem 26:295–298

    CAS  Google Scholar 

  411. Marier JR, Boulet M (1959) Preparation of a standard for citric acid analysis. J Dairy Sci 42:1885–1886

    CAS  Google Scholar 

  412. Bengtsson L, Samuelson O (1971) Anion exchange chromatography of dicarboxylic and tricarboxylic acids in phosphate medium. Chromatographia 4:142–146

    CAS  Google Scholar 

  413. Sharkasi TY, Bendel RB, Swanson BG (1981) Dilution and solids adulteration of apple juice. J Food Qual 5:59–72

    Google Scholar 

  414. Johnson MR, Kauffman FL (1985) Orange juice adulteration detection and action of the FDA. J Food Qual 8:81–85

    Google Scholar 

  415. Wilkinson JA, Sipherd IR, Fulmer EI, Christensen LM (1934) Analysis of oxalic and citric acids by titration with ceric sulfate. Ind Eng Chem 6:161–163

    CAS  Google Scholar 

  416. Grases F, Costa-Bauzá A, March JG (1991) Determination of citric acid based on inhibition of the crystal growth of calcium fluoride. Analyst 116:59–63

    CAS  Google Scholar 

  417. Krug A, Kellner R (1994) Determination of citric acid by means of competitive complex formation in a flow injection system. Mikrochim Acta 113:203–210

    CAS  Google Scholar 

  418. Ni Y (1998) Simultaneous determination of mixtures of acids by potentiometric titration. Anal Chim Acta 367:145–152

    CAS  Google Scholar 

  419. Wu MC, Chen CS (1999) A research note: effect of sugar types and citric acid content on the quality of canned lychee. J Food Qual 22:461–469

    CAS  Google Scholar 

  420. Yang WC, Yu AM, Dai YQ, Chen HY (2000) Separation and determination of di- and tricarboxylic acids in fruits by capillary zone electrophoresis with amperometric detection. Anal Chim Acta 415:75–81

    CAS  Google Scholar 

  421. Wang M, Qu F, Shan XQ, Lin JM (2003) Development and optimization of a method for the analysis of low-molecular mass organic acids in plants by capillary electrophoresis with indirect UV detection. J Chromatogr A 989:285–292

    CAS  Google Scholar 

  422. Hagberg J (2003) Analysis of low-molecular mass organic acids using capillary zone electrophoresis-electrospray ionization mass spectrometry. J Chromatogr A 988:127–133

    CAS  Google Scholar 

  423. Kvasnička F (2005) Capillary electrophoresis in food authenticity. J Sep Sci 28:813–825

    Google Scholar 

  424. Hautala E, Weaver ML (1969) Separation and quantitative determination of lactic, pyrovic, fumaric, succinic, malic, and citric acids by gas chromatography. Anal Biochem 30:32–39

    CAS  Google Scholar 

  425. Lee CR, Pollitt RJ (1972) Simultaneous determination of the intermediates of the citric acid cycle by gas chromatography-mass fragmentography using deuterated internal standards. Adv Mass Spectrosc Biochem Med 2:383–387

    Google Scholar 

  426. Pinelli A, Colombo A (1976) Gas chromatographic separation of Krebs-cycle metabolites. J Chromatogr 117:236–239

    Google Scholar 

  427. Molnár-Perl I, Morvai M, Pintér-Szakács M, Petró-Turza M (1990) Gas chromatographic determination of isocitric and malic acid in the presence of a large excess of citric acid. Anal Chim Acta 239:165–170

    Google Scholar 

  428. Marai L, Kuksis A (1983) Simultaneous quantitation of Krebs cycle and related acids by mass fragmentography. J Chromatogr 268:447–460

    CAS  Google Scholar 

  429. Chan HT Jr, Brekke JE, Chang T (1971) Nonvolatile organic acids in guava. J Food Sci 36:237–239

    CAS  Google Scholar 

  430. Turkelson VT, Richards M (1978) Separation of the citric acid and cycle acids by liquid chromatography. Anal Chem 50:1420–1423

    CAS  Google Scholar 

  431. Ashoor SH, Knox MJ (1984) Determination of organic acids in foods by high-performance liquid chromatography. J Chromatogr A 299:288–292

    CAS  Google Scholar 

  432. Bushway RJ, Bureau JL, McGann DF (1984) Determination of organic acids in potatoes by high performance liquid chromatography. J Food Sci 49:75–77

    CAS  Google Scholar 

  433. Mentasti E, Gennaro MC, Sarzanini C, Baiocchi C, Savigliano M (1985) Derivatization/identification and separation of carboxylic acids in wines and beverages by high-performance liquid chromatography. J Chromatogr A 322:177–189

    CAS  Google Scholar 

  434. Picha DH (1985) Organic acid determination in sweet potatoes by HPLC. J Agric Food Chem 33:743–745

    CAS  Google Scholar 

  435. Gĺód PK, Haddad PR, Alexander PW (1992) Potentiometric detection of carboxylic acids and inorganic anions in ion-exclusion chromatography using camphor sulphonic acid as eluent. J Chromatogr 589:209–214

    Google Scholar 

  436. Tisza S, Molnár-Perl I (1994) GC-MS quantitation of isocitric acid in the presence of large excess of citric acid. J High Resolut Chromatogr 17:165–174

    CAS  Google Scholar 

  437. Lodi S, Rosin G (1995) Determination of some organic acids in sugar factory products. J Chromatogr A 706:375–383

    CAS  Google Scholar 

  438. Mongay C, Pastor A, Olmos C (1996) Determination of carboxylic acids and inorganic anions by ion-exchange chromatography. J Chromatogr A 736:351–357

    CAS  Google Scholar 

  439. Eiteman MA, Chastain MJ (1997) Optimization of the ion-exchange analysis of organic acids from fermentation. Anal Chim Acta 338:69–75

    CAS  Google Scholar 

  440. Chen QC, Mou SF, Lin KN, Yang ZY, Ni ZM (1997) Separation and determination of four artificial sweeteners and citric acid by high-performance anion exchange chromatography. J Chromatogr A 771:135–143

    CAS  Google Scholar 

  441. Ayorinde FO, Bezabeth DZ, Delves IG (2003) Preliminary investigation of the simultaneous detection of sugars, ascorbic acid, citric acid and sodium benzoate in non-alcoholic beverages by matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy. Rapid Comm Mass Spectrom 17:1735–1742

    CAS  Google Scholar 

  442. Pérez-Ruiz T, Martinez-Lozano C, Tomás V, Martin J (2004) High-performance liquid chromatographic separation and qualification of citric, lactic, malic, oxalic and tartaric acids using a post-column photochemical reaction and chemiluminescence detection. J Chromatogr A 1026:57–64

    Google Scholar 

  443. Potin-Gautier M, Pannier F, Quiroz W, Pinochet H, de Gregori I(2005) Antimony speciation analysis in sediment reference materials using high-performance liquid chromatography coupled to hydride generation atomic fluorescence spectrometry. Anal Chim Acta 553:214–222

    Google Scholar 

  444. Jenke D, Sadain S, Nunez K, Byrne F (2007) Performance characteristics of an ion chromatography method for the quantitation of citrate and phosphate in pharmaceutical solutions. J Chromatogr Sci 45:50–56

    CAS  Google Scholar 

  445. Bylund D, Norstroem SH, Essen S, Lundstroem US (2007) Analysis of low molecular mass organic acids in natural waters by ion exclusion chromatography tandem mass spectrometry. J Chromatogr A 1176:89–93

    CAS  Google Scholar 

  446. Leininger E, Katz S (1949) Fluorometric method for determination of citric acid. Anal Chem 21:810–813

    CAS  Google Scholar 

  447. Bobtelsky M, Graus B (1953) A precise heterometric micro-determination of lead and citric acid. Anal Chim Acta 9:163–167

    CAS  Google Scholar 

  448. McArdle B (1955) A modified method for the microdetermination of citric acid. Biochem J 60:647–649

    CAS  Google Scholar 

  449. Hartford CG (1962) Rapid spectrophotometric method for the determination of itaconic, citric, aconitic, and fumaric acids. Anal Chem 34:426–428

    CAS  Google Scholar 

  450. Choy TK, Quattrone JJ Jr, Elefant M (1963) Non-aqueous spectrophotometric determination of citric acid. Anal Chim Acta 29:114–119

    CAS  Google Scholar 

  451. Matuus RM, Guyon JC (1964) Spectrophotometric determination of alpha-hydroxy carboxylic acids. Application to citric acid. Anal Chem 36:118–120

    Google Scholar 

  452. Tiwari RD, Pande UC (1969) Spectrophotometric determination of tartaric acid and citric acid in milligram quantities. Microchem J 14:138–140

    CAS  Google Scholar 

  453. Grunbaum BW, Pace N (1970) Microchemical urinalysis. VII. Determination of citric acid in microliter quantities. Microchem J 15:673–676

    CAS  Google Scholar 

  454. Bustin RM, West PW (1974) Determination of trace concentrations of citric acid in aqueous systems. Anal Chim Acta 68:317–322

    CAS  Google Scholar 

  455. Beltagy YA (1976) Citric acid-acetic anhydride reagent for determining some alkaloids and organic bases. Pharmazie 31:483–484

    CAS  Google Scholar 

  456. Workman DS, Morris JR (1992) Storage stability on wine coolers as influenced by juice content and citric acid addition. J Food Qual 15:39–52

    CAS  Google Scholar 

  457. Chalgeri A, Tan HSI (1993) Assay of citrate in pharmaceutical matrices by indirect photometric liquid chromatography. Pharm Biomed Anal 11:353–359

    CAS  Google Scholar 

  458. Pérez-Ruiz T, Martinez-Lozano C, Tomas U, Val O (1995) Flow-injection chemiluminometric determination of citrate based on a photochemical reaction. Analyst 120:471–475

    Google Scholar 

  459. Yedur SK, Berglund KA (1996) Use of fluorescence spectroscopy in concentration and supersaturation measurements in citric acid solutions. Appl Spectrosc 50:866–870

    CAS  Google Scholar 

  460. Luque-Pérez E, Ríos A, Valcárcel M (1998) Flow-injection spectrophotometric determination of citric acid in beverages based on a photochemical reaction. Anal Chim Acta 366:231–240

    Google Scholar 

  461. Zhike H, Hua G, Liangjie Y, Shaofang L, Hui M, Xiaoyan L, Yun’e Z (1998) Pulse injection analysis with chemiluminescence detection: determination of citric acid using tris-(2,2’-bipyridine) ruthenium(II). Talanta 47:301–304

    CAS  Google Scholar 

  462. Grudpan K, Sritharathikhun P, Jakmunee J (1998) Flow injection conductimetric or spectrophotometric analysis for acidity in fruit juice. Anal Chim Acta 363:199–202

    CAS  Google Scholar 

  463. Saavadra L, Garcia A, Barbas C (2000) Development and validation of a capillary electrophoresis method for direct measurement of isocitric, citric, tartaric and malic acids as adulteration markers in orange juice. J Chromatogr A 881:395–401

    Google Scholar 

  464. Themelis DG, Tzanavaras PD (2001) Reagent-injection spectrophotometric determination of citric acid in beverages and pharmaceutical formulations based on its inhibitory effect on the iron(III) catalytic oxidation of 2,4-diaminophenol by hydrogen peroxide. Anal Chim Acta 428:23–30

    CAS  Google Scholar 

  465. Moreno-Cid A, Yebra MC, Santos X (2004) Flow injection determinations of citric acid: a review. Talanta 63:509–514

    CAS  Google Scholar 

  466. Nischwitz V, Michalke B (2009) Electrospray ionization with selected reaction monitoring for the determination of Mn-citrate, Fe-citrate, Cu-citrate and Zn-citrate. Rapid Comm Mass Spectrosc 23:2338

    CAS  Google Scholar 

  467. Lazaron LA, Hadjiioannon TP (1979) Kinetic potentiometric determination of citric acid with a perbromate-selective electrode. Anal Chim Acta 108:375–377

    Google Scholar 

  468. Szekely E (1985) Complexometric determination of citric acid with copper. Talanta 32:153–154

    CAS  Google Scholar 

  469. Olin A, Wallén B (1988) Determination of citrate by potentiometric titration with copper(II) and a copper ion-selective electrode. Anal Chim Acta 151:65–75

    Google Scholar 

  470. Poels I, Nagels LJ, Verreyt G, Geise HJ (1998) Potentiometric detection of organic acids in liquid chromatography using conducting oligomer electrodes. Anal Chim Acta 370:105–113

    CAS  Google Scholar 

  471. Naumenko LF, Buneeva NM, Korneeva RN, Selemenev VF, Nemtsev DV (2004) Determination of citrate ions by potentiometric titration with a copper-selective electrode in monitoring the production of citric acid. J Anal Chem 59:291–295

    CAS  Google Scholar 

  472. Guilbault GG, Sadar SH, McQueen R (1969) Fluorimetric enzymic method for the assay of mixtures of organic acids. Anal Chim Acta 45:1–12

    CAS  Google Scholar 

  473. Dagley S (1969) Determination of citric acid by means of citrate lyase. Methods Enzymol 13:517–518

    CAS  Google Scholar 

  474. Prodromidis MI, Tzouwara-Karayanni SM, Karayannis MI, Vadgama PV (1997) Bioelectrochemical determination of citric acid in real samples using a fully automated flow injection manifold. Analyst 122:1101–1106

    CAS  Google Scholar 

  475. Dorset LP, Mulcahy DE (1980) Studies with the electrodeTM: determination of citrate ion activity. Anal Lett 13:409–418

    Google Scholar 

  476. Thunberg T (1929) The presence of citric acid-dehydrogenase in cucumber and its utilization for a highly sensitive biological color reaction for citric acid. Biochem Z 206:109–119

    CAS  Google Scholar 

  477. Thunberg T (1953) Occurrence and significance of citric acid in the animal organism. Physiol Rev 33:1–12

    CAS  Google Scholar 

  478. Milewska MJ (1988) Citric acid – its natural and synthetic derivatives. Z Chem 28:204–211

    CAS  Google Scholar 

  479. Milewska MJ, Chimiak A, Nøiland JB (1991) Synthesis of amino acids analogues of citric acid siderophores. Z Naturforsch 46b:117–122

    Google Scholar 

  480. Repta AJ, Higuchi T (1969) Synthesis and isolation of citric acid anhydride. J Pharm Sci 58:505–506

    CAS  Google Scholar 

  481. Repta AJ, Higuchi T (1969) Synthesis, isolation, and some chemistry of citric acid anhydride. J Pharm Sci 58:1110–1114

    CAS  Google Scholar 

  482. Auterhoff H, Schwingel I (1975) Reaction of citric acid with acetic anhydrine and pyridine. Arch Pharmaz 308:583–587

    CAS  Google Scholar 

  483. Schroeter G (1905) Symmetrical dialkyl esters of the citric acid. Ber Dtsch Chem Ges 38:3190–3201

    CAS  Google Scholar 

  484. Dulin A, Martin JW Jr (1956) Mono-derivatives of methylene citric acid. J Am Pharm Assoc 48:851–852

    Google Scholar 

  485. Klingemann F (1889) Action of aromatic amines on acetylcitric anhydride. Ber Dtsch Chem Ges 22:983–987

    Google Scholar 

  486. Easterfield TH, Sell WJ (1892) Anhydro-derivatives of citric and aconitic acids. J Chem Soc 61:1003–1012

    CAS  Google Scholar 

  487. Nau CA, Brown EB, Bailey JR (1925) Methylene-citric anhydride. The aniline derivatives of citric and aconitic acids. J Am Chem Soc 47:2596–2606

    CAS  Google Scholar 

  488. Repta AJ, Robinson JR, Higuchi T (1966) Interaction of acetic anhydride with di- and tricarboxylic acids in aqueous solution. J Pharm Sci 35:1200–1204

    Google Scholar 

  489. Robinson JR, Repta AJ, Higuchi T (1966) Interaction of di- and tricarboxylic acids with glutaric anhydride in aqueous solution. J Pharm Sci 35:1196–1200

    Google Scholar 

  490. Finkelstein M, Gold H (1959) Toxicology of the citric acid esters: tributyl citrate, acetyltributyl citrate, triethyl citrate, and acetyl triethyl citrate. Toxicol Appl Pharm 1:283–298

    CAS  Google Scholar 

  491. Meyers DB, Autian J, Guess WL (1964) Toxicity of plastics used in medical practice. II. Toxicity of citric acid esters used as plasticizers. J Pharm Sci 53:774–777

    CAS  Google Scholar 

  492. Evaluation of health aspects of citric acid, sodium citrate, potassium citrate, calcium citrate, ammonium citrate, triethyl citrate, isopropyl citrate, and stearyl citrate as food ingredients. Report PB-280 954 US Department of Commerce, Food and Drug Administration. Washington, DC. 1977

    Google Scholar 

  493. Fiume MM, Heldreth BA (2012) Final report on the safety assessment of citric acid, inorganic citrate salts, and alkyl citrates as used in cosmetics. Cosmetic Ingredient Review. March 27, Washington

    Google Scholar 

  494. Blair GT, Zienty ME (1979) Citric Acid: Properties and Reactions. Miles Laboratories, Inc., Elkhart, IN

    Google Scholar 

  495. Knuth CJ, Bavley A (1957) Polyester resins from citric acid. Plast Technol 3:555–556

    CAS  Google Scholar 

  496. Mirci L, Herdan JM, Boran S (2001) New synthetic ester type base oils with biodegradability potential. J Synth Lubr 17:295–307

    CAS  Google Scholar 

  497. Hehn Z, Sajewicz J, Gwdzik A (2002) Esters of alkanedioic acids and citric acid as novel environment-friendly chemical finishes (crosslinkers) for cotton fabrics. Przem Chem 81:446–450

    CAS  Google Scholar 

  498. Mirci L, Boran S, Luca P, Boiangiu V (2003) New citric esters with aromatic content and a complex structure considered for use as tribological fluids. J Synth Lubr 20:39–52

    CAS  Google Scholar 

  499. Tsutsumi N, Oya M, Sakai W (2004) Biodegradable network polyesters from gluconolactone and citric acid. Macromolecules 37:5971–5976

    CAS  Google Scholar 

  500. Yang J, Webb AR, Ameer GA (2004) Novel citric acid-based biodegradable elastomers for tissue engineering. Adv Mater 16:511–516

    CAS  Google Scholar 

  501. Behzadi SS, Ölzant S, Länger R, Koban C, Unger FM, Viernstein H (2006) Investigation of the stability of tablets prepared from sucrose and citric acid anhydride utilizing response surface methodology. Eur Food Res Technol 223:238–245

    CAS  Google Scholar 

  502. Larsen J, Cornett C, Jaroszewski JW, Hansen SH (2009) Reaction between drug substances and pharmaceutical excipients: formation of citric acid esters and amides of carvedilol in the solid state. J Pharm Biochem Anal 49:11–17

    CAS  Google Scholar 

  503. Boran S, Bandur G, Popa S (2012) Biodegradable food packaging. I. Thermal stability of citric ester plasticizers with role in polymeric packaging. Chem Bull “Politeh” Univ Timis Rom 57:1–6

    Google Scholar 

  504. Reddy C, Yang Y (2010) Citric acid cross-linking of starch films. Food Chem 118:702–711

    CAS  Google Scholar 

  505. Menzel C, Olsson E, Plivelic TS, Andersson R, Johansson C, Kuktaite R, Järnström L (2013) Molecular structure of citric acid cross-linked starch films. Carbohyd Polym 96:270–276

    CAS  Google Scholar 

  506. Vargas DA, Medina J (eds) (2012) Citric acid: synthesis, properties and applications. Nova Publishers, New York

    Google Scholar 

  507. Yamada T, Morimoto Y, Hisamatsu M (1986) Effect of citric acid on potato starch. Starch 38:264–268

    CAS  Google Scholar 

  508. Wing RE (1996) Corn fiber citrate: preparation and ion-exchange properties. Ind Crop Prod 5:301–305

    CAS  Google Scholar 

  509. Wing RE (1996) Starch citrate: preparation and ion-exchange properties. Starch 48:275–279

    CAS  Google Scholar 

  510. Sessa DJ, Wing RE (1999) Metal chelation of corn protein products/citric acid derivatives generated via reactive extrusion. Ind Crop Prod 10:55–63

    CAS  Google Scholar 

  511. Seidel C, Kulicke WM, Hes C, Hartmann B, Lechner MD, Lazik W (2001) Influence of the cross-linking agent on the gel structure of starch derivatives. Starch 53:305–310

    CAS  Google Scholar 

  512. Xie X, Lin Q (2004) Development of physicochemical characterization of new resistant citrate starch from different corn starches. Starch 56:364–370

    CAS  Google Scholar 

  513. Noordover BAJ, Duchateau R, van Benthem RATM, Ming W, Koning CE (2007) Enhancing the functionality of biobased polyester coating resins through modification with citric acid. Biomacromol 8:3860–3870

    CAS  Google Scholar 

  514. Chabrat E, Abdillaah H, Rouilly R, Rigal L (2012) Influence of citric acid and water on thermoplastic wheat flour/poly(lactic acid) blends: thermal, mechanical and morphological properties. Ind Crops Prod 37:238–246

    CAS  Google Scholar 

  515. Reddy N, Jiang Q, Yang Y (2012) Preparation and properties of peanut protein films crosslinked with citric acid. Ind Crops Prod 39:26–30

    CAS  Google Scholar 

  516. Jiugao Y, Ning W, Xiaofei M (2005) The effects of citric acid on the properties of thermoplastic starch plasticized by glycerol. Starch 57:494–504

    Google Scholar 

  517. Ma X, Jian R, Chang PR, Yu J (2008) Fabrication and characterization of citric acid-modified starch nanoparticles/plasized-starch composites. Biomacromol 9:3314–3320

    CAS  Google Scholar 

  518. Molnár-Perl I, Morvai M (1987) Esterification of aliphatic hydroxyl acids to n-propyl esters in aqueous solutions for their gas chromatographic analysis. Chromatographia 23:760–763

    Google Scholar 

  519. Bouchard EF, Meritt EG (1984) Citric acid. In: Kirk-Othmer Encyclopedia of Chemical Technology, 3rd edn, vol 6. Wiley-Interscience, New York, pp 150–176

    Google Scholar 

  520. Prokop M, Milewska MJ (2009) An improved synthesis of trisodium®-homocitrate from citric acid. Polish J Chem 83:1317–1322

    CAS  Google Scholar 

  521. Hall RA (1915) Tri-ammonium citrate. J Am Chem Soc 37:208–216

    CAS  Google Scholar 

  522. Venable FP, Lineberry RA (1922) Zirconyl citrate. J Am Chem Soc 44:1708–1709

    CAS  Google Scholar 

  523. Dudley HC (1950) Gallium citrate and radio-gallium (Ga72) citrate. J Am Chem Soc 72:3822–3823

    CAS  Google Scholar 

  524. Schiavon G (1901) Constitution of citric acid derivatives. Gaz Chim Ital 31:536–544

    CAS  Google Scholar 

  525. Pramanick D, Ray TT (1990) In vitro drug release profile of bioerodable citric acid-glycerol copolymer. J Appl Polym Sci 40:1511–1517

    CAS  Google Scholar 

  526. Galego N, Vazquez A, Riccardi CC, William RJJ (1992) Citric acid-diethylenetriamine salts as latent curing agents for epoxy resins. J Appl Polym Sci 45:607–610

    CAS  Google Scholar 

  527. Ibrahim NA (1992) New cation exchange composite based upon cellulose/melamine formaldehyde/citric acid reaction products. J Appl Polym Sci 46:829–834

    CAS  Google Scholar 

  528. Labrecque LV, Kumar RA, Davé V, Gross RA, McCarthy SP (1997) Citrate esters as plasticizers for poly(lactic acid). J Appl Polym Sci 66:1507–1513

    CAS  Google Scholar 

  529. Ke T, Sun XS (2003) Thermal and mechanical properties of poly(lactic acid)/starch/methylenediphenyl diisocyanate blending with triethyl citrate. J Appl Polym Sci 88:2947–2955

    CAS  Google Scholar 

  530. Holster RA (2008) Thermal analysis of glycerol citrate/starch blends. J Appl Polym Sci 110:1498–1501

    Google Scholar 

  531. Tanigawa J, Miyoshi N, Sakurai K (2008) Characterization of chitosan/citrate and chitosan/acetate films and applications for wound healing. J Appl Polym Sci 110:608–615

    CAS  Google Scholar 

  532. Bednarz S, Lukasiewicz M, Mazela W, Pajda M, Kasprzyk W (2011) Chemical structure of poly(β-cyclodextrin-co-citric acid). J Appl Polym Sci 119:3511–3520

    CAS  Google Scholar 

  533. Tisserat B, O’kuru RH, Hwang HS, Mohamed AA, Holser R (2012) Glycerol citrate polyesters produced through heating without catalysis. J Appl Polym Sci 125:3429–3437

    CAS  Google Scholar 

  534. Adeli M, Rasoulian R, Saadatmehr F, Zabihi G (2013) Hyperbranched poly(citric acid) and its application as anticancer drug delivery system. J Appl Polym Sci 129:3665–3671

    CAS  Google Scholar 

  535. Schroeter G, Schmitz L (1902) On citric acid dimethyl ester (citrodimethyl ester acid). Ber Dtsch Chem Ges 38:2085–2088

    Google Scholar 

  536. Wolfrum L, Pinnow J (1918) Ethyl hydrogen ester citrates. J Praktische Chemie (Leipzig) 97:23–50

    CAS  Google Scholar 

  537. Canapary RC, Bruing PF (1955) Continuous esterification of citric acid aconitic acids. Ind Chem Soc 47:797–800

    CAS  Google Scholar 

  538. Kolah AK, Asthana NS, Vu DT, Lira CT, Miller DJ (2007) Reaction kinetics of the catalytic esterification of citric acid with ethanol. Ind Eng Chem Res 46:3180–3187

    CAS  Google Scholar 

  539. Maier HG, Ochs H (1973) Structure of the heat-formed esters from glucose and citric acid. Chem Mikrobiol Technol Lebensm 2:79–82

    CAS  Google Scholar 

  540. Dermer OC, King J (1943) N-benzylamides as derivatives for identifying the acyl groups in esters. J Org Chem 8:138–173

    Google Scholar 

  541. Pinnow J (1918) Hydrolysis of triethyl citrate and diethyl hydrogen citrates. Z Elekrochem Angew Physik 24:21–36

    CAS  Google Scholar 

  542. Pearce KN, Creamer LK (1975) The complete ionization scheme for citric acid. Aust J Chem 28:2409–2415

    CAS  Google Scholar 

  543. Hirota K, Kitagawa H, Shimamura M, Ohmori S (1980) A facile preparation of asym-monomethyl, sym-monomethyl and asym-dimethyl citrate. Chem Lett 9:191–194

    Google Scholar 

  544. Donaldson WE, McCleary RF, Degering EF (1934) Some citrate derivatives and their properties. J Am Chem Soc 56:459–460

    CAS  Google Scholar 

  545. Pebal L (1852) On the constitution of citric acid. Ann Chim Pharm 52:78

    Google Scholar 

  546. Sarandinaki M (1872) Citric acid and its derivatives. (Presented by Felix Wreden). Ber Dtsch Chem Ges 5:1100–1101

    Google Scholar 

  547. Kaemmerer H (1875) Hydrocitric acid, amidocitric triamide and monoethylcitric acid. Ber Dtsch Chem Ges 8:732–740

    Google Scholar 

  548. Behrmann A, Hofmann AW (1884) Amides of citric acid and their conversion into pyridine-derivatives. Ber Dtsch Chem Ges 17:2681–2694

    Google Scholar 

  549. Ruhemann S (1887) XLI Formation of pyridine-derivatives from citric acid and, on the constitution of pyridine. J Chem Soc 51:403–409

    CAS  Google Scholar 

  550. Conen J (1879) Derivatives of triethyl citrate. Ber Dtsch Chem Ges 12:1635–1635

    Google Scholar 

  551. Bertram W (1905) Action of aniline on anhydrocarboxylic acids. Ber Dtsch Chem Ges 38:1615–1625

    CAS  Google Scholar 

  552. Higuchi T, Miki T (1961) Reversible formation of amides from free carboxylic acid and amine in aqueous solution. J Am Chem Soc 83:3899–3901

    Google Scholar 

  553. Higuchi T, Miki T, Shah AC, Herd AK (1963) Facilitated reversible formation of amides from carboxylic acids in aqueous solution. Intermediate production of acid anhydride. J Am Chem Soc 85:3655–3660

    CAS  Google Scholar 

  554. Higuchi T, Eriksson SO, Uno H, Windheuser JJ (1964) Facilitated reversible formation of amides from carboxylic acids in aqueous solution. III. Reaction of citric acid with aromatic amines. J Pharm Sci 53(3):280–285

    CAS  Google Scholar 

  555. Cier A, Drevon B (1954) Pharmacology of anilides and anils of citric and aconitic acid. Ann Pharm Franc 12:689–697

    CAS  Google Scholar 

  556. Leurier A, Cier A, Drevon B (1954) Products of the reaction of aniline with citric and acotinic acids. Bull Soc Chim 1091–1096 (France)

    Google Scholar 

  557. Gibson F, Magrath DI (1969) The isolation and characterization of a hydroxamic acid (aerobactin) formed by Aerobacter Aerogenes 62-I. Biochim Biophys Acta 192:175–184

    CAS  Google Scholar 

  558. Mullis KB, Pollack JR, Neilands JB (1971) Structure of schizokinen and an iron-transport compound from Bacillus megaterium. Biochemistry 10:4894–4898

    CAS  Google Scholar 

  559. Simpson FB, Neilands JB (1976) Siderochromes in cyanophyceae: isolation and characterization of schizokinen from Anabaena sp. J Phycol 12:44–48

    Google Scholar 

  560. Neilands JB (1977) Siderophores biochemical ecology and mechanism of iron transport in Enterobacteria. In: Advances in Chemistry, Bioinorganic Chemistry – II, Chapter 1. American Chemical Society, Washington DC, pp 4–32

    Google Scholar 

  561. Harris WR, Carrano CJ, Raymond KN (1979) Coordination chemistry of microbial ion transport compounds. 16. Isolation, characterization, and formation constants of ferric aerobactin. J Am Chem Soc 101:2722–2727

    CAS  Google Scholar 

  562. Bailey KM, Taub FB (1980) Effects of hydroxamate siderophores (strong Fe(III) chelators) on the growth of algae. J Phycol 16:333–339

    Google Scholar 

  563. Lammers PJ, Sanders-Loehr J (1982) Active transport of ferric schizokinen in Anabaena sp. J Bacteriol 151:288–294

    CAS  Google Scholar 

  564. Lee BH, Miller MJ (1983) Natural ferric ionophore: total synthesis of schizokinen, schizokinen A and arthrobactin. J Org Chem 48:24–31

    CAS  Google Scholar 

  565. Appanna DL, Grund BJ, Szczepan EW, Viswanatha T (1984) Aerobactin synthesis in cell-free system of Aerobacter aerogenes 62-I. Biochim Biophys Acta 801:437–443

    CAS  Google Scholar 

  566. Plowman JE, Loehr TM, Goldman SP, Sanders-Loehr J (1984) Structure and siderophore activity of ferric schizokinen. J Inorg Biochem 20:193–197

    Google Scholar 

  567. Bergeron RJ (1984) Synthesis and solution structure of microbial siderophores. Chem Rev 84:587–602

    CAS  Google Scholar 

  568. Milewska MJ, Chimiak A, Gĺowacki Z (1987) Synthesis of schizokinen homoschizokinen, its imide and the detection of imide with 13C-NMR spectroscopy. J Prakt Chemie 329:447–456

    CAS  Google Scholar 

  569. Crichton RR, Charloteaux-Wauters M (1987) Iron transport and storage. Eur J Biochem 164:485–506

    CAS  Google Scholar 

  570. Konerschny-Rapp S, Jung G, Meines J, Zähner H (1990) Staphyloferrin A: a structurally new siderophores from staphylococci. Eur J Biochem 191:65–74

    Google Scholar 

  571. Guerinot ML, Meidl EJ, Plessner O (1990) Citrate as a siderophore in Bradyrhizobium japonicum. J Bacteriol 172:3298–3303

    CAS  Google Scholar 

  572. Milewska MJ, Chimiak J, Neilands JB (1991) Synthesis of amino analogs of citric acid siderophores. Z Naturforsch 46B:117–122

    Google Scholar 

  573. Bergeron RJ, Phanstiel O (1992) The total synthesis of nannochelin: a novel cinnamoyl hydroxamate – containing siderophores. J Org Chem 57:7140–7143

    CAS  Google Scholar 

  574. Ghosh A, Miller MJ (1993) Synthesis of novel citrate-based siderophores and siderophore-β-lactam conjugates. Iron transport-mediated drug delivery. J Org Chem 58:7652–7659

    CAS  Google Scholar 

  575. Okujo N, Sakakibara Y, Yoshida T, Yamamoto S (1994) Structure of acinetoferrin, a new citrate-based dihydroxamate from Acinetobacter haemolyticus. BioMetals 7:170–176

    CAS  Google Scholar 

  576. Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Org Chem 45:26723–26726

    Google Scholar 

  577. Hu X, Boyer GL (1995) Isolation and characterization of the siderophores N-deoxyschizokinen from Bacillus megaterium ATCC. BioMetals 8:357–364

    CAS  Google Scholar 

  578. Carrano CJ, Drechsel H, Kaiser D, Jung G, Matzanke B, Wilkenmann G, Rochen N, Albrecht-Gary AM (1996) Coordination chemistry of the carboxylate type siderophore rhizoferrin: the iron(III) complex and its metal analogs. Inorg Chem 35:6429–6436

    CAS  Google Scholar 

  579. Wang QX, Phanstiel O (1998) Total synthesis of acenetoferrrin. J Org Chem 63:1491–1495

    CAS  Google Scholar 

  580. Gardner RA, Ghobrial G, Naser SA, Phanstiel O (2004) Synthesis and biological evaluation of new acinetoferrin homologues for use as iron transport probes in mycobacteria. J Med Chem 47:4933–4940

    CAS  Google Scholar 

  581. Drechsel H, Winkelmann G (2005) The configuration of the chiral carbon atoms in staphyloferrin A and analysis of transport properties in Staphylococcus aureus. BioMetals 18:75–81

    CAS  Google Scholar 

  582. Butler A (2005) Marine siderophores and microbial iron mobilization. BioMetals 18:369–374

    CAS  Google Scholar 

  583. Oves-Costales D, Kadi N, Fogg MJ, Song L, Wilson KS, Challis GL (2007) Enzymatic logic of anthrax stealth siderophore biosynthesis: AsbA catalyzes ATP-dependent condensation of citric acid and spermidine. J Am Chem Soc 129:8416–8417

    CAS  Google Scholar 

  584. Tong WH, Rouault TA (2007) Metabolic regulation of citrate and iron by aconitases: role of iron-sulfur cluster biogenesis. BioMetals 20:549–564

    CAS  Google Scholar 

  585. Krewulak KA, Vogel HJ (2008) Structural biology of bacterial iron uptake. Biochem Biophys Acta 1778:1781–1804

    CAS  Google Scholar 

  586. Holinsworth B, Martin JD (2009) Siderophore production by marine-derived fungi. BioMetals 22:625–632

    CAS  Google Scholar 

  587. Sandy M, Butler A (2009) Microbial iron acquisition: marine and terrestrial siderophores. Chem Rev 109:4580–4595

    CAS  Google Scholar 

  588. Butler A, Theisen RM (2010) Siderophore coordination chemistry: reactivity of marine siderophores. Chem Rev 254:288–296

    CAS  Google Scholar 

  589. Gauglitz JM, Zhou H, Butler A (2012) A suite of citrate-derived siderophores from a marine Vibrio species isolated following the Deepwater Horizon oil spill. J Inorg Biochem 107:90–95

    CAS  Google Scholar 

  590. Küpper FC, Carrano CJ, Kuhn JU, Butler A (2006) Photoreactivity of iron(III) – aerobactin: photoproduct structure and iron(III) coordination. Inorg Chem 45:6028–6033

    Google Scholar 

  591. Guo H, Naser SA, Ghobrial G, Phanstiel O (2002) Synthesis and biological evaluation of new citrate-based siderophores as potential probes for the mechanism iron uptake in mycobacteria. J Med Chem 45:2056–2063

    CAS  Google Scholar 

  592. Bergeron RJ, Xin MG, Smith RE, Wollenweber M, McManis JS, Ludin C, Abboud KA (1997) Total synthesis of rhizoferrin, an iron chelator. Tetrahydron 53:427–437

    CAS  Google Scholar 

  593. Mulqueen GC, Pattenden G, Whiting DA (1993) Synthesis of the hydroxamate siderophore Nannochelin A. Tetrahydron 49:9137–9142

    CAS  Google Scholar 

  594. Bergeron RJ, Huang G, Smith RE, Bharti N, McManis JS, Butler A (2003) Total synthesis and structure revision of pectrobactin. Tetrahydron 59:2007–2014

    CAS  Google Scholar 

  595. Byers BR, Powell MV, Lankford CE (1967) Iron chelating hydroxamic acid (schizokinen) active in initiation of cell division in Bacillus megaterium. J Bacteriol 73:286–294

    Google Scholar 

  596. Luo M, Fadeev EA, Groves JT (2005) Membrane dynamics of the amphiphilic siderophore acinetoferrin. J Am Chem Soc 127:1726–1736

    CAS  Google Scholar 

  597. Drechsel H, Metzger J, Freund S, Jung G, Boelaert JR, Winkelmann G (1991) Rhizoferrin – a novel siderophore from the fungus Rhizopus microsporus var. rhizopodiformis. BioMetals 4:238–243

    CAS  Google Scholar 

  598. Drechsel H, Jung G, Winkelmann G (1992) Stereochemical characterization of rhizoferrin and its dehydration producta. BioMetals 5:141–148

    CAS  Google Scholar 

  599. Persmark M, Pittman P, Buyer JS, Schwyn B, Gill PR Jr, Neiland JB (1993) Isolation and structure of rhizobactin 1021, a siderophores from alfalfa symbiont Rhizobium meliloti 1021. J Am Chem Soc 115:3950–3956

    CAS  Google Scholar 

  600. Drechsel H, Tschierske M, Thieken A, Jung G, Zähner H, Wilkelmann G (1995) The carboxylate type siderophores rhizoferrin and its analogs produced by directed fermentation. J Ind Microbiol 14:105–112

    CAS  Google Scholar 

  601. Zhang G, Amin SA, Küpper FC, Holt PD, Carrano CJ, Butler A (2009) Ferric stability constants of representative marine siderophores: marinobactins, aquachelins, and petrobactin. Inorg Chem 48:11466–11473

    CAS  Google Scholar 

  602. De Malde M, Alneri E (1956) Citrazinic acid amide from citric acid. Chim Industria 38:473–479 (Milan)

    CAS  Google Scholar 

  603. Paleckiene R, Sviklas A, Slinksiene R (2005) Reaction of urea with citric acid. Russ J Appl Chem 78:1651–1655

    CAS  Google Scholar 

  604. Brettle R (1972) Citric acid chloralide. J Chem Soc Parkin Trans I 611–613

    Google Scholar 

  605. Koh LL, Huang HH, Chia LHL, Liang EP (1995) Structures of chloralide, D-lactic acid chloralide, malic acid chloralide and citric acid chloralide. J Mol Struct 351:147–163

    CAS  Google Scholar 

  606. Habicht E, Schneeberger P (1956) Synthesis of substituted citric acids. Helv Chim Acta 39:1316–1319

    CAS  Google Scholar 

  607. Brandange S, Dahlman O, Morch L (1981) Highly selective re additions to a masked oxaloacetate. Absolute configurations of fluorocitric acids. J Am Chem Soc 103:4452–4458

    Google Scholar 

  608. Pette JW (1934) Condensation of polyhydric alcohols, sugars and hydroxy-acids with aldehydes under influence of phosphorous pentoxide. Rec Trav Chim Pay-Bas et de la Belg 53:967–981

    CAS  Google Scholar 

  609. Katritzky AR, Fang Y, Prakash I (1999) The preparation of L,L-aspartame citric amide. J Indian Chem Soc 76:672–675

    Google Scholar 

  610. Fisher HOL, Dangschat G (1934) Quinic acid and derivatives. IV. Degradation of quinic acid to citric acid. Helv Chim Acta 17:1196–1200

    Google Scholar 

  611. Marchewka MK, Pietraszko A (2003) Structure and spectra of melaminium citrate. J Phys Chem Solids 64:2169–2181

    CAS  Google Scholar 

  612. Atalay Y, Avci D (2007) Theoretical studies of molecular structure and vibrational spectra of melaminium citrate. Spectrochim Acta 67A:327–333

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Apelblat .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Apelblat, A. (2014). Citric Acid Chemistry. In: Citric Acid. Springer, Cham. https://doi.org/10.1007/978-3-319-11233-6_4

Download citation

Publish with us

Policies and ethics