Skip to main content

Dissociation Equilibria in Solutions with Citrate Ions

  • Chapter
  • First Online:
Citric Acid
  • 2538 Accesses

Abstract

ChapterĀ 3 is dedicated to comprehensive presentation of mathematical procedures associated with dissociation of citric acid in water and in electrolyte solutions. Available in the literature dissociation constants are tabulated and their accuracy examined. Based on temperature and pressure dependence of dissociation constants, the thermodynamic functions linked with dissociation process are discussed in a detail. It also includes description of many aspects connected with compositions and applications of citrate buffers. Besides, it gives a very extensive number of references related to citric acid complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Loewenstein A, Roberts JD (1960) The ionization of citric acid studied by the nuclear magnetic resonance technique. J Am Chem Soc 82:2705ā€“2710

    CASĀ  Google ScholarĀ 

  2. Martin RB (1961) A complete ionization scheme for citric acid. J Phys Chem 65:2053ā€“2055

    CASĀ  Google ScholarĀ 

  3. Pearce KN, Creamer LK (1975) The complete ionization scheme for citric acid. Aust J Chem 28:2409ā€“2415

    CASĀ  Google ScholarĀ 

  4. Tananaeva NN, Trunova EK, Kostromina NA, Shevchenko YB (1990) Study of the dissociation of tartaric and citric acids by the carbon-13 NMR. Theor Exp Chem 26:706ā€“710

    CASĀ  Google ScholarĀ 

  5. Barradas RG, Donaldson GJ, Shoesmith DW (1973) Double layer studies of aqueous sodium citrate solution at the mercury electrode. J Electroanal Chem Interfacial Electrochem 41:243ā€“258

    CASĀ  Google ScholarĀ 

  6. Bates RG, Pinching GD (1949) Resolution of the dissociation constants of citric acid at 0ā€“50Ā° and determination of certain related thermodynamic functions. J Am Chem Soc 71:1274ā€“1283

    CASĀ  Google ScholarĀ 

  7. De Robertis A, De Stefano C, Rigano C, Sammartano S (1990) Thermodynamic parameters of the protonation of carboxylic acids in aqueous tetraethylammonium iodide solutions. J Solut Chem 19:569ā€“587

    CASĀ  Google ScholarĀ 

  8. BĆ©nĆ©zeth P, Palmer DA, Wesolowski DJ (1997) Dissociation quotients for citric acid in aqueous sodium chloride media to 150ā€‰Ā°C. J Solut Chem 26:63ā€“84

    Google ScholarĀ 

  9. Apelblat A, Barthel J (1991) Conductance studies on aqueous citric acid. Z Naturforsch 46a:131ā€“140

    Google ScholarĀ 

  10. Yadav J, Ghosh AK, Ghosh JC (1989) First dissociation constant and the related thermodynamic quantities of citric acid from 283.15 to 323.15Ā K. Proc Natl Acad Sci India 59A:389ā€“394

    Google ScholarĀ 

  11. Saeedudin, Khanzade AWK, Mufti AT (1996) Dissociation constant studies of citric acid at different temperatures and at different organic-water solvent systems. J Chem Soc Pak 18:81ā€“87

    Google ScholarĀ 

  12. Jones HC (1912) The electrical conductivity, dissociation and temperature coefficients of conductivity (from 0 to 65Ā°) of aqueous solutions of a number of salt and organic acids. Carnegie Institution of Washington, Washington (Publ. NoĀ 170)

    Google ScholarĀ 

  13. Apelblat A, Neueder R, Barthel J (2006) Electrolyte data collection. Electrolyte conductivities, ionic conductivities and dissociation constants of aqueous solutions of organic dibasic and tribasic acids. Chemistry Data Series vol.Ā XII, Part 4c. Dechema, Frankfurt a.Ā M.

    Google ScholarĀ 

  14. Crea F, De Stefano C, Millero FJ, Sharma VK (2004) Dissociation constants for citric acid in NaCl and KCl solutions and their mixtures at 25ā€‰Ā°C. J Solut Chem 33:1349ā€“1366

    CASĀ  Google ScholarĀ 

  15. Patterson BA, Wooley EM (2001) Thermodynamics of proton dissociations from aqueous citric acid: apparent molar volumes and apparent heat capacities of citric acid and its sodium salts at the pressure 0.35Ā MPa and at temperatures from 278.15 to 393.15Ā K. J Chem Thermodyn 33:1735ā€“1764

    CASĀ  Google ScholarĀ 

  16. Daniele PG, De Robertis A, De Stefano C, Gianguzza A, Sammartano S (1990) Studies on polyfunctional o-ligands. Formation thermodynamics of simple and mixed alkali metal complexes with citrate at different ionic strengths in aqueous solution. J Chem Res S(300):(M) 2316

    Google ScholarĀ 

  17. Liu L, Guo OX (2001) Isokinetic relationship isoequilibrium relationship, and enthalpy ā€“ entropy compensation. Chem Rev 101:673ā€“695

    CASĀ  Google ScholarĀ 

  18. Li NC, Tang P, Mathur R (1961) Deuterium isotope effects on dissociation constants and formation constants. J Phys Chem 65:1074ā€“1076

    CASĀ  Google ScholarĀ 

  19. Robinson RA, Paabo M, Bates RG (1969) Deuterium isotope effect on the dissociation of weak acids in water and deuterium oxide. J Res Nat Bur Stand 73 A:299ā€“305

    Google ScholarĀ 

  20. King EJ (1965) Acid-Base Equilibria. Pergamon, New York

    Google ScholarĀ 

  21. Daniele PG, De Stefano C, Prenesti E, Sammartano S (1994) Weak complex formation in aqueous solution. Curr Top Solut Chem 1:95ā€“106

    Google ScholarĀ 

  22. Daniele PG, Foti C, Gianguzzo A, Prenesti E, Sammartano S (2008) Weak alkali and alkali earth metal complexes of low molecular weight ligands in aqueous solution. Coord Chem Rev 252:1093ā€“1107

    CASĀ  Google ScholarĀ 

  23. Schwarz JA, Contescu C, Popa VT, Contescu A, Lin Y (1996) Determination of dissociation constants of weak acid by deconvolution of proton binding isotherms derived from potentiometric data. J Solut Chem 25:877ā€“894

    CASĀ  Google ScholarĀ 

  24. Papanastasiou G, Ziogas I (1989) Acid-base equilibria in binary water/organic solvent systems. Dissociation of citric acid in water/dioxin and water methanol solvent systems at 25ā€‰Ā°C. Talanta 36:977ā€“983

    CASĀ  Google ScholarĀ 

  25. MarquĆ©s I, Fonrodona G, ButĆ­ S, Barbosa J (1999) Solvent effects on mobile phases used in liquid chromatography: factor analysis applied to protonation equilibria and solvatochromic parameters. Trends Anal Chem 18:472ā€“479

    Google ScholarĀ 

  26. Canals I, Oumada FZ, RosĆ©s M, Bosch E (2001) Retention of ionizable compounds on HPLC. 6. pH measurements with the glass electrode in methanol-water mixtures. J Chromatogr A 911:191ā€“202

    CASĀ  Google ScholarĀ 

  27. Garrido G, RĆ fols C, Bosch E (2006) Acidity constants in methanol/water mixtures of polycarboxylic acids used in drug salt preparations. Potentiometric determination of aqueous pKa values of quetiapine formulated as hemifumarate. Eur J Pharm Sci 28:118ā€“127

    CASĀ  Google ScholarĀ 

  28. Papanastasiou G, Ziogas I (1989) Acid-base equilibria in ternary water/ methanol/ dioxane solvent systems. Determination of pK values of citric acid at 25ā€‰Ā°C. Anal Chim Acta 222:198ā€“200

    Google ScholarĀ 

  29. Kosmulski M, PrĆ³chniak P, Mączka E (2010) Surface-induced electrolytic dissociation of weak acid in ethanol. J Phys Chem C 114:17734ā€“17740

    CASĀ  Google ScholarĀ 

  30. Hamann SD (1982) The influence of pressure on ionization equilibria in aqueous solutions. J Solut Chem 11:63ā€“68

    CASĀ  Google ScholarĀ 

  31. Kitamura Y, Itoh T (1987) Reaction volume of protonic ionization for buffering agents. Prediction of pressure dependence of pH and pOH. J Solut Chem 16:715ā€“725

    CASĀ  Google ScholarĀ 

  32. Neuman Jr, Kauzmann W, Zipp A (1973) Pressure dependence of weak acid ionization in aqueous buffers. J Phys Chem 77:2687ā€“2691

    Google ScholarĀ 

  33. Kauzmann W, Bodanszky A, Rasper J (1962) Volume changes in protein reactions. II Comparison of ionization in proteins and small molecules. J Am Chem Soc 84:1977ā€“1788

    Google ScholarĀ 

  34. Samaranayake CP, Sastry SK (2010) In situ measurement of pH under high pressure. J Phys Chem B 114:13326ā€“13332

    CASĀ  Google ScholarĀ 

  35. Min SK, Samaranayake CP, Sastry SK (2011) In situ measurements of reaction volume and calculation of pH of weak acid buffer solutions under high pressure. J Phys Chem B 115:6564ā€“6571

    CASĀ  Google ScholarĀ 

  36. Hendriks G, Uges DRA, Franke JP (2008) pH adjustment of human blood plasma prior to bioanalytical sample preparation. J Pharm Biomed Anal 47:126ā€“133

    CASĀ  Google ScholarĀ 

  37. Dawson TL (1981) pH and its importance in textile coloration. J Soc Dyers Color 97:115ā€“125

    CASĀ  Google ScholarĀ 

  38. Erga O (1980) SO2 recovery by a sodium citrate scrubbing. Chem Eng Sci 35:162ā€“169

    CASĀ  Google ScholarĀ 

  39. Dutta BK, Basu RK, Pandit A, Ray P (1987) Absorption of SO2 in citric acid-sodium citrate buffer solution. Ind Eng Chem Res 26:1291ā€“1296

    CASĀ  Google ScholarĀ 

  40. McIlvaine TC (1921) A buffer solution for colorimetric comparison. J Biol Chem 49:183ā€“186

    CASĀ  Google ScholarĀ 

  41. Elving PJ, Markowitz JM, Rosenthal I (1956) Preparation of buffer systems of constant ionic strength. Anal Chem 7:1179ā€“1180

    Google ScholarĀ 

  42. Britton HTS, Robinson RA, (1931) Universal buffer solutions and the dissociation constant of veronal. J Chem Soc 1456ā€“1462

    Google ScholarĀ 

  43. Britton HTS, Welford G (1937) The standardization of some buffer solutions at elevated temperatures. J Chem Soc 1848ā€“1852

    Google ScholarĀ 

  44. Guiomar MJ, Lito HM, Filomena M, CamƵes GFC, Ferra MIA, Covington AK (1990) Calculation of reference pH values for standard solutions from the corresponding dissociation constants. Anal Chim Acta 239:129ā€“137

    Google ScholarĀ 

  45. Guiomar MJ, Lito HM, Filomena M, CamƵes GFC, Covington AK (2003) Effect of citrate impurities on the reference pH value of potassium dihydrogen citrate buffer solution. Anal Chim Acta 482:157ā€“146

    Google ScholarĀ 

  46. Gibbs CP, Spohr L, Schmidt D (1982) The effectiveness of sodium citrate as antacid. Anesthesiology 54:44ā€“46

    Google ScholarĀ 

  47. Reisner LS (1982) Bicitra is 0.3 molar sodium citrate. Anesth Analg 61:801

    CASĀ  Google ScholarĀ 

  48. James CF, Gibbs CP (1983) An evaluation of sodium citrate solutions. Anesth Analg 62:241ā€“242

    CASĀ  Google ScholarĀ 

  49. Hastings AB, McLean FC, Eichelberger L, Hall JL, Da Costa E (1934) The ionization of calcium, magnesium, and strontium citrates. J Biol Chem 107:351ā€“370

    CASĀ  Google ScholarĀ 

  50. Whittier EO (1938) Buffer intensities of milk and milk constituents. III. Buffer action of calcium citrate. J Biol Chem 123:283ā€“294

    CASĀ  Google ScholarĀ 

  51. Davies CW, Hoyle BE (1953) The interaction of calcium ions with some phosphate and citrate buffers. J Chem Soc 4134ā€“4136

    Google ScholarĀ 

  52. Davies CW, Hoyle BE (1955) The interaction of calcium ions with some citrate buffers: a correction. J Chem Soc 1038

    Google ScholarĀ 

  53. Bauduin P, Nohmie F, Tourand D, Neueder R, Kunz W, Ninham BW (2006) Hofmeister specific-ion effects on enzyme activity and buffer pH: Horseradish peroxidase in citrate buffer. J Mol Liq 123:14ā€“19

    CASĀ  Google ScholarĀ 

  54. Orii Y, Morita M (1977) Measurements of the pH of frozen buffer solutions by using pH indicator. J Biochem 81:163ā€“168

    CASĀ  Google ScholarĀ 

  55. Shalaev EY, Johnson-Elton TD, Chang L, Pikal MJ (2002) Thermophysical properties of pharmaceutically compatible buffers at sub-zero temperatures: implications for freeze-drying. Pharm Res 19:195ā€“201

    CASĀ  Google ScholarĀ 

  56. Sundaramurthi P, Suryanayanan R (2011) Predicting the crystallization propensity of carboxylic acid buffers in frozen systems ā€“ relevance to freeze-drying. J Pharm Sci 100:1288ā€“1293

    CASĀ  Google ScholarĀ 

  57. Sundaramurthi P, Suryanayanan R (2011) Thermophysical properties of carboxylic and amino acid buffers at subzero temperatures: relevance to frozen state stabilization. J Phys Chem B 115:7154ā€“7164

    CASĀ  Google ScholarĀ 

  58. Bosch E, Bou P, Allemann H, RosĆ©s M (1996) Retention of ionizable compounds on HPLC. pH scale in methanol-water and the pK and pH values of buffers. Anal Chem 68:3651ā€“3657

    CASĀ  Google ScholarĀ 

  59. Bosch E, Espinosa S, RosĆ©s M (1998) Retention of ionizable compounds in high-performance liquid chromatography. III. Variation of pK values of buffers in acetonitrile-water mobile phases. J Chromatogr A 824:137ā€“146

    CASĀ  Google ScholarĀ 

  60. Barbosa J, BarrĆ³n D, ButĆ­ S (1999) Chromatographic behaviour of ionizable compounds in liquid chromatography. Part 1. pH scale, pKa and pHs values for standard buffers in tetrahydrofuran-water. Anal Chim Acta 389:31ā€“42

    CASĀ  Google ScholarĀ 

  61. Canals I, Portal JA, Bosch E, RosĆ©s M (2000) Retention of ionizable compounds on HPLC. 4. Mobile phase pH measurement in methanol/water. Anal Chem 72:1802ā€“1809

    CASĀ  Google ScholarĀ 

  62. Espinosa S, Bosch E, RosĆ©s M (2000) Retention of ionizable compounds on HPLC. 5. pH scales and the retention of acids and bases with acetonitrile-water mobile phases. Anal Chem 72:5193ā€“5200

    CASĀ  Google ScholarĀ 

  63. Espinosa S, Bosch E, RosĆ©s M (2002) Retention of ionizable compounds in high-performance liquid chromatography. IX. Modeling retention in reverse-phase liquid chromatography as a function of pH and solvent composition with acetonitrile-water mobile phases. J Chromatogr A 947:47ā€“58

    CASĀ  Google ScholarĀ 

  64. Espinosa S, Bosch E, RosĆ©s M (2002) Retention of ionizable compounds on HPLC. 12. The properties of liquid chromatography buffers in acetonitrile-water mobile phases that influence HPLC retention. Anal Chem 74:3809ā€“3818

    CASĀ  Google ScholarĀ 

  65. Subarats X, Bosch E, RosĆ©s M (2004) Retention of ionizable compounds on high-performance liquid chromatography. XV. Estimation of the pH variation of aqueous buffers with the change of the acetonitrile fraction of the mobile phase. J Chromatogr A 1059:33ā€“42

    Google ScholarĀ 

  66. Subarats X, Bosch E, RosĆ©s M (2007) Retention of ionizable compounds on high-performance liquid chromatography. XVII. Estimation of the pH variation of aqueous buffers with the change of the methanol fraction of the mobile phase. J Chromatogr A 1138:203ā€“215

    Google ScholarĀ 

  67. Å Ć¼cha L, KotrlĆ½ S (1972) Solution Equilibria in Analytical Chemistry. Reinhold, London

    Google ScholarĀ 

  68. Butler JN, Cogley DR (1998) Ionic Equilibrium. Solubility and pH Calculations. Wiley, New York

    Google ScholarĀ 

  69. Okamoto H, Mori K, Ohtsuka K, Ohuchi H, Ishii H (1997) Theory and computer programs for calculating solution pH, buffer formula, and buffer capacity for multiple component system at a given ionic strength and temperature. Pharm Res 14:299ā€“302

    CASĀ  Google ScholarĀ 

  70. Dougherty DP, Neta ERDC, McFeeters RF, Lubkin SR, Breidt F Jr (2006) Semi-mechanistic partial buffer approach to modeling pH, the buffer properties, and the distribution of ionic species in complex solutions. J Agric Food Chem 54:6021ā€“2029

    CASĀ  Google ScholarĀ 

  71. Hasting AB, Van Slyke DD (1922) The determination of the three dissociation constants of citric acid. J Biol Chem 53:269ā€“276

    Google ScholarĀ 

  72. Van Slyke D (1952) On the measurement of buffer values and on the relationship of buffer value to the dissociation constant of the buffer and the concentration and reaction of the buffer solution. J Biol Chem 52:525ā€“570

    Google ScholarĀ 

  73. Berto S, Crea F, Daniele PG, Gianguzza A, Pettignano A, Sammartano S (2012) Advances in the investigation of dioxauranium(VI) complexes of interest for natural fluids. Coord Chem Rev 256:63ā€“81

    CASĀ  Google ScholarĀ 

  74. Cleveland JM (1970) Aqueous coordination complexes of plutonium. Coord Chem Rev 5:101ā€“137

    CASĀ  Google ScholarĀ 

  75. Bodor A, BanyĆ”i I, ZĆ©kĆ”ny L, TĆ³th I (2002) Slow dynamics of aluminium-citrate complexes studied by 1H and 13C-NMR spectroscopy. Coord Chem Rev 228:163ā€“173

    CASĀ  Google ScholarĀ 

  76. Gautier-Luneau I, Merle C, Phanon D, Lebrun C, Biaso F, Serratrice G, Pierre JL (2005) New trends in chemistry of iron(III) citrate complexes: correlation between X-ray structures and solution species probed by electrospray mass spectrometry and kinetics of iron uptake from citrate by iron chelates. Chem Eur J 11:2207ā€“2219

    CASĀ  Google ScholarĀ 

  77. Bermejo E, Carballo R, CastiƱeiras A, Lago AB (2013) Coordination of Ī±-hydroxycarboxylic acids with first-row transition ions. Coord Chem Rev 257:2639ā€“2651

    CASĀ  Google ScholarĀ 

  78. Voskresenskaya OO (2013) Kinetic and Thermodynamic Stability of Cerium(IV) Complexes with a Series of Aliphatic Organic Compounds. Nova Publishers, New York

    Google ScholarĀ 

  79. SillĆ©n LG, Martell AE (1964) Stability Constants of Metal-Ion Complexes. Special publ., No.Ā 17. The Chemical Society, London

    Google ScholarĀ 

  80. SillĆ©n LG, Martell AE (1971) Stability constants of Metal-Ion complexes. Special publ., NoĀ 25. Suppl.Ā 1. The Chemical Society, London

    Google ScholarĀ 

  81. Martell AE, Smith RM (1977) Critical Stability Constants, volĀ 3. Other organic ligands. Plenum, New York

    Google ScholarĀ 

  82. Perrin DD (1989) Stability Constants of Metal-Ion Complexes. Part B. Organic ligands, volĀ 6. (1979 Suppl.Ā 2). Pergamon, Oxford

    Google ScholarĀ 

  83. Martell AE, Smith RM (1982) Critical Stability Constants, volĀ 5. Suppl.Ā 1. Plenum, New York

    Google ScholarĀ 

  84. Smith RM, Martell AE (1989) Critical Stability Constants, volĀ 6. Suppl.Ā 2. Plenum, New York

    Google ScholarĀ 

  85. Silva AMN, Kong XL, Hider RC (2009) Determination of the pKa value of hydroxyl group in the Ī±-hydroxycarboxylates citrate, malate and lactate by 13C NMR: implications for metal coordination in biological systems. BioMetals 22:771ā€“778

    CASĀ  Google ScholarĀ 

  86. Kolthoff IM, Bosch W (1928) Influence of neutral salts on acid-salt equilibria. II. Dissociation constants of citric acid. Rec Trav Chim Pays-Bas 47:558ā€“575

    CASĀ  Google ScholarĀ 

  87. Bjerrum N, Unmack A (1929) Electrometric measurements with the hydrogen electrode on mixtures of acids and bases with salt. The dissociation constants of water, phosphoric acid, citric acid and glycine. Kgl Danske Videnskab Selskab Math Fys Medd 9:5ā€“206

    CASĀ  Google ScholarĀ 

  88. Timberlake CF (1964) Iron-malate and iron-citrate complexes. J Chem Soc 5078ā€“5085

    Google ScholarĀ 

  89. Litchinsky D, Purdie N, Thomson MB, White WD (1969) A rigorous solution to the problem of interfering dissociation steps in the titration of polybasic acids. Anal Chem 41:1726ā€“1730

    CASĀ  Google ScholarĀ 

  90. Arena G, Cali R, Grasso M, Musumeci S, Sammartano S (1980) The formation of proton and alkali-metal complexes with ligands of biological interest in aqueous solution. Part I. Potentiometric and calorimetric investigation of H+ and Na+ complexes with citrate, tartrate and malate. Thermochim Acta 36:329ā€“342

    CASĀ  Google ScholarĀ 

  91. Foti C, Gianguzza A, Sammartano S (1997) A comparison of equations for fitting protonation constants of carboxylic acids in aqueous tetramethylammonium chloride at various ionic strengths. J Solut Chem 26:631ā€“648

    CASĀ  Google ScholarĀ 

  92. BarrĆ³n D, ButĆ­ S, Ruiz M, Barbosa J (1999) Preferential solvation of the THF-water mixtures. Dissociation constants of acid components of pH reference materials. Phys Chem Chem Phys 1:295ā€“298

    Google ScholarĀ 

  93. Zelenina TE, Zelenin OY (2005) Complexes of citric and tartaric acids with Na and K ions in aqueous solutions. Russ J Coord Chem 31:235ā€“242

    CASĀ  Google ScholarĀ 

  94. Kochergina LA, Vasilā€™ev VP, Krutov DV, Krutova ON (2007) A thermochimical study of acid-base interactions in aqueous solutions of citric acid. Russ J Phys Chem A 81:182ā€“186

    CASĀ  Google ScholarĀ 

  95. Morton C (1928) The ionization of polyhydrion acids. Trans Faraday Soc 24:14ā€“25

    Google ScholarĀ 

  96. Warner RC, Weber I (1953) The cupric and ferric citrate complexes. J Am Chem Soc 75:5086ā€“5094

    CASĀ  Google ScholarĀ 

  97. Cucinotta V, Daniele PG, Rigano C, Sammartano S (1981) The formation of proton and alkali-metal complexes with ligands of biological interest in aqueous solution. Potentiometric and PMR investigations of Li+, Na+, K+, Rb+, Cs+ and NH4 + complexes with citrate. Inorg Chim Acta 56:45ā€“47

    Google ScholarĀ 

  98. Simms HS (1928) The effect of salts on weak electrolytes. I. Dissociation of weak electrolytes in presence of salts. J Phys Chem 33:1121ā€“1141

    Google ScholarĀ 

  99. Adell B (1940) The electrolytic dissociation of citric acid in sodium chloride solutions. Z Phys Chem A187:66ā€“78

    CASĀ  Google ScholarĀ 

  100. De Robertis A, De Stefano C, Foti C (1999) Medium effects on the protonation of carboxylic acids at different temperatures. J Chem Eng Data 44:262ā€“270

    CASĀ  Google ScholarĀ 

  101. GorzsĆ”s A, Getty K, Andersson I Pettersson L (2004) Speciation in the aqueous H+/H2VO4 -/H2O2/citrate system of biomedical interest. Dalton Trans 34:2873ā€“2882

    Google ScholarĀ 

  102. Ɩhman LO, Sjƶberg S (1983) Equilibrium and structural studies of silicon(IV) and aluminium(III). Part 9. A potentiometric study of mono- and poly-nuclear aluminium(III) citrates. J Chem Soc Dalton Trans 8:2513ā€“2517

    Google ScholarĀ 

  103. De Stefano C, Foti C, GiuffrĆØ O, Sammartano S (2001) Dependence on ionic strength of protonation enthalpies of polycarboxylate ions in NaCl aqueous solution. J Chem Eng Data 46:1417ā€“1424

    CASĀ  Google ScholarĀ 

  104. Cruywagen JJ, Van de Water RF (1986) Complexation between molybdenum(VI) and citrate. A potentiometric and calorimetric investigation. Polyhedron 5:521ā€“526

    CASĀ  Google ScholarĀ 

  105. Okac A, Kolaric Z (1959) Potentiometric determination of citrate-zinc complexes. Coll Czech Chem Comm 24:1ā€“8

    CASĀ  Google ScholarĀ 

  106. Tripathy KK, Patnaik RK (1966) Citrate complexes of chromium. J Indian Chem Soc 43:772ā€“780

    Google ScholarĀ 

  107. Kanakare JJ (1972) Determination of dissociation constants of acids and bases by potentiostatic titrarion. Anal Chem 44:2376ā€“2379

    Google ScholarĀ 

  108. Matsushita H, Hironaka H (1975) Determination of dissociation constants by potentiostatic titration. Nippon Kagaku Kaishi 1252ā€“1254

    Google ScholarĀ 

  109. Berto S, Daniele PG, Prenesti E, Laurenti E (2010) Interaction of oxovanadium(IV) with tricarboxylic ligands in aqueous solution: a thermodynamic and spectroscopic study. Inorg Chim Acta 363:3469ā€“3476

    CASĀ  Google ScholarĀ 

  110. Kotsakis N, Raptopoulou CP, Tangoulis V, Terzis A, Giapintzakis J, Jakusch T (2003) Correlations of synthetic, spectroscopic, structural, and speciation studies in the biologically relevant cobalt(II) ā€“ citrate system: the tale of the first aqueous dinuclear cobalt(II) ā€“ citrate complex. Inorg Chem 42:22ā€“31

    CASĀ  Google ScholarĀ 

  111. Grzybowski AK, Tate SS, Datta SR (1970) Magnesium and manganese complexes of citric and isocitric acid. J Chem Soc (A) 241ā€“245

    Google ScholarĀ 

  112. Ramamoorthy S, Manning PG (1973) Equilibrium studies of metal-ion complexes of interest to natural waters. VI. Simple and mixed complexes of Fe(III) involving NTA as primary ligand and a series of oxygen-bounding organic anions as secondary ligands. J Inorg Nucl Chem 35:1571ā€“1575

    CASĀ  Google ScholarĀ 

  113. Bastug AS, GƶktĆ¼rk S, Sismanoglu T (2008) 1:1 Binary complexes of citric acid with metal ions: stability and thermodynamic parameters. Asian J Chem 20:1269ā€“1278

    CASĀ  Google ScholarĀ 

  114. Piispanen J, Lajunen LHJ (1995) Complex formation equilibria of some aliphatic Ī±-hydroxycarboxylic acids. 1. The determination of protonation constants and the study of calcium(II) and magnesium(II) complexes. Acta Chem Scand 49:235ā€“240

    CASĀ  Google ScholarĀ 

  115. Bottari E, Vicedomini M (1973) On the protonation of citrate ions in 2M NaClO4. J Inorg Nucl Chem 35:1657ā€“1663

    CASĀ  Google ScholarĀ 

  116. Thakur P, Mathur JN, Moore RC, Choppin GP (2007) Thermodynamics of dissociation constants of carboxylic acids at high ionic strength and temperature. Inorg Chim Acta 360:3671ā€“3780

    CASĀ  Google ScholarĀ 

  117. Campi E, Ostaconi G, Meirone M, Saini G (1964) Stability of the complexes of tricarbollylic and citric acids with bivalent metal ions in aqueous solution. J Inorg Nucl Chem 26:553ā€“564

    CASĀ  Google ScholarĀ 

  118. Capone S, De Robertis A, De Stefano C, Sammartano S (1986) Formation and stability of zinc(II) and cadmium(II) citrate complexes in aqueous solution at various temperatures. Talanta 33:763ā€“767

    CASĀ  Google ScholarĀ 

  119. Amico P, Daniele PG, Ostacoli G, Arena G, Rizzarelli E, Sammartano S (1980) Mixed metal complexes in solution. Part II. Potentiometric study of heterobinuclear metal(II) ā€“ citrate complexes in aqueous solution. Inorg Chim Acta Lett 44:219ā€“221

    Google ScholarĀ 

  120. Rajan KS, Martell AE (1965) Equilibrium studies of uranyl complexes. III. Interaction of uranyl ion with citric acid. Inorg Chem 4:462ā€“469

    CASĀ  Google ScholarĀ 

  121. Field TB, McCourt JL, McBryde WAE (1974) Composition and stability of iron and copper citrate complexes in aqueous solution. Can J Chem 52:3119ā€“3124

    CASĀ  Google ScholarĀ 

  122. Briggs TN, Stuehr JE (1975) Simultaneous potentiometric determination of precise equivalent points and pK values of two- and three-pK systems. Anal Chem 47:1916ā€“1920

    CASĀ  Google ScholarĀ 

  123. Harris WR, Martell AE (1976) Aqueous complexes of gallium(III). Inorg Chem 15:713ā€“720

    CASĀ  Google ScholarĀ 

  124. Amico P, Daniele PG, Cucinotta V, Rizzarelli E, Sammartano S (1979) Equilibrium study of iron(II) and manganese(II) complexes with citrate ion in aqueous solution: relevance to coordination of citrate to the active site of aconitase and to gastrointestinal absorption of some essential metal ions. Inorg Chim Acta 36:1ā€“7

    CASĀ  Google ScholarĀ 

  125. Manzurola E (1978) Complexes of metal ions with hydroxycarboxylic acids. M.Sc. thesis, Ben-Gurion University of the Negev, Beer Sheva

    Google ScholarĀ 

  126. Migal PK, Sychev AY (1958) Stability of the citrate complexes of some metals. Zhurn Neorg Khim 3:314ā€“324

    CASĀ  Google ScholarĀ 

  127. Tate SS, Grzybowski AK, Datta SR (1965) The stability constants of magnesium citrate complexes. J Chem Soc 3905ā€“3912

    Google ScholarĀ 

  128. Daniele PG, Rigano C, Sammartano S (1983) Ionic strength dependence of formation constants. I. Protonation constants of organic and inorganic acids. Talanta 30:81ā€“87

    CASĀ  Google ScholarĀ 

  129. Garrido G, de Nogales V, RĆ fols C, Bosch E (2007) Acidity of several polyprotic acids, amiodarone and quetiapine hemifumarate in pure methanol. Talanta 73:115ā€“120

    CASĀ  Google ScholarĀ 

  130. Tanganov BB (2007) Acid base equilibria in solutions of polyacid bases (model and experiment): II Thermodynamic dissociation constants of tribasic acids. Russ J Gen Chem 77:1319ā€“1323

    CASĀ  Google ScholarĀ 

  131. Tanganov BB (1981) Determination of thermodynamic constants of citric acid dissociation in dimethylformaamide. Zhurn Obshchei Khim 51:2557ā€“2560

    CASĀ  Google ScholarĀ 

  132. Dash UN (1979) Proton ionization from carboxylic acids. J Electroanal Chem 98:297ā€“304

    Google ScholarĀ 

  133. Garcia MC, Ramis G, Mongay C (1982) A comparative study of the application of the method of least-squares in the potentiometric determination of protonation constants. Talanta 29:435ā€“437

    CASĀ  Google ScholarĀ 

  134. Niebergall PJ, Schnaare RL, Sugita ET (1973) Potentiometric determination of overlapping dissociation constants. J Pharm Sci 62:655ā€“659

    Google ScholarĀ 

  135. Rizkalla EN, Antonious MS, Amis SS (1985) X-ray photoelectron and potentiometric studies of some calcium complexes. Inorg Chim Acta 96:171ā€“178

    CASĀ  Google ScholarĀ 

  136. Grenthe I, Wikberg P (1984) Solution studies of systems with polynuclear formation. 3. The cadmium(II) citrate system. Inorg Chim Acta 91:25ā€“31

    CASĀ  Google ScholarĀ 

  137. Matsushima Y (1963) Determination of complex stability constants by ion exchange method. Extension of Schubertā€™s method to lower pH region. Chem Pharm Bull 11:566ā€“570

    CASĀ  Google ScholarĀ 

  138. Sari H (2001) Determination of stability constants of citrate complexes with divalent metal ions (M2+ā€‰=ā€‰Mg, Ca, Ni, Cu and Zn) aqueous solutions. Energ Educat Sci Technol 6:85ā€“103

    CASĀ  Google ScholarĀ 

  139. Raymond DP, Duffield JR, Williams DR (1987) Complexation of plutonium and thorium in aqueous environments. Inorg Chim Acta 140:309ā€“313

    CASĀ  Google ScholarĀ 

  140. Roos JTH, Williams DR (1977) Formation constants for citrate-, folic acid-, gluconate- and succinate-proton, -magnanese(II) and -zinc(II) systems: relevance to absorption of dietary manganese, zinc and iron. J Inorg Nucl Chem 39:367ā€“369

    CASĀ  Google ScholarĀ 

  141. Avdeef A, Kearney DL, Brown JA, Chemotti Jr AR (1982) Bjerrum plots for the determination of systematic concentration error in titration data. Anal Chem 54:2322ā€“2326

    CASĀ  Google ScholarĀ 

  142. Hedwig GR, Liddle JR, Reeves RD (1980) Complex formation of nickel(II) ions with citric acid in aqueous solution: a potentiometric and spectroscopic study. Aust J Chem 33:1685ā€“1693

    CASĀ  Google ScholarĀ 

  143. Daniele PG, Ostacoli G, Rigano C, Sammartano S (1984) Ionic strength dependence of formation constants. Part 4. Potentiometric study of the system Cu2+ā€‰-Ni2+ā€‰citrate. Transit Met Chem 9:385ā€“390

    CASĀ  Google ScholarĀ 

  144. Amico P, Daniele PG, Ostacoli G (1985) Mixed metal complexes in solution. Part 4. Formation and stability of heterobinuclear complexes of cadmium(II) citrate with some bivalent metal ions in aqueous solution. Transit Met Chem 10:11ā€“14

    CASĀ  Google ScholarĀ 

  145. Daniele PG, Ostacoli G, Zerbinati O, Sammartano S, De Robertis A (1988) Mixed metal complexes in solution. Thermodynamic and spectrophotometric study of copper(II)-citrate heterobinuclear complexes with nickel(II), zinc(II) or cadmium(II) in aqueous solution. Transit Met Chem 13:87ā€“91

    CASĀ  Google ScholarĀ 

  146. Berto S, Crea F, Daniele PG, De Stefano C, Prenesti E, Sammartano S (2012) Potentiometric and spectrophotometric characterization of UO2 2+ā€‰-citrate complexes in aqueous solution, at different concentrations, ionic strengths and supporting electrolytes. Radiochim Acta 100:13ā€“28

    CASĀ  Google ScholarĀ 

  147. De Robertis A, Gianguzza A, GiuffrĆØ O, Pettignano A, Sammartano S (2006) Interaction of methyltin(IV) compounds with carboxylate ligands. Part 1 :formation and stability of methyltin(IV)-carboxylate complexes and their relevance in speciation studies of natural waters. Appl Organomet Chem 20:89ā€“98

    CASĀ  Google ScholarĀ 

  148. Cardiano P, GiuffrĆØ O, Pellerito L, Pettignano A, Sammartano S, Scopelliti M (2006) Thermodynamic and spectroscopic study of the binding of dimethyltin(IV) by citrate at 25ā€‰Ā°C. Appl Organomet Chem 20:425ā€“435

    CASĀ  Google ScholarĀ 

  149. Rajan KS, Mainer S, Rajan NL, Davis JM (1981) Studies on the chelation of aluminum for neurobiological applications. J Inorg Biochem 14:339ā€“350

    CASĀ  Google ScholarĀ 

  150. Schubert J, Russell ER, Myers Jr LS (1950) Dissociation constants of radium-organic acid complexes measured by ion exchange. J Biol Chem 185:387ā€“398

    CASĀ  Google ScholarĀ 

  151. Kety SS (1942) The lead citrate complex ion and its role in the physiology and therapy of lead poisoning. J Biol Chem 142:181ā€“192

    CASĀ  Google ScholarĀ 

  152. Nordbƶ R (1939) The concentration of ionized magnesium and calcium in milk. J Biol Chem 128:745ā€“757

    Google ScholarĀ 

  153. Meites L (1951) Polarographic studies of metal complexes. V. The cadmium(II), zinc(II) and iron(III) citrates. J Am Chem Soc 73:3727ā€“3731

    CASĀ  Google ScholarĀ 

  154. Meites L (1950) Polarographic studies of metal complexes. II. The copper(II) citrates. J Am Chem Soc 72:180ā€“184

    CASĀ  Google ScholarĀ 

  155. Schufle JA, Dā€™Agostino Jr C (1956) The stability of thallium(I) citrate complex. J Phys Chem 60:1623ā€“1624

    CASĀ  Google ScholarĀ 

  156. Schubert J (1952) Ion exchange studies of complex ions as a function of temperature, ionic strength, and presence of formaldehyde. J Phys Chem 56:113ā€“118

    CASĀ  Google ScholarĀ 

  157. Schubert J (1954) Complexes of alkaline earth cations including amino acids and related compounds. J Am Chem Soc 76:3442ā€“3444

    CASĀ  Google ScholarĀ 

  158. Baggio R, Calvo R, Garland MT, Peňa O, Perec M, Rizzi A (2005) Gadolinium and neodymium citrates: evidence for weak ferromagnetic exchange between gadolinium(III) cations. Inorg Chem 44:8979ā€“8987

    CASĀ  Google ScholarĀ 

  159. Li NC, Westfall WM, Lindenbaum A, White JM, Schubert J (1957) Manganese-54, uranium-233 and cobalt-60 complexes of some organic acids. J Am Chem Soc 79:5864ā€“5870

    CASĀ  Google ScholarĀ 

  160. Schubert J, Lind EL, Westfall WM, Pfleger R (1958) Ion-exchange and solvent extraction studies on Co(II) and Zn(II) complexes of some organic acids. J Am Chem Soc 80:4799ā€“4802

    CASĀ  Google ScholarĀ 

  161. Parry RW, DuBois FW (1952) Citrate complexes of copper in acid solutions. J Am Chem Soc 74:3749ā€“3753

    CASĀ  Google ScholarĀ 

  162. Li NC, Lindenbaum A, White JM (1959) Some metal complexes of citric and tricarballylic acids. J Inorg Nucl Chem 12:122ā€“128

    CASĀ  Google ScholarĀ 

  163. Schubert J, Richter JW (1948) Cation exchange studies on the barium citrate complex and related equilibria. J Am Chem Soc 70:4259ā€“4260

    CASĀ  Google ScholarĀ 

  164. Tompkins ER, Mayer SW (1947) Ion exchange as a separation method. III. Equilibrium studies of the reactions of rare earth complexes with synthetic ion exchange resins. J Am Chem Soc 69:2859ā€“2865

    CASĀ  Google ScholarĀ 

  165. Bobtelsky M, Graus B (1953) Lead citrate complexes and salts, their composition, structure and behavior. J Am Chem Soc 75:4172ā€“4175

    CASĀ  Google ScholarĀ 

  166. Treumann WB, Ferris LM (1958) The determination of a thermodynamic stability constant for cadmium citrate (CdCitāˆ’) complex ion at 25ā€‰Ā°C by a E.M.F. method. J Am Chem Soc 80:5050ā€“5052

    CASĀ  Google ScholarĀ 

  167. Bottari E, Vicedomini M (1973) On the complex formation between lead(II) and citrate ions in acid solution. J Inorg Nucl Chem 35:1269ā€“1278

    CASĀ  Google ScholarĀ 

  168. Bottari E, Vicedomini M (1973) On the complex formation between lead(II) and citrate ions in alkaline solution. J Inorg Nucl Chem 35:2497ā€“2453

    Google ScholarĀ 

  169. Feldman I, Toribara TY, Havill JR, Neuman WF (1955) The beryllium-citrate system. II. Ion-exchange studies. J Am Chem Soc 77:878ā€“881

    CASĀ  Google ScholarĀ 

  170. Hamm RE, Shull CM Jr, Grant DM (1954) Citrate complexes with iron(II) and iron(III). J Am Chem Soc 76:2111ā€“2114

    CASĀ  Google ScholarĀ 

  171. Hastings AB, McLean FC, Eichelberger JL, Da Costa E (1934) The ionization of calcium, magnesium and strontium citrates. J Biol Chem 107:351ā€“370

    CASĀ  Google ScholarĀ 

  172. Happe JA (1973) A probe of chelated zinc(II) environments using chlorine-35 nuclear magnetic resonance. J Am Chem Soc 95:6232ā€“6237

    CASĀ  Google ScholarĀ 

  173. Greenwald I (1938) The dissociation of some calcium salts. J Biol Chem 134:437ā€“452

    Google ScholarĀ 

  174. Feldman I, North CA, Hunter HB (1960) Equilibrium constants for the formation of polynuclear tridentate 1:1 chelates in uranyl-malate, -citrate and tartrate systems. J Phys Chem 64:1224ā€“1230

    Google ScholarĀ 

  175. Rechnitz GA, Zamochnick SB (1964) Application of cation-sensitive glass electrodes to the study of alkali metal complexes. II. Use of a potential comparison method. Talanta 11:1061ā€“1065

    CASĀ  Google ScholarĀ 

  176. Smith TD (1965) Chelates formed by tin(II) with citric and tartaric acids, and their interaction with certain transition-metal ions. J Chem Soc 2145ā€“2150

    Google ScholarĀ 

  177. Bobtelsky M, Jordan J (1945) The metallic complexes of tartrates and citrates, their structure and behavior in dilute solutions. I. The cupric and nickelous complexes. J Am Chem Soc 67:1824ā€“1831

    CASĀ  Google ScholarĀ 

  178. Strouse J (1977) 13C NMR studies of ferrous citrates in acidic and alkaline solutions. Implications concerning the active site of aconitase. J Am Chem Soc 99:572ā€“580

    CASĀ  Google ScholarĀ 

  179. Walser M (1961) Ion association. V Dissociation constants for complexes of citrate with sodium, potassium, calcium and magnesium ions. J Phys Chem 65:159ā€“161

    CASĀ  Google ScholarĀ 

  180. Motekaitis RJ, Martell AE (1984) Complexes of aluminum(III) with hydroxycarboxylic acids. Inorg Chem 23:18ā€“23

    CASĀ  Google ScholarĀ 

  181. Williams DR (1977) Analytical and computer simulation studies of a colloidal bismuth citrate system used as an ulcer treatment. J Inorg Nucl Chem 39:711ā€“714

    CASĀ  Google ScholarĀ 

  182. Li NC, White JM (1960) Some metal complexes of citrate-. II Anion exchange studies. J Inorg Nucl Chem 16:131ā€“137

    CASĀ  Google ScholarĀ 

  183. Adams A, Smith TD (1960) The formation and photochemical oxidation of uranium(IV) citrate complexes. J Chem Soc 4846ā€“4850

    Google ScholarĀ 

  184. Tobia SK, Milad NE (1963) Ion-exchange study of the stability and composition of magnesium citrate complex. J Chem Soc 734ā€“736

    Google ScholarĀ 

  185. Tobia SK, Milad NE (1964) Ion-exchange study of the magnesium citrate complex. Effect of ionic strength, temperature, and pH. J Chem Soc 1915ā€“1918

    Google ScholarĀ 

  186. Gilbert TW, Newman L, Klotz P (1968) Mixed-metal hydroxycarboxylic complexes. The chromium(III) inhibition of the solvent extraction of indium(III). Anal Chem 40:2123ā€“2130

    CASĀ  Google ScholarĀ 

  187. Hubert S, Hussonnois M, Brillard L, Goby G, Guillaumont R (1974) Determination simultanee de constants de formation de complexes citrique de lā€™americium, du curium, du californium, de lā€™einsteinium et du fermium. J Inorg Nucl Chem 36:2361ā€“2366

    CASĀ  Google ScholarĀ 

  188. Roos JTH, Williams DR (1977) Formation constants for citrate-, folic acid-, gluconate- and succinate-proton-manganese(II), and zinc(II) systems: relevance in absorption of dietary manganese, zinc and iron. J Inorg Nucl Chem 39:367ā€“368

    CASĀ  Google ScholarĀ 

  189. Markovits G, Klotz P, Newman L (1972) Formation constants for the mixed-metal complexes between indium(III) and uranium(VI) with malic, citric and tartaric acids. Inorg Chem 11:2405ā€“2408

    CASĀ  Google ScholarĀ 

  190. Covington AK, Danish EY (2009) Measurement of magnesium stability constants of biologically relevant ligands by simultaneously use of pH and ion-selective electrodes. J Solut Chem 38:1449ā€“1462

    CASĀ  Google ScholarĀ 

  191. Galateanu I (1966) Ɖtude de la formulation de complexes du protactinium avec les acides di- et poly-carboxyliques par la mĆ©thode dā€™echange dā€™ions. Can J Chem 44:647ā€“655

    CASĀ  Google ScholarĀ 

  192. Pearce KN (1980) Formation constants for magnesium and calcium citrate complexes. Aust J Chem 33:1511ā€“1517

    CASĀ  Google ScholarĀ 

  193. Eberle SH, Moattar F (1972) Die komplexe de Am(III) mit zitronesƤure. Inorg Nucl Chem Lett 8:265ā€“270

    CASĀ  Google ScholarĀ 

  194. Barnes JC, Bristow PA (1970) Lanthanum citrate complexes in acidic solutions. J Less-Common Metals 22:463ā€“465

    CASĀ  Google ScholarĀ 

  195. Rajan KS, Mainer S, Davis JM (1978) Formation and stabilities of the ternary metal chelates of L-3,4 dihydroxyphenyl aniline (L-DOPA) with a number of secondary ligands. J Inorg Nucl Chem 40:2089ā€“2099

    CASĀ  Google ScholarĀ 

  196. Field TB, Coburn J, McCourt JL, McBryde WAE (1975) Composition and stability of some metal citrate and diglycolate complexes in aqueous solution. Anal Chim Acta 74:101ā€“106

    CASĀ  Google ScholarĀ 

  197. Wyrzykowski D, Czupryniak J, Ossowski T, Chmurzynski L (2010) Thermodynamic interactions of the alkaline earth metal ions with citric acid. J Therm Anal Calorim 102:149ā€“154

    CASĀ  Google ScholarĀ 

  198. Zelenin OYu. (2007) Interaction of the Ni2+ ion with citric acid in an aqueous solution. Russ J Coord Chem 33:346ā€“350

    CASĀ  Google ScholarĀ 

  199. Rechnitz GA, Hseu TM (1961) Analytical and biochemical measurements with a new solid-membrane calcium-selective electrode. Anal Chem 41:111ā€“115

    Google ScholarĀ 

  200. Dodge CJ, Francis AJ (2002) Photodegradation of a ternary iron(III)-uranium(VI)-citric acid complex. Environ Sci Technol 36:2094ā€“2100

    CASĀ  Google ScholarĀ 

  201. Matzapetakis M, Karligiano N, Bino A, Dakanali M, Raptopoulou CP, Tangoulis V, Terzis A, Giapiutzakis J Salifoglou (2000) Manganese citrate chemistry: synthesis, spectroscopic studies and structural characterizations of novel mononuclear water soluble manganese citrate complexes. Inorg Chem 39:4044ā€“4051

    Google ScholarĀ 

  202. Lopez-Quintela MA, Knoche W, Veith J (1984) Kinetics and thermodynamics of complex formation between aluminium(III) and citric acid in aqueous solution. J Chem Soc Faraday Trans I 80:2313ā€“2321

    CASĀ  Google ScholarĀ 

  203. Willey GR, Somasunderam U, Aris DR, Errington W (2001) Ge(IV)-citrate complex formation: synthesis and structural characterization of GeCl4 (bipy) and GeCl(bipy)(Hcit) (bipyā€‰=ā€‰2,2ā€™-bipyridine, H4citā€‰=ā€‰citric acid). Inorg Chim Acta 315:191ā€“195

    CASĀ  Google ScholarĀ 

  204. Alcock NW, Dudek M, Gryboś R, Hodorowicz E, Kanas A, Samotus A (1990) Complexation between molybdenum(VI) and citrate: structural characterization of a tetrameric complex, K4[(MoO2)4O3(cit)2] .6H2O. J Chem Soc Dalton Trans 1:707ā€“711

    Google ScholarĀ 

  205. Ohyoshi E, Ohyoshi A (1971) A study of complexes with polybasic acid. Am(III) citrate complexes. J Inorg Nucl Chem 33:4265ā€“4273

    CASĀ  Google ScholarĀ 

  206. Tsaramyrsi M, Kavousanaki D, Raptopoulou CP, Terzis A, Salifoglou A (2001) Systematic synthesis structural characterization, and reactivity studies of vanadium(V)-citric anions [VO2(C6H6O7)]2 2āˆ’, isolated from aqueous solutions in presence of different cations. Inorg Chim Acta 320:47ā€“59

    CASĀ  Google ScholarĀ 

  207. Martin RB (1986) Citrate binding of Al3+ and Fe3+. J Inorg Biochem 28:181ā€“187

    CASĀ  Google ScholarĀ 

  208. Ohyoshi A, Ueno K (1974) Studies on actinide elements-VI. Photo chemical reduction of uranyl ion in citric acid solution. J Inorg Nucl Chem 36:379ā€“384

    Google ScholarĀ 

  209. Cruywagen JJ, KrĆ¼ger L, Rohwer EA (1991) Complexation of tungsten(VI) with citrate. J Chem Soc Dalton Trans 16:1727ā€“1731

    Google ScholarĀ 

  210. Leal RS (1959) Composition and stability constant of cerium and ammonium citrate at alkaline pH. J Inorg Nucl Chem 10:159ā€“161

    Google ScholarĀ 

  211. Panagiotidis P, Kefalas ET, Raptopoulou CP, Terzis A, Mavromoustakos T, Salifoglou A (2008) Delving into the complex picture of Ti(IV)-citrate speciation in aqueous media: synthetic, structural and electrochemical considerations in mononuclear Ti(IV) complexes containing variable deprotonated citrate ligands. Inorg Chim Acta 361:2210ā€“2224

    CASĀ  Google ScholarĀ 

  212. Piispan J, Lafunen LHJ (1995) Complex formation equilibria of some aliphatic Ī±-hydroxycarboxylic acids. 2. The study of copper(II) complexes. Acta Chem Scand 49:241ā€“247

    Google ScholarĀ 

  213. Ɩhman LO, Nordin A, Sedeh IF, Sjƶberg S (1991) Equilibrium and structural studies of silicon(IV) and aluminium(III) in aqueous solution. 28. Formation of soluble silicic acid-ligand complexes as studied by potentiometric and solubility measurements. Acta Chem Scand 45:335ā€“341

    Google ScholarĀ 

  214. Duffield JR, Raymond DP, Williams DR (1987) Speciation of plutonium in biological fluids. Inorg Chim Acta 140:369ā€“372

    CASĀ  Google ScholarĀ 

  215. Svoronos DR, Bouhlassa S, Guillaumont R (1980) Citric complexes and crystalline neodymium citrates. Comp Rend Sci Chim C290:13ā€“15

    Google ScholarĀ 

  216. Svoronos DR, Bouhlassa S, Guillaumont R, Quarton M (1981) Citric complexes and neodymium citrate NdCitĀ·3H2O. J Inorg Nucl Chem 46:1541ā€“1545

    Google ScholarĀ 

  217. Guillaumont R, Bourderie L (1971) Citric complexes of 4f and 5f elements. Bull Soc Chim Fr 8:2806ā€“2809

    Google ScholarĀ 

  218. Asato E, Hol CM, Hulsbergen FB, Klooster NTM, Reedijk J (1991) Synthesis, structure and spectroscopic properties of bismuth citrate compounds. Part II. Comparison between crystal structures of solid bismuth citrates and commercial CBS, using thermal and spectroscopic methods. Inorg Chem 30:4210ā€“4214

    CASĀ  Google ScholarĀ 

  219. Schulz WW, Mendel JE, Phillips JF Jr (1966) Evidence for a chromium(III)-cerium(III)-citrate complex. J Inorg Nucl Chem 28:2399ā€“2403

    CASĀ  Google ScholarĀ 

  220. Mak MKS, Langford CH (1983) Kinetic analysis applied to aluminum citrate complex. Inorg Chim Acta 70:237ā€“246

    CASĀ  Google ScholarĀ 

  221. Rees TF, Daniel SR (1984) Complexation of neptunium(V) by salicylate, phthalate and citrate ligands in a pH 7.5 phosphate buffered system. Polyhedron 3:667ā€“673

    CASĀ  Google ScholarĀ 

  222. Mathur JN, Cernochova K, Choppin GR (2007) Thermodynamics and laser luminescence spectroscopy of binary and ternary complexation of Am3+, Cm3+ and Eu3+ with citric acid, and citric acid + EDTA at high ionic strength. Inorg Chim Acta 360:1785ā€“1791

    CASĀ  Google ScholarĀ 

  223. Ohyoshi E, Ono H, Yamakawa S (1972) A study of citrate complexes of several lanthanides. J Inorg Nucl Chem 34:1955ā€“1960

    CASĀ  Google ScholarĀ 

  224. McDowell WJ, Keller OL Jr , Dittner PE, Tarrant JR, Case GN (1976) Nobelium chemistry: aqueous complexing with carboxylate ions. J Inorg Nucl Chem 38:1207ā€“1210

    CASĀ  Google ScholarĀ 

  225. Amico P, Daniele PG, Ostacoli G, Arena G, Rizzarelli E, Sammartano S (1980) Mixed metal complexes. Part II. Potentiometric study of heterobinuclear metal(II)-citrate complexes in aqueous solution. Inorg Chim Acta 44:L219ā€“L221

    CASĀ  Google ScholarĀ 

  226. Bouhlassa S, Guillaumont R (1984) Complexes citriques et citrates dā€™amĆ©ricium. J Less-Common Met 99:157ā€“171

    CASĀ  Google ScholarĀ 

  227. Keizer TS, Scott BL, Sauer NN, McCleskey TM (2005) Stable soluble beryllium aluminum citrate complexes inspired by the emerald mineral structures. Angew Chem Int Ed 44:2403ā€“2406

    CASĀ  Google ScholarĀ 

  228. Silva AMN, Kong XL, Parkin MC, Cammack R, Hider RC (2009) Iron(III) citrate speciation in aqueous solution. J Chem Soc Dalton Trans 39:8616ā€“8625

    Google ScholarĀ 

  229. Bailey EH, Mosselmans JFW, Schofield PF (2005) Uranyl-citrate speciation in acidic aqueous solutions ā€“ an XAS study between 25 and 200ā€‰Ā°C. Chem Geol 216:1ā€“16

    CASĀ  Google ScholarĀ 

  230. Zhang H, Zhao H, Jiang YQ, Hou SY, Zhou ZH, Wan HL (2003) pH- and mole-ratio dependent tungsten(VI)-citrate speciation from aqueous solutions: syntheses, spectroscopic properties and crystal structures. Inorg Chim Acta 351:311ā€“318

    CASĀ  Google ScholarĀ 

  231. Nunes TM (1987) New NMR evidence of the uranyl-citrate complexes. Inorg Chim Acta 129:283ā€“287

    CASĀ  Google ScholarĀ 

  232. Tanaka Y, Fukuda J, Okamoto M, Maeda M (1981) Infrared spectroscopic and chromatographic studies on uranium isotope effect in formation of uranyl acetate, citrate and fluoride complexes in aqueous solution. J Inorg Nucl Chem 43:3291ā€“3294

    CASĀ  Google ScholarĀ 

  233. Blomqvist K, Still ER (1984) Solution studies of systems with polynuclear complex formation. 4. Heteronuclear copper(ii0 citrate complexes with nickel(II) and magnesium(II). Inorg Chim Acta 82:141ā€“144

    CASĀ  Google ScholarĀ 

  234. Azab HA, El-Nady AM, Hassan A, Azkal RSA (1994) Potentiometric studies of binary and ternary complexes of cobalt(II) with adenosine-5ā€™-mono-, -di- and -triphosphate and some biologically important polybasic oxygen acids. Monatsh Chem 125:1059ā€“1066

    CASĀ  Google ScholarĀ 

  235. Blaquiere C, Berthon G (1987) Speciation studies in relation to magnesium bioavailability. Formation of Mg(II) complexes with glutamate, aspartate, glycinate, lactate, pyroglutamate, pyridoxine and citrate, and appraisal of their potential significance toward magnesium gastrointestinal absorption. Inorg Chim Acta 135:179ā€“189

    CASĀ  Google ScholarĀ 

  236. Pedrosa PG, de Deus Farropas M, Oā€™Brien P, Gillard RD, Williams PA (1983) Photochemical studies of the Mo(VI) citric acid complex Mo2O5OH(H2O)(C6H5O7)2āˆ’. Transit Met Chem 8:193ā€“195

    Google ScholarĀ 

  237. De Stefano C, Gianguzza A, Piazzese D, Sammartaus S (1999) Speciation of low molecular weight carboxylic ligands in natural fluids: protonation constants and association with major components of seawater of oxydiacetic and citric acids. Anal Chim Acta 398:103ā€“110

    CASĀ  Google ScholarĀ 

  238. Kalalova E (1972) Scandium citrate tartrate, and malate complexes. Zhurn Neorg Khim 17:1584ā€“1589

    CASĀ  Google ScholarĀ 

  239. Kumok VN, Skorik NA, Serebrennikov VU (1965) Stability of scandium citrate and oxalate complexes. Tr Tomsk Univ Ser Khim 185:129ā€“131

    CASĀ  Google ScholarĀ 

  240. Zviedre I, Belakovs S, Zarina I (2010) Crystal structure of new double complex of copper(II) with boric and citric acid. Litvijas Khimijas Zhurn 49:39ā€“44

    Google ScholarĀ 

  241. Kiss T, BuglyĆ³ P, Sanna D, Micera G, Decock P, Dewaele D (1995) Oxavanadium(IV) complexes of citric and tartaric acids in aqueous solution. Inorg Chim Acta 239:145ā€“153

    CASĀ  Google ScholarĀ 

  242. Samotus A, Kanas A, Dudek M, Gryboś R, Hodorowicz E (1991) 1:1 Molybdenum(VI) citric acid complexes. Transit Met Chem 16:495ā€“499

    CASĀ  Google ScholarĀ 

  243. Kaliva M, Kyriakakis E, Gabriel C, Raptopoulou CP, Tarzis A, Tuchangues JP, Salifoglou A (2006) Synthesis isolation, spectroscopic and structural characterization of a new pH complex structural variant from the aqueous vanadium(V)-peroxy-citrate ternary system. Inorg Chim Acta 359:4535ā€“4548

    CASĀ  Google ScholarĀ 

  244. Dodge CJ, Francis AJ (1997) Biotransformation of binary and ternary citric acid complexes of iron and uranium. Environ Sci Technol 31:3062ā€“3067

    CASĀ  Google ScholarĀ 

  245. Gauthier-Luneau I, Bertet P, Jeunet A, Serratrice G, Pierre JL (2007) Iron-citrate complexes and free radicals generation: is citric acid an innocent additive in food and drinks. BioMetals 20:793ā€“796

    Google ScholarĀ 

  246. Borkowski M, Choppin GR, Moore RC, Free SJ (2000) Thermodynamic modeling of metal-ligand interactions in high ionic strength NaCl solutions: the Co2+ -citrate and Ni2+ -citrate systems. Inorg Chim Acta 298:141ā€“145

    CASĀ  Google ScholarĀ 

  247. De Robertis A, Di Giacomo P, Foti C (1995) Ion-selective electrode measurements for the determination of formation constants of alkali and alkaline earth metal with low-molecular-weight ligands. Anal Chim Acta 300:45ā€“51

    Google ScholarĀ 

  248. Nebel D, Anders G (1975) Complexing and salvation on some actinides. I Complexing with acetate and citrate. Isotopenpraxis 11:152ā€“155

    CASĀ  Google ScholarĀ 

  249. Nebel D (1966) Complex formation of plutonium in aqueous solution. Zeits Anal Chem 262:284ā€“285

    Google ScholarĀ 

  250. Das R, Pani S (1955) Citrate complex of trivalent antimony. J Indian Chem Soc 32:537ā€“543

    CASĀ  Google ScholarĀ 

  251. Glickson JD, Pitner TP, Webb J, Gams RA (1975) Hydrogen-1 and Gallium-71 nuclear resonance study of gallium-citrate in aqueous solution. J Am Chem Soc 97:1679ā€“1683

    CASĀ  Google ScholarĀ 

  252. Still ER, Wikberg P (1980) Solution studies of systems with polynuclear complex formation. I. The copper(II) citrate system. Inorg Chim Acta 46:147ā€“152

    CASĀ  Google ScholarĀ 

  253. Hansen HR, Pergantis SA (2006) Investigating the formation of an Sb(V)-citrate complex by HPLC-ICP-MS and HPLC-ES-MS(/MS). J Anal At Spectrom 21:1240ā€“1248

    CASĀ  Google ScholarĀ 

  254. Matzapetakis M, Kougiantakis M, Dakanali M, Raptopoulou CP, Terzis A, Lakatos A, Kiss T, BanyaĆ­ I, Iordanidis L, Mavromoustakos T, Salifoglou A (2001) Synthesis pH-dependent structural characterization, and solution behavior of aluminum and gallium citrate complexes. Inorg Chem 40:1734ā€“1744

    CASĀ  Google ScholarĀ 

  255. Tsimber SM, Novikova LS (1977) Complexes of silver(I) with some hydroxy acids. Zhurn Neorg Khim 22:1842ā€“1846

    Google ScholarĀ 

  256. Zheng J, Iijima A, Furuta N (2001) Complexation effect of antimony compounds with citric acid and its application to the speciation of antimony(III) and antimony(V) using HPLC-IPC-MS. J Anal At Spectrom 16:812ā€“818

    CASĀ  Google ScholarĀ 

  257. Djokič S (2008) Synthesis and antimicrobial activity of silver citrate complexes. Bioinorg Chem Appl 1ā€“7

    Google ScholarĀ 

  258. Onstott EI (1955) The separation of europium from samarium by electrolysis. J Am Chem Soc 77:2129ā€“2132

    CASĀ  Google ScholarĀ 

  259. Spedding FH, Fulmer EI, Butler TA, Powell JE (1950) The separation of rare earths by ion exchange. IV. Further investigations concerning variables involved in the separation of samarium, neodymium and praseodymium. J Am Chem Soc 92:2349ā€“2354

    Google ScholarĀ 

  260. Lefebvre J (1956) Potentiometric study of complex equilibriums. III. Potentiometric indicators. Compt Rend 242:1729ā€“1732

    CASĀ  Google ScholarĀ 

  261. Lefebvre J (1957) Potentiometric surface method. III Application to the study of compounds of malic and citric acids with copper. J Chim Phys PCB 54:581ā€“600

    CASĀ  Google ScholarĀ 

  262. Ekstrƶm LG, Olin ƅ (1979) On the complex formation between lead(II) and citrate ions in acid, neutral and weakly alkaline solution. Chemica Scripta 13:10ā€“15

    Google ScholarĀ 

  263. Heinz E (1951) Investigations on complex compounds of calcium. Biochem Z 321:314ā€“342

    CASĀ  Google ScholarĀ 

  264. Kozlicka M (1964) Stability of some complex compounds of zirconium by the metal indicator method. Chemia Anal (Wars) 13:809ā€“815

    Google ScholarĀ 

  265. Pyatnitskii IV, Glushchenko LM, Melā€™nichuk OM (1979) Mixed-metal complexes of copper and bismuth (or zirconium) with citrate and their analytical use. Zhurn Anal Khim 34:459ā€“464

    CASĀ  Google ScholarĀ 

  266. Antonov PG, Agapov IA, Kotelā€™nikov VP (1997) Complexation of ruthenium(II) and osmium(II) with tin(II) compounds in aqueous solutions of citric, tartaric and lactic acids. Zhurn Prikl Khim 70:1409ā€“1412

    CASĀ  Google ScholarĀ 

  267. Bobtelsky M, Graus B (1954) Thorium citrate complexes, their composition, structure and behavior. J Am Chem Soc 76:1536ā€“1539

    CASĀ  Google ScholarĀ 

  268. Strizhakova NG, Karlysheva KF, Sheka IA (1978) Citrate complexes of zirconium. Ukrain Khim Zhurn 44:227ā€“231

    CASĀ  Google ScholarĀ 

  269. Choppin GR, Ekten HA, Xia YX (1996) Variation of stability constants of thorium citrate complexes with ionic strength. Radiochim Acta 74:123ā€“127

    CASĀ  Google ScholarĀ 

  270. Raymond DP, Duffield JR, Williams DR (1987) Complexation of plutonium and thorium in aqueous environments. Inorg Chim Acta 140:309ā€“313

    CASĀ  Google ScholarĀ 

  271. Hoshi M, Ueno K (1977) The precipitations of thorium, uranium(VI) and plutonium (IV) citrate complex ion with hexamminecobalt(III) ion. Radiochem Radioanal Lett 30:145ā€“153

    CASĀ  Google ScholarĀ 

  272. Grinberg AA, Petrzhak GI, Lozhkina GS (1971) Complexes of thorium with organic ligands. Radiokhimiya 13:836ā€“840

    CASĀ  Google ScholarĀ 

  273. Tokmadzhyan MA, Dobrynina NA, Martinenko LI, Spitsyn VI (1975) Mixed complexes formed by rare-earth elements with iminodiacetic and citric acids. Izv Akad Nauk Ser Khim 460ā€“462

    Google ScholarĀ 

  274. Alekseeva II, Gromova AD, Dermeleva IV, Khyorostukhina NA (1978) Complexing osmium with carboxylic and hydroxycarboxylic acids. Zhurn Neorg Khim 23:98ā€“101

    CASĀ  Google ScholarĀ 

  275. Bivi Mitre MG, Wierna NR, Wagner CC, Baran EJ (2000) Spectroscopic and magnetic properties of a Ni(II) complex with citric acid. Biol Trace Elem Res 76:183ā€“190

    Google ScholarĀ 

  276. Beyer GJ, Bergmann R, Schomaecker K, Roesch F, Schaefer G, Kulikov EV, Novgorodov AF (1990) Comparison of the biodistribution of actinium-225 and radiolanthanides as citrate complexes. Isotopenpraxis 26:111ā€“114

    CASĀ  Google ScholarĀ 

  277. Moutte A, Gaillaumont R (1969) Citrate complexes of actinium and curium. Rev Chim Miner 6:603ā€“610

    CASĀ  Google ScholarĀ 

  278. Kornev VI, Kardapolā€™tsev AA (2008) Heteroligand mercury(II) complexes with aspartic, tartaric, and citric acids. Russ J Coord Chem 34 896ā€“900

    CASĀ  Google ScholarĀ 

  279. Tselinskii YK, Kvyatkovskaya LY (1976) Study of the state of zirconium in solutions of mesotartaric and citric acids. Ukrain Khim Zhurn 42:576ā€“581

    CASĀ  Google ScholarĀ 

  280. Van der Linden WE, Beers C (1975) Formation constants of mercury(II) with some buffer/masking agents and the formation of mixed-ligand complexes. Talanta 22:89ā€“92

    CASĀ  Google ScholarĀ 

  281. Zaitsev BN, Nikolaev VM, Shalimov VV (1975) Reaction of tetravalent plutonium and zirconium with citric acid in nitric acid solutions. Radiokhimiya 17:284ā€“287

    CASĀ  Google ScholarĀ 

  282. Bouhlassa S, Hubert S, Brillard L, Guillaumont R (1977) Trivalent berkelium citrate complexes. Rev Chim Miner 14:239ā€“248

    CASĀ  Google ScholarĀ 

  283. Ziegler M (1959) Extraction of citrate and tartrate complexes of the transition metals. Naturwissenschaften 46:492

    CASĀ  Google ScholarĀ 

  284. Hubert S, Hussonnis M, Guillaumont R (1973) Mise en evidence de lā€™effet nephelanxetique dans un complex citrique de elements de la serie 4f. J Inorg Nucl Chem 35:2923ā€“2944

    CASĀ  Google ScholarĀ 

  285. Moenze R (1977) Formation of citrate complexes of technetium. Radiochem Radioanal Lett 30:61ā€“64

    Google ScholarĀ 

  286. Moenze R (1977) Formation of technetium(III) citrate complexes. Radiochem Radioanal Lett 30:117ā€“122

    Google ScholarĀ 

  287. Moenze R (1981) Polynuclear technetium99(IV) citrate complex. Radiochem Radioanal Lett 48:281ā€“287

    Google ScholarĀ 

  288. Pantani F (1964) Rhodium oxalate, citrate and tartrate complexes: a polaro-graphic and spectrophotometric investigation. Ric Sci 4:41ā€“48

    CASĀ  Google ScholarĀ 

  289. Levin VI, Kodina GE, Novoselov VS (1977) Composition and stability of complexes of gallium and indium with citric acid. Koord Khim 3:1503ā€“1505

    CASĀ  Google ScholarĀ 

  290. Zolotukhin VK, Galanets ZG, Monchak TI (1965) Trivalent indium citrate complexes. Ukr Khim Zhurn 31:342ā€“347

    CASĀ  Google ScholarĀ 

  291. Lavrova GV, Tsimmergakl VA (1967) Infrared absorption spectra of gallium and indium citrate complexes. Zhurn Neorg Khim 12:922ā€“926

    CASĀ  Google ScholarĀ 

  292. Manzurola E, Apelblat A, Markovits G, Levy O (1989) Metal-mixed hydroxycarboxylic acid complexes. J Chem Soc Faraday Trans I 85:373ā€“379

    CASĀ  Google ScholarĀ 

  293. Manzurola E, Apelblat A, Markovits G, Levy O (1988) Mixed metal hydroxycarboxylic acid complexes. Spectroscopic study of complexes of U(VI) with In(III), Zn(II), Cu(II) and Cd(II). J Solut Chem 17:47ā€“57

    CASĀ  Google ScholarĀ 

  294. Bouhlassa S, Petit-Ramel M, Guillaumont R (1984) Neodymium citrate complexes. Bull Soc Chim (Fr) 5ā€“11

    Google ScholarĀ 

  295. Bouhlassa S, Guillaumont R (1984) Formation conditions and crystallographic and spectroscopic characteristics of neodymium citrates. Bull Soc Chim (Fr) 12ā€“18

    Google ScholarĀ 

  296. Guillaumont R (1968) Citrate complexes of pentavalent protactinium. Bull Soc Chim (Fr) 1956ā€“1961

    Google ScholarĀ 

  297. Metivier H, Guillaumont R (1971) Plutonium(IV) citrates. Radiochem Radioanal Lett 10:239ā€“250

    Google ScholarĀ 

  298. Feldman I, Neuman WF, Dankey KA, Havill JR (1951) The beryllium-citrate system. I. Dialysis studies in alkaline solution. J Am Chem Soc 73:4775ā€“4777

    CASĀ  Google ScholarĀ 

  299. Topolski A (2011) Insight into the degradation of a manganese(III)-citrate complex in aqueous solutions. Chem Papers 65:380ā€“392

    Google ScholarĀ 

  300. Bigelis VM, Parmanov TI (1987) Equilibrium and steady-state potentials of tellurium in citrate-sulfuric acid solution. Elektrokhim 23 987ā€“988

    CASĀ  Google ScholarĀ 

  301. Konecny C (1963) Spectrophotometric investigation of the ternary system ruthenium(III)-citrate-nitrosonaphtol. Anal Chim Acta 29:423ā€“433

    CASĀ  Google ScholarĀ 

  302. Antonov PG, Agapov IA, Kotelā€™nikov VP (1997) Complexation of ruthenium(II) and osmium(II) with tin(II) compounds in aqueous solutions of citric, tartaric and lactic acids. Zhurn Prikl Khim 70:1409ā€“1412

    CASĀ  Google ScholarĀ 

  303. Dodge CJ, Francis AJ (1997) Biotransformation of binary and ternary citric acid complexes of iron and uranium. Environ Sci Technol 31:3062ā€“3067

    CASĀ  Google ScholarĀ 

  304. Dodge CJ, Francis AJ (2002) Photodegradation of a ternary iron(III)-uranium(VI)-citric acid complex. Environ Sci Technol 36:2094ā€“2100

    CASĀ  Google ScholarĀ 

  305. Beloedova TV, Kazakova LV, Skorik NA (1972) Stability of rare earth and yttrium citrate complexes in water and water-alcohol mixtures. Zhurn Neorg Khim 17:1580ā€“1583

    CASĀ  Google ScholarĀ 

  306. Tripathy KK, Patnaik RK (1973) Citrate complex of yttrium(III). Acta Chim Acad Sci Hung 79:279ā€“288

    CASĀ  Google ScholarĀ 

  307. Collins JM, Uppal R, Incarvito CD, Valentine AM (2005) Titanium(IV) citrate speciation and structure under environmentally and biologically relevant conditions. Inorg Chem 44:3431ā€“3440

    CASĀ  Google ScholarĀ 

  308. Clausen M, Ohman LO, Persson P (2004) Spectroscopic studies of aqueous gallium(III) and aluminum(III) citrate complexes. J Inorg Biochem 99:716ā€“726

    Google ScholarĀ 

  309. Deng YF, Zhou ZH, Wan HL (2004) pH dependent isolation and spectroscopic, structural, and thermal studies of titanium citrate complexes. Inorg Chem 43:6266ā€“6273

    CASĀ  Google ScholarĀ 

  310. Grigorā€™eva VV, Golubeva IV (1975) Niobium(V) citrate complexes. Zhurn Neorg Khim 20:941ā€“946

    Google ScholarĀ 

  311. Grigorā€™eva VV, Golubeva IV (1979) Determination of the composition and dissociation constants of niobium(V) complexes by a photometric method. Ukr Khim Zhurn 45:327ā€“332

    Google ScholarĀ 

  312. Grigorā€™eva VV, Golubeva IV (1980) Hydroxy acid complexes of niobium. Ukr Khim Zhurn 46:468ā€“472

    Google ScholarĀ 

  313. Petit-Ramel MM, Khalil I (1974) Mixed bimetallic complexes II. Determination of the stability constants of yttrium citrates of the bimetallic copper yttrium citrate. Bull Soc Chim (Fr) 1259ā€“1263

    Google ScholarĀ 

  314. Salā€™nikov, Yu I, Devyatov FV (1983) Mixed-center citrate complexes of yttrium group lanthanide and gadolinium(III) ions. Zhurn Neorg Khim 28:606ā€“610

    Google ScholarĀ 

  315. Shuttleworth SG (1951) A conductometric study of chromium citrate complex ions. J Am Leather Assoc 46:409ā€“417

    CASĀ  Google ScholarĀ 

  316. Bartusik M, Havel J, Matula D (1991) Boron chelates with citrate. Scripta Chem 21:63ā€“67

    Google ScholarĀ 

  317. Belousova EM, Pozharitskii AF, Seifullina II, Borovskaya MM (1978) Spectroscopic study of the Complexing germanium(IV) with tartaric and citric acids. Zhurn Neorg Khim 18:2766ā€“2771

    Google ScholarĀ 

  318. Seifullina II, Martsinko EE, Minacheva LKh, Pesaroglo AG, Sergienko VS (2009) Synthesis, structure, and properties for the use of new coordination compounds of germanium(IV) with hydroxy acids. Ukr Khim Zhurn 75:3ā€“9

    CASĀ  Google ScholarĀ 

  319. Karazhanov NA, Kalacheva VG (1968) Conditions for the existence of boron complexes in solution. Izv Akad Nauk Kazakh SSR Ser Khim 18:1ā€“6

    CASĀ  Google ScholarĀ 

  320. Deng YF, Jiang YQ, Hong QM, Zhou ZH (2007) Speciation of water-soluble titanium citrate: synthesis, structural, spectroscopic properties and biological relevance. Polyhedron 26:1561ā€“1569

    CASĀ  Google ScholarĀ 

  321. Getsova M, Todorovsky D, Enchev V, Wawer I (2007) cerium(III/IV) and Cerium(IV)-titanium(IV) citric complexes prepared in ethylene glycol medium. Monat Chem 138:389ā€“401

    CASĀ  Google ScholarĀ 

  322. Skorik NA, Serebrennikov VV (1964) Hydroxycitrates of yttrium, potassium and some rare earth elements. Zhurn Neorg Khim 9:1483ā€“1485

    CASĀ  Google ScholarĀ 

  323. Skorik NA, Kumok VN, Perov EI, Avgustan KP, Serebrennikov VV (1965) Complexes of rare earth citrates in acid solutions. Zhurn Neorg Khim 10:653ā€“656

    CASĀ  Google ScholarĀ 

  324. Skorik NA, Serebrennikov VV (1966) Rare-earth element citrates in aqueous solutions. Zhurn Neorg Khim 11:764ā€“765

    CASĀ  Google ScholarĀ 

  325. Skorik NA, Kumok VN, Serebrennikov VV (1967) Compounds of mercury(II) with nitrotriacetic and citric acid. Zhurn Neorg Khim 12:2711ā€“2714

    CASĀ  Google ScholarĀ 

  326. Skorik NA, Kumok VN, Serebrennikov VV (1967) Thorium citrate. Radiokhim 9:515ā€“517

    CASĀ  Google ScholarĀ 

  327. Skorik NA, Artish AS (1985) Stability of gallium, indium and thorium complexes with several organic acids. Zhurn Neorg Khim 30:1994ā€“1997

    CASĀ  Google ScholarĀ 

  328. Haissinsky M, Yang JT (1949) Stability of some organic complexes of the elements of the forth and fifth groups of the periodic table. II Oxalates, citrate, and tartrates of columbium, tantalum and protoactinium. Anal Chim Acta 4:328ā€“332

    CASĀ  Google ScholarĀ 

  329. Bonin L, Den Auwer C, Ansoborio E, Cote G, Moisy P (2007) Study of Np speciation in citrate media. Radiochim Acta 95:371ā€“379

    CASĀ  Google ScholarĀ 

  330. Bonin L, Cote G, Moisy P (2008) Speciation of An(IV) (Pu, Np, U and Th) in citrate media. Radiochim Acta 96:145ā€“152

    CASĀ  Google ScholarĀ 

  331. Sevostā€™yanova EP (1983) Stability of neptunium(IV, V and VI) in citric acid solutions. Radiokhim 25:340ā€“345

    Google ScholarĀ 

  332. Moskvin AI (1959) Investigation of the plutonium and americium(III) complex formation in aqueous solutions by the solubility and the ion-exchange methods. Radiokhim 1:430ā€“434

    CASĀ  Google ScholarĀ 

  333. Moskvin AI, Khalturin GV, Gelā€™man AD (1962) Determination of the composition and instability constants of citrate and tartrate complexes of americium(III) by the ion-exchange method. Radiokhim 4:162ā€“166

    CASĀ  Google ScholarĀ 

  334. Stepanov AV (1971) Comparative stability of complexes of yttrium, and some rare-earth and actinide elements with anions of oxalic, citric, ethylenediaminetetraacetic and 1,2-cyclohexanediaminetetraacetic acids. Zhurn Neorg Khim 16:2981ā€“2985

    CASĀ  Google ScholarĀ 

  335. Ohyoshi E, Ohyoshi A (1971) Complexes with polybasic acid. americium(III) citrate complexes. J Inorg Nucl Chem 33:4265ā€“4273

    CASĀ  Google ScholarĀ 

  336. Eberle SH, Moattar F (1972) Complexes of americium(III) with citric acid. Inorg Nucl Chem Lett 8:265ā€“270

    CASĀ  Google ScholarĀ 

  337. Samhoun K, David F, Hanh RL, Oā€™Kelley GD, Tarrant JR, Hobart DE (1979) Electrochemical study of mendelevium in aqueous solution: no evidence of monovalent ions. J Inorg Nucl Chem 41:1749ā€“1754

    CASĀ  Google ScholarĀ 

  338. Vajo JJ, Aikens DA, Ashley L, Poelti DE, Bailey RA, Clark HM, Bunce SC (1981) Facile electroreduction of perrhenate in weakly acidic citrate and oxalate media. Inorg Chem 20:3328ā€“3333

    CASĀ  Google ScholarĀ 

  339. Peshkova VM, Gromova MI (1957) The study of compounds of neodymium, praseodymium and erbium with citric acid by the spectrophotometric method. J Neorg Khim 2:1356ā€“1364

    CASĀ  Google ScholarĀ 

  340. Mishchenko VT, Poluektov NS (1964) Polynuclear citrate-complexes of the rare-earth elements. Russ J Inorg Chem 9:986ā€“990

    Google ScholarĀ 

  341. Wyrzykowski D, Chmurzynski L (2010) Thermodynamics of citrate complexation with Mn2+, Co2+, Ni2+, and Mn2+ ions. J Therm Anal Calorim 102:61ā€“64

    CASĀ  Google ScholarĀ 

  342. Aquino AJA, Tunega D, Haberhauer G, Gerzabek MH, Lischka H (2001) A density-functional investigation of aluminium(III)-citrate complexes. Phys Chem Chem Phys 3:1979ā€“1985

    CASĀ  Google ScholarĀ 

  343. Chen Q, Zhang X, Wu CH, Hepler LG (1993) Calorimetric investigation of complex formation in the aqueous Fe(III)-citrate system. Can J Chem 71:937ā€“941

    CASĀ  Google ScholarĀ 

  344. Wu CH, Dobrogowska C, Zhang X Hepler LG (1997) Calorimetric investigation of Al3+ (aq), Al(OH)4 āˆ’(aq), and aluminum-citrate complexes at 298.15Ā K. Can J Chem 75:110ā€“1113

    Google ScholarĀ 

  345. Bickley RI, Edwards HGM, Gustar R, Rose SJA (1991) Vibrational spectroscopic study of nickel (II) citrate Ni3(C6H5O7)2 and its aqueous solutions. J Mol Struct 246:217ā€“228

    CASĀ  Google ScholarĀ 

  346. Bichara LC, Bimbi MVF, Gervasi CA, Alvarez PE, Brandan SA (2012) Evidences of the formation of a tin(IV) complex in citric-citrate buffer solution: a study based on voltammetric, FTIR and ab initio calculations. J Mol Struct 1008:95ā€“101

    CASĀ  Google ScholarĀ 

  347. Kaliva M, Kyriakakis E, Salifoglou A (2002) Reactivity investigation of dinuclear vanadium(IV, V)-citrate complexes in aqueous solutions. A closer look into aqueous vanadium-citrate interconversions. Inorg Chem 41:7015ā€“7023

    CASĀ  Google ScholarĀ 

  348. Biaso F, Duboc C, Barbara B, Serratrice G, Thomas F, Charapoff D, BĆ©guin C (2005) High-field EPR study of frozen aqueous solutions of iron(III) citrate complexes. Eur J Inorg Chem 467ā€“478

    Google ScholarĀ 

  349. Lakatos A, BĆ”nyai I, Decock P, Kiss T (2001) Time-dependent solution speciation of the AlIII-citrate system: potentiometric and NMR study. Eur J Inorg Chem 461ā€“469

    Google ScholarĀ 

  350. Pedrosa de Jesus JD, de Deus Farrapas M, Oā€™Brien P, Gillard RD, Williams PA (1983) Photochemical studies of the MoVI citrate complex Mo2O5OH(H2O)(C6H5O7)2āˆ’. Transition Met Chem 8:193ā€“195

    CASĀ  Google ScholarĀ 

  351. Samotus A, Kanas A, Dudek M, Gryboś R, Hodorowicz E (1991) 1:1 Molybdenum(VI) citric acid complexes. Transit Met Chem 16:495ā€“499

    CASĀ  Google ScholarĀ 

  352. Cervilla A, Ramirez JA, Llopis E (1986) Compouns of tungsten(VI) with citric acid: a spectrophotometric, polarimetric and hydrogen-1, carbon-13 N.M.R. Study of the formation and interconversion equilibria in aqueous solution. Transit Met Chem 11:87ā€“91

    Google ScholarĀ 

  353. Cameiro MLB, Nunes ES, Peixoto RCA, Oliveira RGS, LourenƧo LHM, de Silva ICR, Simioni AR, Tedesco AC, de Souza AR, Lacava ZGM, BĆ”o SN (2011) Free rhodium(II) citrate and rhodium(II) citrate magnetic carriers as potential strategies for breast cancer therapy. J Nanobiotechnol 9:1ā€“17

    Google ScholarĀ 

  354. Martsinko EE, Minacheva LK, Pesaraglo AG, Seifullina II, Churakov AV, Sergienko VS (2011) Bis(citrate) germinates of bivalent 3d metals (Fe, Co, Ni, Cu, Zn): crystal and molecular structure of [Fe(H2O)6][Ge(HCit)2]Ā·4H2O. Russ J Inorg Chem 56:1243ā€“1249

    CASĀ  Google ScholarĀ 

  355. Brar AS, Ranhawa BS (1983) Mƶssbauer effect studies of alkali bis(citrate) ferrates(III). J Phys 44:1345ā€“1349

    CASĀ  Google ScholarĀ 

  356. Pasilis SP, Pemberton JL (2003) Speciation and coordination chemistry of uranyl(VI)-citrate complexes in aqueous solution. Inorg Chem 42:6793ā€“6800

    CASĀ  Google ScholarĀ 

  357. Allen PG, Shuh DK, Bucher JJ, Edelstein NM, Reich T, Denecke MA Nitsche H (1996) EXAFS determination of uranium structures. The uranyl ion complexed with tartaric, citric and malic acids. Inorg Chem 35:784ā€“787

    CASĀ  Google ScholarĀ 

  358. Bobtelsky M, Graus B (1955) Cerous citrate complexes, their composition, structure and behavior. J Am Chem Soc 77:1990ā€“1993

    CASĀ  Google ScholarĀ 

  359. Kƶnigsberger LC, Kƶnigsberger E, May PT, Hefter GT (2000) Complexation of iron(III) and iron(II) by citrate. Implications for iron speciation in blood plasma. J Inorg Biochem 78:175ā€“184

    Google ScholarĀ 

  360. Paradies J, Crudass J, MacKay F, Yellowlees LJ, Montgomery J, Parsons S, Ostwald I, Robertson N, Sandler PJ (2006) Photogeneration of titanium(III) from titanium(IV) citrate in aqueous solution. J Inorg Biochem 100:1260ā€“1264

    CASĀ  Google ScholarĀ 

  361. Kaliva M, Raptopoulou CP, Terzis A, Salifoglou A (2003) Systematic studies on pH-dependent transformations of dinuclear vanadium(V)-citrate complexes in aqueous solutions. A perspective relevance to aqueous vanadium(V)-citrate speciation. J Inorg Biochem 93:161ā€“173

    CASĀ  Google ScholarĀ 

  362. Shah JR, Patel RP (1973) Spectrophotometric studies of iron(III) complexes with carboxylic acids using an auxiliary complexing agent. J Prakt Chemie 315:983ā€“985

    CASĀ  Google ScholarĀ 

  363. Cigala RM, Crea F, De Stefano C, Milia D, Sammartano S Scopelliti M (2013) Speciation of tin(II) in aqueous solution: thermodynamic and spectroscopic study of simple and mixed hydroxocarboxylate complexes. Monatsh Chem 144:761ā€“772

    CASĀ  Google ScholarĀ 

  364. Sambrano JR, Zampieri M, Ferreira AG Longo E (1999) Ab initio study and NMR analysis of the complexation of citric acid with ion lithium. J Mol Structure 493:309ā€“318

    CASĀ  Google ScholarĀ 

  365. Banta GA, Rettig SJ, Storr A, Trotter J (1985) Synthesis characterization, and structural studies of gallium citrate complexes. Can J Chem 63:2545ā€“2549

    CASĀ  Google ScholarĀ 

  366. Zhang G, Yang G, Ma JS (2006) Versatile framework solids constructed from divalent transition metals and citric acid: synthesis, crystal structures and thermal behaviors. Cryst Growth Des 6:375ā€“381

    CASĀ  Google ScholarĀ 

  367. Cruywagen JJ, Rohwer EA, Wessels GFS (1995) Molybdenum(VI) complex formation-8. Equilibria and thermodynamic quantities for reactions with citrate. Polyhedron 14:3481ā€“3493

    CASĀ  Google ScholarĀ 

  368. Singh RP, Yeboah YD, Pambid ER Debayle P (1991) Stability constant of the calcium(3-) ion pair complex. J Chem Eng Data 36:52ā€“54

    CASĀ  Google ScholarĀ 

  369. Kachhawaha MS, Bhattacharya AK (1962) Electrometric study of the system Mn(II)-citrate. Z Anorg Allg Chem 315:104ā€“109

    Google ScholarĀ 

  370. Getsova MM, Todorovsky DS, Amandov MG (2000) Preparation and characterization of yttrium-titanium citrate complexes. Z Anorg Allg Chem 626:1488ā€“1492

    CASĀ  Google ScholarĀ 

  371. Nemeth A (1975) Determination of the equilibrium constants in the samarium(III)-citric acid complexes. Izotoptechnika 18:307ā€“313

    CASĀ  Google ScholarĀ 

  372. Mujika JI, Ugalde JM, Lopez X (2012) Aluminum speciation in biological environments. The deprotonation of free and aluminum bound citrate in aqueous solution. Phys Chem Chem Phys 14:12465ā€“12475

    CASĀ  Google ScholarĀ 

  373. Salā€™nikov, Yu I, Devyatov FV (1980) Complexing of yttrium group rare earth element ions with citric acid. Zhurn Neorg Khim 25:1216ā€“1222

    Google ScholarĀ 

  374. Skorik AA, Mamynova AA, Serebrennikov VV (1969) Reaction of citric acid with rare-earth ions. Trudy Nauch Konf Tomsk Khim Obshchestva 1:59ā€“62

    Google ScholarĀ 

  375. Hummel W, PuigdomĆØnech I, Rao L, Tochiyama O (2007) Thermodynamic data of compounds and complexes of U, Np, Pu and Am with selected organic ligands. R C Chemie 10:948ā€“958

    CASĀ  Google ScholarĀ 

  376. Tokmadzhyan MA, Dobrynina NA, Martynenko LI, Alchadzhyan AA (1974) Mixed complexes of lanthanum, praseodymium, neodymium, and samarium with EDTA, nitrilotriacetic acid, and citric acid. Zhurn Neorg Khim 19:2888ā€“2889

    CASĀ  Google ScholarĀ 

  377. Pyatnitskii IV, Gavrilova EF (1970) Complexing of samarium, europium, and gadolinium with citric acid in an alkali medium. Ukrain Khim Zurn 36:284ā€“292

    CASĀ  Google ScholarĀ 

  378. Wang LY, Wu GQ, Evans DG (2007) Synthesis and characterization of layered double hydroxide containing an intercalated nickel(II) citrate complex. Materials Chem Phys 104:133ā€“140

    CASĀ  Google ScholarĀ 

  379. Engelmann MD, Bobier RT, Hiatt T Cheng IF (2003) Variability of the Fenton reaction characteristics of the EDTA, DTPA, and citrate complexes of iron. BioMetals 16:519ā€“527

    CASĀ  Google ScholarĀ 

  380. Abrahamson HB, Rezvani AB, Brushmiller JG (1994) Photochemical and spectroscopic studies of complexes of iron(III) with citric acid and other carboxylic acids. Inorg Chim Acta 226:117ā€“127

    CASĀ  Google ScholarĀ 

  381. Niaki TT, Aghapoor K, Khosravi K (2004) Spectrophotometric study of citric acid with As(III) and As(V). Orient J Chem 20:43ā€“46

    CASĀ  Google ScholarĀ 

  382. Morfin JF, TĆ³th E (2011) Kinetics of Ga(NOTA) formation weak Ga-citrate complexes. Inorg Chem 50:10371ā€“10378

    CASĀ  Google ScholarĀ 

  383. Schubert J, Richter JW (1948) The use of ion exchangers for the determination of physical-chemical properties of substances, particularly radiotracers, in solution. II. The dissociation constants of strontium citrate and strontium tartrate. J Phys Chem 52:350ā€“357

    CASĀ  Google ScholarĀ 

  384. Schubert J, Lindenbaum A (1950) Complexes of calcium with citric acid and tricarballylic acids measured by ion exchange. Nature 166:913ā€“914

    CASĀ  Google ScholarĀ 

  385. Schubert J, Lindenbaum A (1952) Stability of alkaline earth ā€“ organic acid complexes measured by ion-exchange. J Am Chem Soc 74:3529ā€“3532

    CASĀ  Google ScholarĀ 

  386. Pyatnitskii IV, Kharchenko RS (1964) Extraction of metal citrate complexes in the presence of tributylamine. Ukrain Khim Zurn 30:311ā€“313

    CASĀ  Google ScholarĀ 

  387. Koch H, Falkenberg WD (1967) The stability of chelate-complexes of polonium(IV). In: Dyrssen D, Liljenzen JO, Rydberg J (eds) Proceedings of International Conference, Gothenburg 1966, Solvent Extraction Chemistry, North-Holland, Amsterdam, ppĀ 26ā€“31

    Google ScholarĀ 

  388. Ampelogova NI (1973) Ion exchange of the complexed polonium. Radiokhimiya 15:813ā€“820

    Google ScholarĀ 

  389. Hamada YZ, Bayakly N, George D, Greer T (2008) Speciation of molybdenum(VI)-citric acid complexes in aqueous solutions. Synth React Inorg Metal-Org Nano-Metal Chem 38:664ā€“668

    CASĀ  Google ScholarĀ 

  390. Hamada YZ, Bayakly N, Peipho A, Carlson B (2006) Accurate potentiometric studies of chromium-citrate and ferric citrate complexes in aqueous solutions at physiological and alkaline pH values. Synth React Inorg Metal-Org Nano-Metal Chem 36:469ā€“476

    CASĀ  Google ScholarĀ 

  391. Ninh Pham A, Waite TD (2008) Oxygenation of Fe(II) in the presence of citrate in aqueous solution at pH 6.0ā€“8.0 at 25ā€‰Ā°C. Interpretation from an Fe(II)/citrate speciation perspective. J Phys Chem A 112:643ā€“651

    Google ScholarĀ 

  392. Diez-Caballero RJB, Valentin JFA, Garcia AA, Almudi RP, Batanero PS (1985) Polarographic determination of the stability constants of binary and ternary lead(II) complexes and different organic ligands. J Electroanal Chem 196:43ā€“51

    CASĀ  Google ScholarĀ 

  393. Tsimbler SM, Shevchenko LL, Grigorā€™eva VV (1969) The IR absorption spectra of the tartrate and citrate complexes of nickel, cobalt and iron. Zhurn Prikl Spektrosk 11:522ā€“528

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Apelblat .

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Apelblat, A. (2014). Dissociation Equilibria in Solutions with Citrate Ions. In: Citric Acid. Springer, Cham. https://doi.org/10.1007/978-3-319-11233-6_3

Download citation

Publish with us

Policies and ethics